Detection of Low-Level Fosfomycin-Resistant Variants by Decreasing Glucose-6-Phosphate Concentration in Fosfomycin Susceptibility Determination
Abstract
:1. Introduction
2. Results
3. Discussion
4. Material and Methods
4.1. G6P Determination in Urine from Patients with UTI
4.2. Strains and Media
4.3. MIC Determination
Author Contributions
Funding
Conflicts of Interest
References
- Castañeda-García, A.; Blázquez, J.; Rodríguez-Rojas, A. Molecular Mechanisms and Clinical Impact of Acquired and Intrinsic Fosfomycin Resistance. Antibiotics 2013, 2, 217–236. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Falagas, M.E.; Vouloumanou, E.K.; Samonis, G.; Vardakas, K.Z. Fosfomycin. Clin. Microbiol. Rev. 2016, 29, 321–347. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hall, J.A.; Maloney, P.C. Altered oxyanion selectivity in mutants of UhpT, the Pi-linked sugar phosphate carrier of Escherichia coli. J. Biol. Chem. 2005, 280, 3376–3381. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nilsson, A.I.; Berg, O.G.; Aspevall, O.; Kahlmeter, G.; Andersson, D.I. Biological Costs and Mechanisms of Fosfomycin Resistance in Escherichia coli. Antimicrob. Agents Chemother. 2003, 47, 2850–2858. [Google Scholar] [CrossRef] [Green Version]
- Barry, A.L.; Fuchs, P.C. In vitro susceptibility testing procedures for fosfomycin tromethamine. Antimicrob. Agents Chemother. 1991, 35, 1235–1238. [Google Scholar] [CrossRef] [Green Version]
- Ballestero-Téllez, M.; Docobo-Pérez, F.; Portillo-Calderón, I.; Rodríguez-Martínez, J.M.; Racero, L.; Ramos-Guelfo, M.S.; Blázquez, J.; Rodríguez-Baño, J.; Pascual, A. Molecular insights into fosfomycin resistance in Escherichia coli. J. Antimicrob. Chemother. 2017, 72, 1303–1309. [Google Scholar]
- Ballestero-Téllez, M.; Docobo-Pérez, F.; Rodríguez-Martínez, J.M.; Conejo, M.C.; Ramos-Guelfo, M.S.; Blázquez, J.; Rodríguez-Baño, J.; Pascual, A. Role of inoculum and mutant frequency on fosfomycin MIC discrepancies by agar dilution and broth microdilution methods in Enterobacteriaceae. Clin. Microbiol. Infect. 2017, 23, 325–331. [Google Scholar] [CrossRef] [Green Version]
- Baquero, F. Low-level antibacterial resistance: A gateway to clinical resistance. Drug Resist. Updates 2001, 4, 93–105. [Google Scholar] [CrossRef]
- Martín-Gutiérrez, G.; Docobo-Pérez, F.; Rodriguez-Beltrán, J.; Rodríguez-Martínez, J.M.; Aznar, J.; Pascual, A.; Blázquez, J. Urinary Tract Conditions Affect Fosfomycin Activity against Escherichia coli Strains Harboring Chromosomal Mutations Involved in Fosfomycin Uptake. Antimicrob. Agents Chemother. 2017, 62, e01899-17. [Google Scholar]
- Dette, G.A.; Knothe, H.; Schönenbach, B.; Plage, G. Comparative study of fosfomycin activity in Mueller-Hinton media and in tissues. J. Antimicrob. Chemother. 1983, 11, 517–524. [Google Scholar] [CrossRef]
- Kihlstrom, E.; Andaker, L. Inability of gentamicin and Fosfomycin to eliminate intracellular Enterobacteriaceae. J. Antimicrob. Chemother. 1985, 15, 723–728. [Google Scholar] [CrossRef] [PubMed]
- Lote, C.J. Principles of Renal Physiology, 4th ed.; Springer: Dordrecht, The Netherlands, 2000; pp. 161–165. [Google Scholar]
- Andrews, J.M.; Baquero, F.; Beltran, J.M.; Canton, E.; Crokaert, F.; Gobernado, M.; Gomez-Lus, R.; Loza, E.; Navarro, M.; Olay, T.; et al. International collaborative study on standardization of bacterial sensitivity to fosfomycin. J. Antimicrob. Chemother. 1983, 12, 357–361. [Google Scholar] [CrossRef] [PubMed]
- Anon. EUCAST. Clinical Breakpoints. Available online: http://www.eucast.org/clinical_breakpoints (accessed on 15 September 2020).
