Vancomycin Serum Concentration after 48 h of Administration: A 3-Years Survey in an Intensive Care Unit
Abstract
:1. Introduction
2. Methods
2.1. Design
2.2. Patients
- -
- Patients <18 years of age and pregnant.
- -
- Patients with previous renal replacement therapy (RRT) for chronic renal failure.
- -
- Patients for whom vancomycin treatment was ongoing.
- -
- Patients for whom vancomycin intermittent infusion was used.
- -
- Patients requiring >14-day vancomycin therapy (such as endocarditis requiring longer treatment duration and higher plasma level).
- -
- Patients who had previously participated to the present study.
- -
- Patients for whom withdrawing care would be decided in the next 48 h.
- -
- Patients not receiving intravenous dosing.
- -
- Patients for whom a refusal was expressed.
2.3. Vancomycin Administration
2.4. Measured Parameters
- Demographic characteristics: age, sex, height, total body weight with calculated body mass index, and previous stable serum creatinine concentration.
- Medical history, initial reason for ICU admission and Simplified Acute Physiology Score II (SAPS II) at ICU admission [27].
- The patient inclusion was defined as the day of vancomycin initiation (D1). During the inclusion period (vancomycin initiation day and 14 following days) the following data were captured: source of infection and anti-infective therapy, including type of infection, anti-infective agent(s) administered, and microbiological cultures collected.
- Clinical parameters including urine output, which was assessed at 08:00 h daily.
- Requirement for vasopressor support, renal replacement therapy (RRT), mechanical ventilation, and/or sedation.
- Co-prescription of nephrotoxic drugs (e.g., aminoglycosides, diuretics, non-steroid anti-inflammatory (NSAI), iodinated contrast products).
- Biological parameters: serum creatinine concentration, calculation of creatinine clearance by chronic kidney disease-epidemiology CKD-EPI formula [30].
- Vancomycin dosing: the loading dose and the continuous infusion regimen (daily dose) and its potential alterations were recorded.
- Vancomycin assays: vancomycin serum concentrations were measured using automated immunoassays (Kinetic Interaction of Microparticles in Solution, COBAS 8000®, Roche Diagnostics). Blood samples for vancomycin monitoring were collected at 8:00 AM if prescribed.
2.5. Objectives and Assessment Criteria
2.5.1. Main Outcome
2.5.2. Secondary Outcomes
- The proportion of patients with vancomycin serum concentration <10 mg/L at D2 or D3 (considered as a risk factor of failure and resistance emergence) [5].
- Factors associated with vancomycin serum concentration between 20–25 mg/L at D2–D3, and the factors associated with vancomycin serum concentration under 20 mg/L at D2–D3.
- Patient outcome separating (Test of Cure):
- -
- Clinical cure: resolution of clinical signs and symptoms compared with baseline, and no requirement for additional antibacterial treatment.
- -
- Clinical failure: Persistence or progression of baseline signs and symptoms after at least 2 days of treatment, consistent with active infection. When the same pathogen was found, it was considered as a relapse, whereas the presence of another pathogen was considered as a reinfection.
- -
- Indeterminate: Extenuating circumstances preclude classification to one of the above.
- Patient survival at ICU discharge, hospital discharge and at D28. At D28, patients with and without an appropriate serum vancomycin concentration at D2–D3 were compared.
- The occurrence of AKI (defined as a KDIGO ≥1) during the vancomycin administration, including pre-existing or beginning AKI at vancomycin initiation [29].
