Antimicrobial Resistance Profiles of Escherichia coli from Diarrheic Weaned Piglets after the Ban on Antibiotic Growth Promoters in Feed
Abstract
:1. Introduction
2. Results
2.1. Antimicrobial Susceptibility Test
2.2. Multidrug Resistance
2.3. Antimicrobial Resistance Genes
3. Discussion
4. Materials and Methods
4.1. Escherichia coli Isolates
4.2. Antimicrobial Susceptibility Test
4.3. Antimicrobial Resistance Genes
4.4. Statistical Analysis
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Straw, B.E.; Zimmerman, J.J.; D’Allaire, S.; Taylorm, D.J. Escherichia coli. In Diseases of Swine, 9th ed.; Wiley-Blackwell: Hoboken, NJ, USA, 2006; pp. 387–395. [Google Scholar]
- Fairbrother, J.M.; Nadeau, E.; Gyles, C.L. Escherichia coli in postweaning diarrhea in pigs: An update on bacterial types, pathogenesis, and prevention strategies. Anim. Health Res. Rev. 2005, 6, 17–39. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wegener, H.C. Antibiotics in animal feed and their role in resistance development. Curr. Opin. Microbiol. 2003, 6, 439–445. [Google Scholar] [CrossRef] [PubMed]
- Lim, S.-K.; Lee, J.-E.; Lee, H.-S.; Nam, H.-M.; Moon, D.-C.; Jang, G.-C.; Park, Y.-J.; Jung, Y.-G.; Jung, S.-C.; Wee, S.-H. Trends in antimicrobial sales for livestock and fisheries in Korea during 2003–2012. Korean J. Vet. Res. 2014, 54, 81–86. [Google Scholar] [CrossRef] [Green Version]
- Do, K.-H.; Park, H.-E.; Byun, J.-W.; Lee, W.-K. Virulence and antimicrobial resistance profiles of Escherichia coli encoding mcr gene from diarrhoeic weaned piglets in Korea during 2007–2016. J. Glob. Antimicrob. Resist. 2020, 20, 324–327. [Google Scholar] [CrossRef]
- DANMAP 2013: Use of Antimicrobial Agents and Occurrence of Antimicrobial Resistance in Bacteria from Food Animals, Food and Humans in Denmark. Available online: https://www.danmap.org/-/media/arkiv/projekt-sites/danmap/danmap-reports/danmap-2013/danmap-2013.pdf?la=en%20 (accessed on 27 October 2020).
- Tamura, Y. The Japanese veterinary antimicrobial resistance monitoring system (JVARM). In OIE International Standards on Antimicrobial Resistance; OIE (World organization for animal health): Paris, France, 2003; pp. 206–210. [Google Scholar]
- Deckert, A.; Gow, S.; Rosengren, L.; Léger, D.; Avery, B.; Daignault, D.; Dutil, L.; Reid-Smith, R.; Irwin, R. Canadian Integrated Program for Antimicrobial Resistance Surveillance (CIPARS) Farm Program: Results from Finisher Pig Surveillance. Zoonoses Public Health 2010, 57, 71–84. [Google Scholar] [CrossRef]
- Alonso, C.A.; Mora, A.; Díaz, D.; Blanco, M.; González-Barrio, D.; Ruiz-Fons, J.F.; Simón, C.; Blanco, J.; Torres, C. Occurrence and characterization of stx and/or eae-positive Escherichia coli isolated from wildlife, including a typical EPEC strain from a wild boar. Vet. Microbiol. 2017, 207, 69–73. [Google Scholar] [CrossRef]