- Anon. Clinical and Laboratory Standards Institute. Performance Standards for Antimicrobial Susceptibility Testing, 30th ed.; CLSI document M100-S27 Clinical and Laboratory Standards Institute: Wayne, PA, USA, 2020. [Google Scholar]
- Rosen, D.A.; Hooton, T.M.; Stamm, W.E.; Humphrey, P.A.; Hultgren, S.J. Detection of intracellular bacterial communities in human urinary tract infection. PLoS Med. 2007, 4, e329. [Google Scholar] [CrossRef] [PubMed]
- Lucas, A.E.; Ito, R.; Mustapha, M.M.; McElheny, C.L.; Mettus, R.T.; Bowler, S.L.; Kantz, S.F.; Pacey, M.P.; Pasculle, A.W.; Cooper, V.S.; et al. Frequency and Mechanisms of Spontaneous Fosfomycin Nonsusceptibility Observed upon Disk Diffusion Testing of Escherichia coli. J. Clin. Microbiol. 2017, 56, e01368–e17. [Google Scholar] [CrossRef] [Green Version]
- Molina-Quiroz, R.C.; Silva-Valenzuela, C.; Brewster, J.; Castro-Nallar, E.; Levy, S.B.; Camilli, A. Cyclic AMP Regulates Bacterial Persistence through Repression of the Oxidative Stress Response and SOS-Dependent DNA Repair in Uropathogenic Escherichia coli. mBio 2018, 9, e02144-17. [Google Scholar] [CrossRef] [Green Version]
- Turner, A.K.; Yasir, M.; Bastkowski, S.; Telatin, A.; Page, A.J.; Charles, I.G.; Webber, M.A. A genome-wide analysis of Escherichia coli responses to fosfomycin using TraDIS-Xpress reveals novel roles for phosphonate degradation and phosphate transport systems. J. Antimicrob. Chemother. 2020, 75, 3144–3151. [Google Scholar] [CrossRef]
- Falagas, M.E.; Athanasaki, F.; Voulgaris, G.L.; Triarides, N.A.; Vardakas, K.Z. Resistance to fosfomycin: Mechanisms, Frequency and Clinical Consequences. Int. J. Antimicrob. Agents 2019, 53, 22–28. [Google Scholar] [CrossRef]
- Oteo, J.; Bautista, V.; Lara, N.; Cuevas, O.; Arroyo, M.; Fernández, S.; Lázaro, E.; De Abajo, F.J.; Campos, J. Parallel increase in community use of fosfomycin and resistance to fosfomycin in extended-spectrum β-lactamase (ESBL)-producing Escherichia coli. J. Antimicrob. Chemother. 2010, 65, 2459–2463. [Google Scholar] [CrossRef] [Green Version]
- Peretz, A.; Naamneh, B.; Tkhawkho, L.; Nitzan, O. High Rates of Fosfomycin Resistance in Gram-Negative Urinary Isolates from Israel. Microb. Drug Resist. 2019, 25, 408–412. [Google Scholar] [CrossRef]
- Vardakas, K.Z.; Legakis, N.J.; Triarides, N.; Falagas, M.E. Susceptibility of contemporary isolates to fosfomycin: A systematic review of the literature. Int. J. Antimicrob. Agents 2016, 47, 269–285. [Google Scholar] [CrossRef]
- Antonello, R.M.; Principe, L.; Maraolo, A.E.; Viaggi, V.; Pol, R.; Fabbiani, M.; Montagnani, F.; Lovecchio, A.; Luzzati, R.; Di Bella, S. Fosfomycin as Partner Drug for Systemic Infection Management. A Systematic Review of Its Synergistic Properties from In Vitro and In Vivo Studies. Antibiotics 2020, 9, 500. [Google Scholar] [CrossRef] [PubMed]