2.5.3. Statistical Analysis
3. Results
3.1. Study Population
3.2. Vancomycin Administration
3.3. Main Outcome
3.4. Secondary Outcomes
3.5. Patient Outcome
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Singer, M.; Deutschman, C.S.; Seymour, C.W.; Shankar-Hari, M.; Annane, D.; Bauer, M.; Bellomo, R.; Bernard, G.R.; Chiche, J.-D.; Coopersmith, C.M.; et al. The Third International Consensus Definitions for Sepsis and Septic Shock (Sepsis-3). JAMA 2016, 315, 801–810. [Google Scholar] [CrossRef]
- Hanberger, H.; Walther, S.; Leone, M.; Barie, P.S.; Rello, J.; Lipman, J.; Marshall, J.C.; Anzueto, A.; Sakr, Y.; Pickkers, P.; et al. Increased mortality associated with methicillin-resistant Staphylococcus aureus (MRSA) infection in the intensive care unit: Results from the EPIC II study. Int. J. Antimicrob. Agents 2011, 38, 331–335. [Google Scholar] [CrossRef] [Green Version]
- Rhodes, A.; Evans, L.E.; Alhazzani, W.; Levy, M.M.; Antonelli, M.; Ferrer, R.; Kumar, A.; Sevransky, J.E.; Sprung, C.L.; Nunnally, M.E.; et al. Surviving Sepsis Campaign: International Guidelines for Management of Sepsis and Septic Shock: 2016. Intensive Care Med. 2017, 43, 304–377. [Google Scholar] [CrossRef]
- Rybak, M.J.; Akins, R.L. Emergence of methicillin-resistant Staphylococcus aureus with intermediate glycopeptide resistance: Clinical significance and treatment options. Drugs 2001, 61, 1–7. [Google Scholar] [CrossRef]
- Rybak, M.; Lomaestro, B.; Rotschafer, J.C.; Moellering, R.; Craig, W.; Billeter, M.; Dalovisio, J.R.; Levine, D.P. Therapeutic monitoring of vancomycin in adult patients: A consensus review of the American Society of Health-System Pharmacists, the Infectious Diseases Society of America, and the Society of Infectious Diseases Pharmacists. Am. J. Health. Syst. Pharm. 2009, 66, 82–98. [Google Scholar] [CrossRef]
- Moise-Broder, P.A.; Forrest, A.; Birmingham, M.C.; Schentag, J.J. Pharmacodynamics of vancomycin and other antimicrobials in patients with Staphylococcus aureus lower respiratory tract infections. Clin. Pharmacokinet. 2004, 43, 925–942. [Google Scholar] [CrossRef]
- Zelenitsky, S.; Rubinstein, E.; Ariano, R.; Iacovides, H.; Dodek, P.; Mirzanejad, Y.; Kumar, A. Cooperative Antimicrobial Therapy of Septic Shock-CATSS Database Research Group Vancomycin pharmacodynamics and survival in patients with methicillin-resistant Staphylococcus aureus-associated septic shock. Int. J. Antimicrob. Agents 2013, 41, 255–260. [Google Scholar] [CrossRef]
- Rybak, M.J.; Le, J.; Lodise, T.P.; Levine, D.P.; Bradley, J.S.; Liu, C.; Mueller, B.A.; Pai, M.P.; Wong-Beringer, A.; Rotschafer, J.C.; et al. Therapeutic monitoring of vancomycin for serious methicillin-resistant Staphylococcus aureus infections: A revised consensus guideline and review by the American Society of Health-System Pharmacists, the Infectious Diseases Society of America, the Pediatric Infectious Diseases Society, and the Society of Infectious Diseases Pharmacists. Am. J. Health Syst. Pharm. AJHP Off. J. Am. Soc. Health Syst. Pharm. 2020, 77, 835–864. [Google Scholar] [CrossRef] [Green Version]
- Bretonnière, C.; Leone, M.; Milési, C.; Allaouchiche, B.; Armand-Lefevre, L.; Baldesi, O.; Bouadma, L.; Decré, D.; Figueiredo, S.; Gauzit, R.; et al. Strategies to reduce curative antibiotic therapy in intensive care units (adult and paediatric). Intensive Care Med. 2015, 41, 1181–1196. [Google Scholar] [CrossRef]