- Lim, S.-K.; Nam, H.-M.; Moon, D.-C.; Jang, G.-C.; Jung, S.-C.; Korean Veterinary Antimicrobial Resistance Monitoring group. Antimicrobial resistance of Escherichia coli isolated from healthy animals during 2010–2012. Korean J. Vet. Res. 2014, 54, 131–137. [Google Scholar] [CrossRef]
- Gibbons, J.; Boland, F.; Egan, J.; Fanning, S.; Markey, B.K.; Leonard, F.C. Antimicrobial Resistance of Faecal Escherichia coli Isolates from Pig Farms with Different Durations of In-feed Antimicrobial Use. Zoonoses Public Health 2015, 63, 241–250. [Google Scholar] [CrossRef]
- Kusumoto, M.; Ogura, Y.; Gotoh, Y.; Iwata, T.; Hayashi, T.; Akiba, M. Colistin-Resistant mcr-1–Positive Pathogenic Escherichia coli in Swine, Japan, 2007–2014. Emerg. Infect. Dis. 2016, 22, 1315–1317. [Google Scholar] [CrossRef] [Green Version]
- Diana, A.; Manzanilla, E.G.; Díaz, J.A.C.; Leonard, F.C.; Boyle, L.A. Correction: Do weaner pigs need in-feed antibiotics to ensure good health and welfare? PLoS ONE 2017, 12, e0189434. [Google Scholar] [CrossRef] [Green Version]
- Luppi, A. Swine enteric colibacillosis: Diagnosis, therapy and antimicrobial resistance. Porc. Health Manag. 2017, 3, 16. [Google Scholar] [CrossRef]
- Lalak, A.; Wasyl, D.; Zając, M.; Skarżyńska, M.; Hoszowski, A.; Samcik, I.; Woźniakowski, G.; Szulowski, K. Mechanisms of cephalosporin resistance in indicator Escherichia coli isolated from food animals. Vet. Microbiol. 2016, 194, 69–73. [Google Scholar] [CrossRef] [PubMed]
- The European Union Summary Report on Antimicrobial Resistance in Zoonotic and Indicator Bacteria from Humans, Animals and Food in 2016. Available online: https://www.ecdc.europa.eu/sites/default/files/documents/AMR-zoonotic-bacteria-humans-animals-food-2016_Rev3.pdf (accessed on 27 October 2020).
- Hayer, S.S.; Rovira, A.; Olsen, K.; Johnson, T.J.; Vannucci, F.; Rendahl, A.; Perez, A.; Alvarez, J. Prevalence and trend analysis of antimicrobial resistance in clinical Escherichia coli isolates collected from diseased pigs in the USA between 2006 and 2016. Transbound. Emerg. Dis. 2020. [Google Scholar] [CrossRef] [PubMed]
- Do, K.-H.; Byun, J.-W.; Lee, W.-K. Serogroups, Virulence Genes and Antimicrobial Resistance of F4+ and F18+ Escherichia coli Isolated from Weaned Piglets. Pak. Vet. J. 2019, 39, 266–270. [Google Scholar] [CrossRef]
- Cho, J.K.; Ha, J.S.; Kim, K.S. Antimicrobial drug resistance of Escherichia coli isolated from cattle, swine and chicken. Korean J. Vet. Public Health 2006, 30, 9–18. [Google Scholar]
- Lim, S.-K. Establishment of Antimicrobial Resistance Surveillance System for Livestock 2012; Animal and Plant Quarantine Agency: Seoul, Korea, 2015. [Google Scholar]
- Animal and Plant Quarantine Agency (APQA). Antimicrobial Use and Antimicrobial Resistance Monitoring in Animals and Animal Products; APQA: Gimcheon, Korea, 2019.
