Synthesis of 4,4′-(4-Formyl-1H-pyrazole-1,3-diyl)dibenzoic Acid Derivatives as Narrow Spectrum Antibiotics for the Potential Treatment of Acinetobacter Baumannii Infections
Abstract
:1. Introduction
2. Results and Discussion
2.1. Experimental Data
2.2. In Vitro and In Vivo Toxicity
2.3. Calculated Physicochemical Properties
3. Materials and Methods
General Consideration
4. Conclusions
5. Patents
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Spellberg, B.; Guidos, R.; Gilbert, D.; Bradley, J.; Boucher, H.W.; Scheld, W.M.; Bartlett, J.G.; Edwards, J., Jr.; Infectious Diseases Society of Amercia. The epidemic of antibiotic-resistant infections: A call to action for the medical community from the Infectious Diseases Society of America. Clin. Infect. Dis. 2008, 46, 155–164. [Google Scholar] [CrossRef] [PubMed]
- Marsit, H.; Koubaa, M.; Gargouri, M.; Ben Jemaa, T.; Gaddour, H.; Kotti, F.; Sammoudi, A.; Turki, M.; Ben Jemaa, M. Hospital-acquired infections due to multidrug resistant Acinetobacter baumannii: How challenging is the management? Fund. Clin. Pharmacol. 2016, 30, 87. [Google Scholar]
- Pomba, C.; Endimiani, A.; Rossano, A.; Saial, D.; Couto, N.; Perreten, V. First Report of OXA-23-Mediated Carbapenem Resistance in Sequence Type 2 Multidrug-Resistant Acinetobacter baumannii Associated with Urinary Tract Infection in a Cat. Antimicrob. Agents Chemother. 2014, 58, 1267–1268. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Biderman, P.; Bugaevsky, Y.; Ben-Zvi, H.; Bishara, J.; Goldberg, E. Multidrug-resistant Acinetobacter baumannii infections in lung transplant patients in the cardiothoracic intensive care unit. Clin. Transplant. 2015, 29, 756–762. [Google Scholar] [CrossRef] [PubMed]
- Guo, N.H.; Xue, W.C.; Tang, D.H.; Ding, J.Y.; Zhao, B. Risk factors and outcomes of hospitalized patients with blood infections caused by multidrug-resistant Acinetobacter baumannii complex in a hospital of Northern China. Am. J. Infect. Control. 2016, 44, E37–E39. [Google Scholar] [CrossRef]
- Weber, B.S.; Harding, C.M.; Feldman, M.F. Pathogenic Acinetobacter: From the Cell Surface to Infinity and Beyond. J. Bacteriol. 2015, 198, 880–887. [Google Scholar] [CrossRef] [Green Version]
- Inchai, J.; Liwsrisakun, C.; Theerakittikul, T.; Chaiwarith, R.; Khositsakulchai, W.; Pothirat, C. Risk factors of multidrug-resistant, extensively drug-resistant and pandrug-resistant Acinetobacter baumannii ventilator-associated pneumonia in a Medical Intensive Care Unit of University Hospital in Thailand. J. Infect. Chemother. 2015, 21, 570–574. [Google Scholar] [CrossRef]
- Vourli, S.; Frantzeskaki, F.; Meletiadis, J.; Stournara, L.; Armaganidis, A.; Zerva, L.; Dimopoulos, G. Synergistic interactions between colistin and meropenem against extensively drug-resistant and pandrug-resistant Acinetobacter baumannii isolated from ICU patients. Int. J. Antimicrob. Agents 2015, 45, 670–671. [Google Scholar] [CrossRef]
- Smani, Y.; Dominguez-Herrera, J.; Pachon, J. Rifampin Protects Human Lung Epithelial Cells Against Cytotoxicity Induced by Clinical Multi and Pandrug-resistant Acinetobacter baumannii. J. Infect. Dis. 2011, 203, 1110–1119. [Google Scholar] [CrossRef]
- WHO. Global Priority List of Antibiotic-Resistant Bacteria to Guide Research, Discovery, and Development of New Antibiotics. Available online: http://www.who.int/medicines/publications/global-priority-list-antibiotic-resistant-bacteria/en/ (accessed on 28 February 2017).