- Rello, J.; Sole-Violan, J.; Sa-Borges, M.; Garnacho-Montero, J.; Muñoz, E.; Sirgo, G.; Olona, M.; Diaz, E. Pneumonia caused by oxacillin-resistant Staphylococcus aureus treated with glycopeptides. Crit. Care Med. 2005, 33, 1983–1987. [Google Scholar] [CrossRef] [PubMed]
- Hao, J.-J.; Chen, H.; Zhou, J.-X. Continuous versus intermittent infusion of vancomycin in adult patients: A systematic review and meta-analysis. Int. J. Antimicrob. Agents 2016, 47, 28–35. [Google Scholar] [CrossRef] [PubMed]
- Wysocki, M.; Delatour, F.; Faurisson, F.; Rauss, A.; Pean, Y.; Misset, B.; Thomas, F.; Timsit, J.F.; Similowski, T.; Mentec, H.; et al. Continuous versus intermittent infusion of vancomycin in severe Staphylococcal infections: Prospective multicenter randomized study. Antimicrob. Agents Chemother. 2001, 45, 2460–2467. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cataldo, M.A.; Tacconelli, E.; Grilli, E.; Pea, F.; Petrosillo, N. Continuous versus intermittent infusion of vancomycin for the treatment of Gram-positive infections: Systematic review and meta-analysis. J. Antimicrob. Chemother. 2012, 67, 17–24. [Google Scholar] [CrossRef] [PubMed]
- Waineo, M.F.; Kuhn, T.C.; Brown, D.L. The pharmacokinetic/pharmacodynamic rationale for administering vancomycin via continuous infusion. J. Clin. Pharm. Ther. 2015, 40, 259–265. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Roberts, J.A.; Taccone, F.S.; Udy, A.A.; Vincent, J.-L.; Jacobs, F.; Lipman, J. Vancomycin dosing in critically ill patients: Robust methods for improved continuous-infusion regimens. Antimicrob. Agents Chemother. 2011, 55, 2704–2709. [Google Scholar] [CrossRef] [Green Version]
- Ocampos-Martinez, E.; Penaccini, L.; Scolletta, S.; Abdelhadii, A.; Devigili, A.; Cianferoni, S.; de Backer, D.; Jacobs, F.; Cotton, F.; Vincent, J.-L.; et al. Determinants of early inadequate vancomycin concentrations during continuous infusion in septic patients. Int. J. Antimicrob. Agents 2012, 39, 332–337. [Google Scholar] [CrossRef]
- Baptista, J.P.; Roberts, J.A.; Sousa, E.; Freitas, R.; Deveza, N.; Pimentel, J. Decreasing the time to achieve therapeutic vancomycin concentrations in critically ill patients: Developing and testing of a dosing nomogram. Crit. Care Lond. Engl. 2014, 18, 654. [Google Scholar] [CrossRef] [Green Version]
- Jamal, J.-A.; Roger, C.; Roberts, J.A. Understanding the impact of pathophysiological alterations during critical illness on drug pharmacokinetics. Anaesth. Crit. Care Pain Med. 2018, 37, 515–517. [Google Scholar] [CrossRef] [Green Version]
- Baptista, J.P.; Roberts, J.A.; Udy, A.A. Augmented renal clearance: A real phenomenon with an uncertain cause. Anaesth. Crit. Care Pain Med. 2019, 38, 335–336. [Google Scholar] [CrossRef]
- Pea, F.; Furlanut, M.; Negri, C.; Pavan, F.; Crapis, M.; Cristini, F.; Viale, P. Prospectively validated dosing nomograms for maximizing the pharmacodynamics of vancomycin administered by continuous infusion in critically ill patients. Antimicrob. Agents Chemother. 2009, 53, 1863–1867. [Google Scholar] [CrossRef] [Green Version]