- Rhouma, M.; Fairbrother, J.M.; Beaudry, F.; Letellier, A. Post weaning diarrhea in pigs: Risk factors and non-colistin-based control strategies. Acta Vet. Scand. 2017, 59, 31. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Arcilla, M.S.; Van Hattem, J.M.; Matamoros, S.; Melles, D.C.; Penders, J.; De Jong, M.D.; Schultsz, C. Dissemination of the mcr-1 colistin resistance gene. Lancet Infect. Dis. 2016, 16, 147–149. [Google Scholar] [CrossRef] [Green Version]
- Lim, S.-K.; Kang, H.Y.; Lee, K.; Moon, D.-C.; Lee, H.-S.; Jung, S.-C. First Detection of the mcr-1 Gene in Escherichia coli Isolated from Livestock between 2013 and 2015 in South Korea. Antimicrob. Agents Chemother. 2016, 60, 6991–6993. [Google Scholar] [CrossRef] [Green Version]
- Belaynehe, K.M.; Shin, S.W.; Park, K.Y.; Jang, J.Y.; Won, H.G.; Yoon, I.J.; Yoo, H.S. Emergence of mcr-1 and mcr-3 variants coding for plasmid-mediated colistin resistance in Escherichia coli isolates from food- producing animals in South Korea. Int. J. Infect. Dis. 2018, 72, 22–24. [Google Scholar] [CrossRef] [Green Version]
- Sayah, R.S.; Kaneene, J.B.; Johnson, Y.; Miller, R. Patterns of Antimicrobial Resistance Observed in Escherichia coli Isolates Obtained from Domestic- and Wild-Animal Fecal Samples, Human Septage, and Surface Water. Appl. Environ. Microbiol. 2005, 71, 1394–1404. [Google Scholar] [CrossRef] [Green Version]
- Yang, F.; Zhang, K.; Zhi, S.; Li, J.; Tian, X.; Gu, Y.; Zhou, J. High prevalence and dissemination of β-lactamase genes in swine farms in northern China. Sci. Total Environ. 2019, 651, 2507–2513. [Google Scholar] [CrossRef]
- Cantón, R.; Novais, A.; Valverde, A.; Machado, E.; Peixe, L.; Baquero, F.; Coque, T. Prevalence and spread of extended-spectrum β-lactamase-producing Enterobacteriaceae in Europe. Clin. Microbiol. Infect. 2008, 14, 144–153. [Google Scholar] [CrossRef] [Green Version]
- Silley, P.; Simjee, S.; Schwarz, S. Surveillance and monitoring of antimicrobial resistance and antibiotic consumption in humans and animals. Rev. Sci. Tech. 2012, 31, 105–120. [Google Scholar] [CrossRef]
- Bauer, M.A.W.; Kirby, M.W.M.M.; Sherris, M.J.C.; Turck, M.M. Antibiotic Susceptibility Testing by a Standardized Single Disk Method. Am. J. Clin. Pathol. 1966, 45, 493–496. [Google Scholar] [CrossRef] [PubMed]
- CLSI. Performance Standards for Antimicrobial Susceptibility Testing, 28th ed.; CLSI Supplement M100; Clinical and Laboratory Standards Institute: Wayne, PA, USA, 2018. [Google Scholar]