- Baba, T.; Ara, T.; Hasegawa, M.; Takai, Y.; Okumura, Y.; Baba, M.; Datsenko, K.A.; Tomita, M.; Wanner, B.L.; Mori, H. Construction of Escherichia coli K-12 in-frame, single-gene knockout mutants: The Keio collection. Mol. Syst. Biol. 2006, 2, 2006.0008. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Strain | Agar Dilution | Disk Diffusion (mm) | |||||
---|---|---|---|---|---|---|---|
MH + G6P 25 μg/mL * | MH + G6P 5 μg/mL | MH No G6P | 200 μg + G6P 50 μg * | 200 μg + G6P 25 μg | 200 μg + G6P 15 μg | 200 μg | |
ATCC25922 | 2 | 16 | 32 | 30 | 27 | 24 | 22 |
BW25113 | 2 | 8 | 2 | 31 | 27 | 25 | 22 |
ΔcyaA | 16 | 512 | 512 | 27 | 24 | 22 | 0 |
ΔglpT | 2 | 64 | 128 | 29 | 22 | 21 | 18 |
ΔuhpT | 64 | 64 | 64 | 19 | 20 | 20 | 20 |
ΔptsI | 8 | 256 | 256 | 28 | 23 | 23 | 15 |
ΔglpT-ΔuhpT | 256 | 128 | 128 | 14 | 15 | 15 | 15 |
ΔglpT-ΔptsI | 8 | 512 | 512 | 23 | 23 | 21 | 0 |
ΔcyaA-ΔglpT | 32 | 256 | 1024 | 28 | 24 | 21 | 0 |
ΔptsI-ΔcyaA | 32 | 512 | 512 | 26 | 24 | 22 | 0 |
ΔuhpT-ΔcyaA | 512 | 512 | 512 | 0 | 0 | 0 | 0 |
ΔptsI-ΔuhpT | 64 | 64 | 128 | 11 | 10 | 10 | 11 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Martín-Gutiérrez, G.; Docobo-Pérez, F.; Rodríguez-Martínez, J.M.; Pascual, A.; Blázquez, J.; Rodriguez-Beltrán, J. Detection of Low-Level Fosfomycin-Resistant Variants by Decreasing Glucose-6-Phosphate Concentration in Fosfomycin Susceptibility Determination. Antibiotics 2020, 9, 802. https://doi.org/10.3390/antibiotics9110802
Martín-Gutiérrez G, Docobo-Pérez F, Rodríguez-Martínez JM, Pascual A, Blázquez J, Rodriguez-Beltrán J. Detection of Low-Level Fosfomycin-Resistant Variants by Decreasing Glucose-6-Phosphate Concentration in Fosfomycin Susceptibility Determination. Antibiotics. 2020; 9(11):802. https://doi.org/10.3390/antibiotics9110802
Chicago/Turabian StyleMartín-Gutiérrez, Guillermo, Fernando Docobo-Pérez, Jose Manuel Rodríguez-Martínez, Alvaro Pascual, Jesús Blázquez, and Jeronimo Rodriguez-Beltrán. 2020. "Detection of Low-Level Fosfomycin-Resistant Variants by Decreasing Glucose-6-Phosphate Concentration in Fosfomycin Susceptibility Determination" Antibiotics 9, no. 11: 802. https://doi.org/10.3390/antibiotics9110802
APA StyleMartín-Gutiérrez, G., Docobo-Pérez, F., Rodríguez-Martínez, J. M., Pascual, A., Blázquez, J., & Rodriguez-Beltrán, J. (2020). Detection of Low-Level Fosfomycin-Resistant Variants by Decreasing Glucose-6-Phosphate Concentration in Fosfomycin Susceptibility Determination. Antibiotics, 9(11), 802. https://doi.org/10.3390/antibiotics9110802