- Cristallini, S.; Hites, M.; Kabtouri, H.; Roberts, J.A.; Beumier, M.; Cotton, F.; Lipman, J.; Jacobs, F.; Vincent, J.-L.; Creteur, J.; et al. New Regimen for Continuous Infusion of Vancomycin in Critically Ill Patients. Antimicrob. Agents Chemother. 2016, 60, 4750–4756. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Toulouse, E.; Masseguin, C.; Lafont, B.; McGurk, G.; Harbonn, A.; A Roberts, J.; Granier, S.; Dupeyron, A.; Bazin, J.E. French legal approach to clinical research. Anaesth. Crit. Care Pain Med. 2018, 37, 607–614. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Leone, M.; Constantin, J.-M.; Dahyot-Fizelier, C.; Duracher-Gout, C.; Joannes-Boyau, O.; Langeron, O.; Legrand, M.; Mahjoub, Y.; Mirek, S.; Mrozek, S.; et al. French intensive care unit organisation. Anaesth. Crit. Care Pain Med. 2018, 37, 625–627. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Von Elm, E.; Altman, D.G.; Egger, M.; Pocock, S.J.; Gøtzsche, P.C.; Vandenbroucke, J.P.; STROBE Initiative. The Strengthening the Reporting of Observational Studies in Epidemiology (STROBE) Statement: Guidelines for reporting observational studies. Int. J. Surg. Lond. Engl. 2014, 12, 1495–1499. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Montravers, P.; Dupont, H.; Leone, M.; Constantin, J.-M.; Mertes, P.-M.; Société française d’anesthésie et de réanimation (Sfar); Société de réanimation de langue française (SRLF); Laterre, P.-F.; Misset, B.; Société de pathologie infectieuse de langue française (SPILF); et al. Guidelines for management of intra-abdominal infections. Anaesth. Crit. Care Pain Med. 2015, 34, 117–130. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Leone, M.; Bouadma, L.; Bouhemad, B.; Brissaud, O.; Dauger, S.; Gibot, S.; Hraiech, S.; Jung, B.; Kipnis, E.; Launey, Y.; et al. Hospital-acquired pneumonia in ICU. Anaesth. Crit. Care Pain Med. 2018, 37, 83–98. [Google Scholar] [CrossRef]
- Le Gall, J.R.; Lemeshow, S.; Saulnier, F. A new Simplified Acute Physiology Score (SAPS II) based on a European/North American multicenter study. JAMA 1993, 270, 2957–2963. [Google Scholar] [CrossRef]
- Vincent, J.L.; Moreno, R.; Takala, J.; Willatts, S.; De Mendonça, A.; Bruining, H.; Reinhart, C.K.; Suter, P.M.; Thijs, L.G. The SOFA (Sepsis-related Organ Failure Assessment) score to describe organ dysfunction/failure. On behalf of the Working Group on Sepsis-Related Problems of the European Society of Intensive Care Medicine. Intensive Care Med. 1996, 22, 707–710. [Google Scholar] [CrossRef]
- Kellum, J.A.; Lameire, N.; Aspelin, P.; Barsoum, R.S.; Burdmann, E.A.; Goldstein, S.L.; Herzog, C.A.; Joannidis, M.; Kribben, A.; Levey, A.S.; et al. Kidney Disease: Improving Global Outcomes (KDIGO) Acute Kidney Injury Work Group. KDIGO Clinical Practice Guideline for Acute Kidney Injury. Kidney Inter. Suppl. 2012, 2, 1–138. [Google Scholar]
- Levey, A.S.; Stevens, L.A.; Schmid, C.H.; Zhang, Y.L.; Castro, A.F.; Feldman, H.I.; Kusek, J.W.; Eggers, P.; Van Lente, F.; Greene, T.; et al. A new equation to estimate glomerular filtration rate. Ann. Intern. Med. 2009, 150, 604–612. [Google Scholar] [CrossRef]
- European Centre for Disease Prevention and Control (ECDC Surveillance of Antimicrobial Resistance in Europe 2016. Available online: https://ecdc.europa.eu/sites/portal/files/documents/EARS-Net-report-2017-update-jan-2019.pdf (accessed on 18 September 2019).