- Pakpour, S.; Jabaji, S.; Chénier, M.R. Frequency of Antibiotic Resistance in a Swine Facility 2.5 Years after a Ban on Antibiotics. Microb. Ecol. 2012, 63, 41–50. [Google Scholar] [CrossRef] [PubMed]
- Gonggrijp, M.; Santman-Berends, I.; Heuvelink, A.; Buter, G.; Van Schaik, G.; Hage, J.; Lam, T. Prevalence and risk factors for extended-spectrum β-lactamase- and AmpC-producing Escherichia coli in dairy farms. J. Dairy Sci. 2016, 99, 9001–9013. [Google Scholar] [CrossRef] [PubMed]
- Dallenne, C.; Da Costa, A.; Decré, D.; Favier, C.; Arlet, G. Development of a set of multiplex PCR assays for the detection of genes encoding important β-lactamases in Enterobacteriaceae. J. Antimicrob. Chemother. 2010, 65, 490–495. [Google Scholar] [CrossRef] [Green Version]
Antimicrobial | Before the Ban on AGPs | After the Ban on AGPs | Total (2007–2017) (n = 690) | Differences in before and after Ban on AGPs 2 | ||||||
---|---|---|---|---|---|---|---|---|---|---|
Subclasses | Agents 1 | 2007–2009 (n = 118) | 2010–2011 (n = 100) | Subtotal (2007–2011) (n = 218) | 2012–2013 (n = 141) | 2014–2015 (n = 161) | 2016–2017 (n = 170) | Subtotal (2012–2017) (n = 472) | ||
Aminoglycosides | GM ** | 84 (71.2) | 66 (66.0) | 150 (68.8) | 88 (62.4) | 36 (22.4) | 60 (35.3) | 184 (39.0) | 334 (48.4) | (29.8) |
S | 99 (83.9) | 85 (85.0) | 184 (84.4) | 122 (86.5) | 131 (81.4) | 152 (89.4) | 405 (85.8) | 589 (85.4) | (−1.4) | |
N ** | 100 (84.7) | 85 (85.0) | 185 (84.9) | 95 (67.4) | 89 (55.3) | 89 (52.4) | 273 (57.8) | 458 (66.4) | (27.1) | |
Cephalosporin I | CF ** | 66 (55.9) | 46 (46.0) | 112 (51.4) | 95 (67.4) | 120 (74.5) | 113 (66.5) | 328 (69.5) | 440 (63.8) | (−18.1) |
CZ | 23 (19.5) | 18 (18.0) | 41 (18.8) | 30 (21.3) | 55 (34.2) | 22 (12.9) | 107 (22.7) | 148 (21.4) | (−3.9) | |
Cephalosporin IV | FEP* | 0 (0.0) | 0 (0.0) | 0 (0.0) | 1 (0.7) | 5 (3.1) | 4 (2.4) | 10 (2.1) | 10 (1.4) | (−2.1) |
Cephamycin | FOX | 20 (16.9) | 13 (13.0) | 33 (15.1) | 24 (17.0) | 31 (19.3) | 6 (3.5) | 61 (12.9) | 94 (13.6) | (2.2) |
Quinolones | NA | 97 (82.2) | 66 (66.0) | 163 (74.8) | 108 (76.6) | 109 (67.7) | 105 (61.8) | 322 (68.2) | 485 (70.3) | (6.6) |
Fluoroquinolone | CIP * | 67 (56.8) | 41 (41.0) | 108 (49.5) | 84 (59.6) | 53 (32.9) | 50 (29.4) | 187 (39.6) | 295 (42.8) | (9.9) |
NOR * | 63 (53.4) | 39 (39.0) | 102 (46.8) | 82 (58.2) | 48 (29.8) | 46 (27.1) | 176 (37.3) | 278 (40.3) | (9.5) | |
Aminopenicillin | AM | 103 (87.3) | 86 (86.0) | 189 (86.7) | 116 (82.3) | 131 (81.4) | 150 (88.2) | 397 (84.1) | 586 (84.9) | (2.6) |
BL/BLI 3 | AMC ** | 36 (30.5) | 53 (53.0) | 89 (40.8) | 54 (38.3) | 43 (26.7) | 14 (8.2) | 111 (23.5) | 200 (29.0) | (17.3) |