- Leone, M.; Roberts, J.A.; Bassetti, M.; Bouglé, A.; Lavigne, J.-P.; Legrand, M.; Neely, M.; Paiva, J.-A.; Payen, D.; Rello, J.; et al. Update in antibiotic therapy in intensive care unit: Report from the 2019 Nîmes International Symposium. Anaesth. Crit. Care Pain Med. 2019. [Google Scholar] [CrossRef]
- Zasowski, E.J.; Murray, K.P.; Trinh, T.D.; Finch, N.A.; Pogue, J.M.; Mynatt, R.P.; Rybak, M.J. Identification of Vancomycin Exposure-Toxicity Thresholds in Hospitalized Patients Receiving Intravenous Vancomycin. Antimicrob. Agents Chemother. 2017, 62, e01684-17. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tabah, A.; De Waele, J.; Lipman, J.; Zahar, J.R.; Cotta, M.O.; Barton, G.; Timsit, J.-F.; Roberts, J.A. Working Group for Antimicrobial Use in the ICU within the Infection Section of the European Society of Intensive Care Medicine (ESICM) The ADMIN-ICU survey: A survey on antimicrobial dosing and monitoring in ICUs. J. Antimicrob. Chemother. 2015, 70, 2671–2677. [Google Scholar] [CrossRef] [Green Version]
- De Waele, J.J.; Danneels, I.; Depuydt, P.; Decruyenaere, J.; Bourgeois, M.; Hoste, E. Factors associated with inadequate early vancomycin levels in critically ill patients treated with continuous infusion. Int. J. Antimicrob. Agents 2013, 41, 434–438. [Google Scholar] [CrossRef] [PubMed]
- Chuma, M.; Makishima, M.; Imai, T.; Tochikura, N.; Sakaue, T.; Kikuchi, N.; Kinoshita, K.; Kaburaki, M.; Yoshida, Y. Duration of Systemic Inflammatory Response Syndrome Influences Serum Vancomycin Concentration in Patients With Sepsis. Clin. Ther. 2016, 38, 2598–2609. [Google Scholar] [CrossRef]
- Marsot, A.; Boulamery, A.; Bruguerolle, B.; Simon, N. Vancomycin: A review of population pharmacokinetic analyses. Clin. Pharmacokinet. 2012, 51, 1–13. [Google Scholar] [CrossRef] [PubMed]
- Baptista, J.P.; Udy, A.A.; Sousa, E.; Pimentel, J.; Wang, L.; Roberts, J.A.; Lipman, J. A comparison of estimates of glomerular filtration in critically ill patients with augmented renal clearance. Crit. Care Lond. Engl. 2011, 15, R139. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bragadottir, G.; Redfors, B.; Ricksten, S.-E. Assessing glomerular filtration rate (GFR) in critically ill patients with acute kidney injury--true GFR versus urinary creatinine clearance and estimating equations. Crit. Care Lond. Engl. 2013, 17, R108. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jamal, J.-A.; Udy, A.A.; Lipman, J.; Roberts, J.A. The impact of variation in renal replacement therapy settings on piperacillin, meropenem, and vancomycin drug clearance in the critically ill: An analysis of published literature and dosing regimens*. Crit. Care Med. 2014, 42, 1640–1650. [Google Scholar] [CrossRef]
- Lodise, T.P.; Lomaestro, B.; Graves, J.; Drusano, G.L. Larger vancomycin doses (at least four grams per day) are associated with an increased incidence of nephrotoxicity. Antimicrob. Agents Chemother. 2008, 52, 1330–1336. [Google Scholar] [CrossRef] [Green Version]
Collected Data | D1 | D2 | D3 | D4 | D5 | D6 | D7 | D8 | D9 | D10 | D11 | D12 | D13 | D14 | D15 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Weight | |||||||||||||||
SOFA-score | |||||||||||||||
Serum creatinine | |||||||||||||||
GFR by CKD-EPI | |||||||||||||||
AKI by KDIGO-stage | |||||||||||||||
Vancomycin loading dose * | |||||||||||||||
Vancomycin daily dose | |||||||||||||||
Dose adaptation | |||||||||||||||
Hemodynamic support | |||||||||||||||
Mechanical ventilation | |||||||||||||||
Sedation | |||||||||||||||
Dialysis | |||||||||||||||
Nephrotoxic comedication | |||||||||||||||
Iodine contrast products |
Characteristics | Analysed Patients | Value |
---|---|---|
Admission, median (IQ 25–75): | ||
- Age (years) | 179 | 67 (59–75) |
- Women, n (%) | 179 | 60 (34) |
- SAPS II score | 179 | 48 (36–57) |
- Weight (kg) | 179 | 74 (63–86) |
- Height (m) | 179 | 1.70 (1.62–1.75) |
- Body Mass Index (kg/m2) | 179 | 25.7 (22.3–29.1) |
- Baseline Creatinine (µmol/L) * | 177 | 68 (59–86) |
- Creatinine (µmol/L) | 179 | 104 (72–162) |
- Creatinine Clearance by CKD-EPI (mL/min) | 178 | 62 (34–88) |
- Albumin (Admission)(g/L) | 170 | 28 (23–32) |
- ICU length of stay before vancomycin initiation (day) | 179 | 1 (0–5) |
Comorbidities, n (%) Ɨ | 179 | |
- Diabetes mellitus | 34 (19) | |
- Coronaropathy | 17(10) | |
- Cardiac insufficiency | 13 (7) | |
- Peripheral arterial disease | 29 (16) | |
- Cancer | 11(6) | |
- Liver cirrhosis | 8(4) | |
- High blood pressure | 55 (30) | |
- Single kidney | 5(3) | |
- Renal transplantation | 0 (0) | |
Treatment at admission, n (%) | 179 | |
- Conversion enzyme inhibitor | 36 (20) | |
- Angiotensin II receptor inhibitor | 17 (10) | |
- Diuretics | 38 (20) | |
- Non-steroid anti-inflammatory | 16 (9) | |
- Chemotherapy ᵋ | 8 (4) | |
- Others | 22 (12) | |
Admission type, n (%) | ||
- Sepsis or septic shock, n (%) | 179 | 110 (61) |
Vancomycin therapy, median (IQ 25;75) ᵠ | ||
- loading dose, mg | 151 | 1000 (1000–1500) |
- loading dose, mg/kg | 151 | 15.6 (12.5;20.8) |
- Day 1 daily dose, mg | 178 | 2000 (1600–2000) |
- Day 1 daily dose, mg/kg | 178 | 27.5 (21.3–31.9) |
- Day 2 daily dose, mg | 177 | 2000 (2000–2500) |
- Day 2 daily dose, mg/kg | 177 | 28.4 (23.8–34.8) |
Other nephrotoxic drugs during follow-up, n (%) | 179 | 172 (96%) |
- Aminoglycosides | 179 | 142 (79%) |
Organ failure, n (%) ᵡ | ||
- Mechanical ventilation | 179 | 152(85) |
- Renal replacement therapy | 179 | 49 (27) |
- Vasoactive drugs | 179 | 110(61) |
Glomerular filtration, n (%) | ||
- AKI during vancomycin administration ᶷ | 179 | 107 (60) |
- Augmented renal clearance at Day 1 or Day 2 ᶿ | 179 | 7(4) |
Outcome | ||
- Day 28 Mortality, n (%) | 178 | 46 (26) |
- Length of stay, ICU, (d) ‡ | 136 | 6 (3-13) |
- Length of stay, hospital, (d) ‡ | 123 | 23 (14–47) |
Infection Characteristics, n (%) | Analysed Patients | Value |
---|---|---|
Documented infection site: | 143 | |
- Intra-abdominal | 53 (37) | |
- Bloodstream | 29 (20) | |
- Lung | 25 (17) | |
- Urinary tract | 15 (10) | |
- Skin | 9 (6) | |
- Bone | 9 (6) | |
- Brain meninges | 3 (2) | |
Documented causative pathogen | 143 | |
- MRSA | 7 (5) | |
- MSSA | 21 (15) | |
- Coagulase negative Staphylococcus | 21 (15) | |
- Enterococcus faecalis | 22 (15) | |
- Enteroccocus faecium | 23 (16) | |
- Others GPC | 15 (10) | |
- Enterobacterales | 71 (50) | |
- Pseudomonas aeruginosa/Acinetobacter baumannii | 18 (13) | |
- Others GNB | 10 (7) | |
- Anaerobes | 13 (9) | |
- Yeast | 17 (12) | |
- Others | 2 (1) | |
Polymicrobial infection site | 143 | 61 (43) |