FPI 4 | SXT | 92 (78.0) | 41 (41.0) | 133 (61.0) | 94 (66.7) | 97 (60.2) | 96 (56.5) | 287 (60.8) | 420 (60.9) | (0.2) |
Phenicols | C | 104 (88.1) | 90 (90.0) | 194 (89.0) | 125 (88.7) | 130 (80.7) | 154 (90.6) | 409 (86.7) | 603 (87.4) | (2.3) |
Polymyxins | CL | 9 (7.6) | 7 (7.0) | 16 (7.3) | 10 (7.1) | 32 (19.9) | 10 (5.9) | 52 (11.0) | 68 (9.9) | (−3.7) |
Tetracyclines | TE ** | 111 (94.1) | 90 (90.0) | 201 (92.2) | 119 (84.4) | 127 (78.9) | 151 (88.8) | 397 (84.1) | 598 (86.7) | (8.1) |
Antimicrobial Subclass 1 | Before the Ban on AGPs | After the Ban on AGPs | Total (2007–2017) (n = 690) | Differences in before and after Ban on AGPs 2 | |||||
---|---|---|---|---|---|---|---|---|---|
2007–2009 (n = 118) | 2010–2011 (n = 100) | Subtotal (2007–2011) (n = 218) | 2012–2013 (n = 141) | 2014–2015 (n = 161) | 2016–2017 (n = 170) | Subtotal (2012–2017) (n = 472) | |||
0 subclass ** | 4 (3.4) | 0 (0.0) | 4 (1.8) | 0 (0.0) | 0 (0.0) | 0 (0.0) | 0 (0.0) | 4 (0.6) | (1.8) |
1 subclass | 2 (1.7) | 0 (0.0) | 2 (0.9) | 3 (2.1) | 1 (0.6) | 2 (1.2) | 6 (1.3) | 8 (1.2) | (−0.4) |
2 subclasses | 0 (0.0) | 5 (5.0) | 5 (2.3) | 4 (2.8) | 4 (2.5) | 2 (1.2) | 10 (2.1) | 15 (2.2) | (0.2) |
3 subclasses | 1 (0.8) | 2 (2.0) | 3 (1.4) | 3 (2.1) | 10 (6.2) | 6 (3.5) | 19 (4.0) | 22 (3.2) | (−2.6) |
4 subclasses | 2 (1.7) | 12 (12.0) | 14 (6.4) | 7 (5.0) | 14 (8.7) | 23 (13.5) | 44 (9.3) | 58 (8.4) | (−2.9) |
5 subclasses | 10 (8.5) | 21 (21.0) | 31 (14.2) | 21 (14.9) | 17 (10.6) | 34 (20.0) | 72 (15.3) | 103 (14.9) | (−1.1) |
6 subclasses | 27 (22.9) | 13 (13.0) | 40 (18.3) | 17 (12.1) | 19 (11.8) | 34 (20.0) | 70 (14.8) | 110 (15.9) | (3.5) |
7 subclasses | 28 (23.7) | 22 (22.0) | 50 (22.9) | 32 (22.7) | 26 (16.1) | 41 (24.1) | 99 (21.0) | 149 (21.6) | (1.9) |
8 subclasses | 17 (14.4) | 6 (6.0) | 23 (10.6) | 23 (16.3) | 36 (22.4) | 17 (10.0) | 76 (16.1) | 99 (14.3) | (−5.5) |
9 subclasses | 11 (9.3) | 8 (8.0) | 19 (8.7) | 11 (7.8) | 19 (11.8) | 7 (4.1) | 37 (7.8) | 56 (8.1) | (7.9) |
10 subclasses | 16 (13.6) | 10 (10.0) | 26 (11.9) | 18 (12.8) | 13 (8.1) | 4 (2.4) | 35 (7.4) | 61 (8.8) | (4.5) |
11 subclasses | 0 (0.0) | 1 (1.0) | 1 (0.5) | 2 (1.4) | 2 (1.2) | 0 (0.0) | 4 (0.8) | 5 (0.7) | (−0.3) |
Multi-resistant (≥3 Subclasses) | 112 (94.9) | 95 (95.0) | 207 (95.0) | 134 (95.0) | 156 (96.9) | 166 (97.6) | 456 (96.6) | 663 (96.1) | (−2.6) |
Antimicrobial Resistance GENES 1 | Before the Ban on AGPs | After the Ban on AGPs | Total (2007–2017) (n = 690) | Differences in before and after Ban on AGPs 2 | |||||