Variables | Univariate Analysis | Multivariate Analysis | ||||||
---|---|---|---|---|---|---|---|---|
Odds-Ratio | 95% CI | p-Value | Odds-Ratio | 95% CI | p-Value | |||
Age | 0.992 | 0.967 | 1.018 | 0.5580 | ||||
Sex: Woman vs. Man | 1.864 | 0.845 | 4.110 | 0.1230 | ||||
SOFA Score | 0.963 | 0.882 | 1.050 | 0.3923 | ||||
Dialysis at D1 or D2 | 0.598 | 0.270 | 1.325 | 0.2051 | ||||
AKI D1 or D2 | 0.625 | 0.311 | 1.258 | 0.1879 | ||||
Augmented renal clearance at D1 or D2 | 1.984 | 0.232 | 16.959 | 0.5313 | ||||
Nephrotoxic co-medication at D1 or D2 | 1.138 | 0.343 | 3.776 | 0.8333 | ||||
Obesity | 0.811 | 0.365 | 1.804 | 0.6078 | ||||
Albuminemia | 1.014 | 0.972 | 1.059 | 0.5137 | ||||
Length of stay in ICU before vancomycin initiation (day) | 1.100 | 1.005 | 1.205 | 0.0395 | 1.100 | 1.005 | 1.205 | 0.0395 |
Loading dose (mg/kg) | 0.990 | 0.934 | 1.050 | 0.7446 | ||||
Daily dose (mg/kg) | 0.997 | 0.963 | 1.033 | 0.8765 |
Variables | Univariate Analysis | Multivariate Analysis | ||||||
---|---|---|---|---|---|---|---|---|
Odds-Ratio | 95% CI | p-Value | Odds-Ratio | 95% CI | p-Value | |||
Age | 0.986 | 0.957 | 1.015 | 0.3331 | ||||
Sex: Woman vs. Man | 1.763 | 0.768 | 4.048 | 0.1810 | ||||
SOFA Score | 0.922 | 0.838 | 1.014 | 0.0956 | ||||
Dialysis at D1 or D2 | 0.442 | 0.182 | 1.075 | 0.0717 | ||||
AKI D1 or D2 | 0.404 | 0.192 | 0.852 | 0.0173 | 0.426 | 0.199 | 0.912 | 0.0280 |
Augmented renal clearance at D1 or D2 | 3.036 | 0.354 | 26.042 | 0.3112 | ||||
Nephrotoxic co-medication at D1 or D2 | 1.201 | 0.332 | 4.348 | 0.7797 | ||||
Obesity | 0.687 | 0.289 | 1.632 | 0.3948 | ||||
Albuminemia | 1.011 | 0.952 | 1.073 | 0.7321 | ||||
Length of stay in ICU before vancomycin initiation (day) | 1.112 | 1.007 | 1.227 | 0.0350 | 1.102 | 0.998 | 1.217 | 0.0539 |
Loading dose (mg/kg) | 0.981 | 0.922 | 1.043 | 0.5327 | ||||
Daily dose (mg/kg) | 0.984 | 0.944 | 1.025 | 0.4321 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Perin, N.; Roger, C.; Marin, G.; Molinari, N.; Evrard, A.; Lavigne, J.-P.; Barbar, S.; Claret, P.G.; Boutin, C.; Muller, L.; et al. Vancomycin Serum Concentration after 48 h of Administration: A 3-Years Survey in an Intensive Care Unit. Antibiotics 2020, 9, 793. https://doi.org/10.3390/antibiotics9110793
Perin N, Roger C, Marin G, Molinari N, Evrard A, Lavigne J-P, Barbar S, Claret PG, Boutin C, Muller L, et al. Vancomycin Serum Concentration after 48 h of Administration: A 3-Years Survey in an Intensive Care Unit. Antibiotics. 2020; 9(11):793. https://doi.org/10.3390/antibiotics9110793
Chicago/Turabian StylePerin, Nicolas, Claire Roger, Grégory Marin, Nicolas Molinari, Alexandre Evrard, Jean-Philippe Lavigne, Saber Barbar, Pierre Géraud Claret, Caroline Boutin, Laurent Muller, and et al. 2020. "Vancomycin Serum Concentration after 48 h of Administration: A 3-Years Survey in an Intensive Care Unit" Antibiotics 9, no. 11: 793. https://doi.org/10.3390/antibiotics9110793
APA StylePerin, N., Roger, C., Marin, G., Molinari, N., Evrard, A., Lavigne, J. -P., Barbar, S., Claret, P. G., Boutin, C., Muller, L., Lipman, J., Lefrant, J. -Y., Jaber, S., & Roberts, J. A. (2020). Vancomycin Serum Concentration after 48 h of Administration: A 3-Years Survey in an Intensive Care Unit. Antibiotics, 9(11), 793. https://doi.org/10.3390/antibiotics9110793