---|---|---|---|---|---|---|---|---|---|
2007–2009 (n = 118) | 2010–2011 (n = 100) | Subtotal (2007–2011) (n = 218) | 2012–2013 (n = 141) | 2014–2015 (n = 161) | 2016–2017 (n = 170) | Subtotal (2012–2017) (n = 472) | |||
blaTEM ** | 79 (66.9) | 72 (72.0) | 151 (69.3) | 62 (44.0) | 65 (40.4) | 105 (61.8) | 232 (49.2) | 383 (55.5) | (20.1) |
blaSHV * | 2 (1.7) | 3 (3.0) | 5 (2.3) | 11 (7.8) | 16 (9.9) | 2 (1.2) | 29 (6.1) | 34 (4.9) | (−3.8) |
blaOXA | 10 (8.5) | 14 (14.0) | 24 (11.0) | 19 (13.5) | 18 (11.2) | 9 (5.3) | 46 (9.7) | 70 (10.1) | (1.3) |
blaCTX-M group 1 | 0 (0.0) | 4 (4.0) | 4 (1.8) | 2 (1.4) | 5 (3.1) | 2 (1.2) | 9 (1.9) | 13 (1.9) | (−0.1) |
blaCTX-M group 2 | 0 (0.0) | 0 (0.0) | 0 (0.0) | 0 (0.0) | 8 (5.0) | 0 (0.0) | 8 (1.7) | 8 (1.2) | (−1.7) |
blaCTX-M group 9 | 0 (0.0) | 4 (4.0) | 4 (1.8) | 3 (2.1) | 9 (5.6) | 2 (1.2) | 14 (3.0) | 18 (2.6) | (−1.2) |
mcr-1 | 0 (0.0) | 1 (1.0) | 1 (0.5) | 3 (2.1) | 3 (1.9) | 1 (0.6) | 7 (1.5) | 8 (1.2) | (−1.0) |
mcr-2 | 0 (0.0) | 0 (0.0) | 0 (0.0) | 0 (0.0) | 0 (0.0) | 0 (0.0) | 0 (0.0) | 0 (0.0) | (0.0) |
mcr-3 | 1 (0.8) | 2 (2.0) | 3 (1.4) | 5 (3.5) | 0 (0.0) | 0 (0.0) | 5 (1.1) | 8 (1.2) | (0.3) |
AmpC ** | 54 (45.8) | 43 (43.0) | 97 (44.5) | 88 (62.4) | 105 (65.2) | 124 (72.9) | 317 (67.2) | 414 (60.0) | (−22.7) |
tetA ** | 20 (16.9) | 26 (26.0) | 46 (21.1) | 38 (27.0) | 60 (37.3) | 55 (32.4) | 153 (32.4) | 199 (28.8) | (−11.3) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kyung-Hyo, D.; Jae-Won, B.; Wan-Kyu, L. Antimicrobial Resistance Profiles of Escherichia coli from Diarrheic Weaned Piglets after the Ban on Antibiotic Growth Promoters in Feed. Antibiotics 2020, 9, 755. https://doi.org/10.3390/antibiotics9110755
Kyung-Hyo D, Jae-Won B, Wan-Kyu L. Antimicrobial Resistance Profiles of Escherichia coli from Diarrheic Weaned Piglets after the Ban on Antibiotic Growth Promoters in Feed. Antibiotics. 2020; 9(11):755. https://doi.org/10.3390/antibiotics9110755
Chicago/Turabian StyleKyung-Hyo, Do, Byun Jae-Won, and Lee Wan-Kyu. 2020. "Antimicrobial Resistance Profiles of Escherichia coli from Diarrheic Weaned Piglets after the Ban on Antibiotic Growth Promoters in Feed" Antibiotics 9, no. 11: 755. https://doi.org/10.3390/antibiotics9110755
APA StyleKyung-Hyo, D., Jae-Won, B., & Wan-Kyu, L. (2020). Antimicrobial Resistance Profiles of Escherichia coli from Diarrheic Weaned Piglets after the Ban on Antibiotic Growth Promoters in Feed. Antibiotics, 9(11), 755. https://doi.org/10.3390/antibiotics9110755