- Willyard, C. The drug-resistant bacteria that pose the greatest health threats. Nature 2017, 543, 15. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Melander, R.J.; Zurawski, D.V.; Melander, C. Narrow-Spectrum Antibacterial Agents. Med. Chem. Commun. 2018, 9, 12–21. [Google Scholar] [CrossRef] [PubMed]
- Alam, M.A. Antimicrobial agents and the method of synthesizing the antimicrobial agents. US Patent 10,596,153, 24 March 2020. [Google Scholar]
- Brider, J.; Rowe, T.; Gibler, D.J.; Gottsponer, A.; Delancey, E.; Branscum, M.D.; Ontko, A.; Gilmore, D.; Alam, M.A. Synthesis and antimicrobial studies of azomethine and N-arylamine derivatives of 4-(4-formyl-3-phenyl-1H-pyrazol-1-yl)benzoic acid as potent anti-methicillin-resistant Staphylococcus aureus agents. Med. Chem. Res. 2016, 25, 2691–2697. [Google Scholar] [CrossRef]
- Allison, D.; Delancey, E.; Ramey, H.; Williams, C.; Alsharif, Z.A.; Al-khattabi, H.; Ontko, A.; Gilmore, D.; Alam, M.A. Synthesis and antimicrobial studies of novel derivatives of 4-(4-formyl-3-phenyl-1H-pyrazol-1-yl)benzoic acid as potent anti-Acinetobacter baumannii agents. Bioorg. Med. Chem. Lett. 2017, 27, 387–392. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zakeyah, A.A.; Whitt, J.; Duke, C.; Gilmore, D.F.; Meeker, D.G.; Smeltzer, M.S.; Alam, M.A. Synthesis and antimicrobial studies of hydrazone derivatives of 4-[3-(2,4-difluorophenyl)-4-formyl-1H-pyrazol-1-yl]benzoic acid and 4-[3-(3,4-difluorophenyl)-4-formyl-1H-pyrazol-1-yl]benzoic acid. Bioorg. Med. Chem. Lett. 2018, 28, 2914–2919. [Google Scholar] [CrossRef]
- Whitt, J.; Duke, C.; Ali, M.A.; Chambers, S.A.; Khan, M.M.K.; Gilmore, D.; Alam, M.A. Synthesis and Antimicrobial Studies of 4-[3-(3-Fluorophenyl)-4-formyl-1H-pyrazol-1-yl]benzoic Acid and 4-[3-(4-Fluorophenyl)-4-formyl-1H-pyrazol-1-yl]benzoic Acid as Potent Growth Inhibitors of Drug-Resistant Bacteria. ACS Omega 2019, 4, 14284–14293. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alnufaie, R.; Alsup, N.; Kc, H.R.; Newman, M.; Whitt, J.; Chambers, S.A.; Gilmore, D.; Alam, M.A. Design and synthesis of 4-[4-formyl-3-(2-naphthyl)pyrazol-1-yl]benzoic acid derivatives as potent growth inhibitors of drug-resistant Staphylococcus aureus. J. Antibiot. 2020. [Google Scholar] [CrossRef] [PubMed]
- Alnufaie, R.; Raj KC, H.; Alsup, N.; Whitt, J.; Andrew Chambers, S.; Gilmore, D.; Alam, M.A. Synthesis and Antimicrobial Studies of Coumarin-Substituted Pyrazole Derivatives as Potent Anti-Staphylococcus aureus Agents. Molecules 2020, 25, 2758. [Google Scholar] [CrossRef] [PubMed]
- Whitt, J.; Duke, C.; Sumlin, A.; Chambers, S.A.; Alnufaie, R.; Gilmore, D.; Fite, T.; Basnakian, A.G.; Alam, M.A. Synthesis of Hydrazone Derivatives of 4-[4-Formyl-3-(2-oxochromen-3-yl)pyrazol-1-yl]benzoic acid as Potent Growth Inhibitors of Antibiotic-resistant Staphylococcus aureus and Acinetobacter baumannii. Molecules 2019, 24, 2051. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Daina, A.; Michielin, O.; Zoete, V. iLOGP: A Simple, Robust, and Efficient Description of n-Octanol/Water Partition Coefficient for Drug Design Using the GB/SA Approach. J. Chem. Inf. Model. 2014, 54, 3284–3301. [Google Scholar] [CrossRef] [PubMed]
Comps | MIC (µg/mL) | ||||||||
---|---|---|---|---|---|---|---|---|---|
Sa | Bs | Ea | Ab6 | Ab5 | Ab7 | Ec | Pa | ||
5 | NA | NA | NA | NA | NA | NA | NA | NA | |
6 | NA | NA | NA | NA | NA | NA | NA | NA | |
7 | NA | NA | NA | NA | NA | NA | NA | NA | |
8 | NA | NA | NA | NA | NA | NA | NA | NA | |
9 | NA | NA | NA | NA | NA | NA | NA | NA | |
10 | NA | NA | NA | NA | NA | NA | NA | NA | |
11 | NA | NA | NA | NA | NA | NA | NA | NA | |
12 | NA | NA | NA | NA | NA | NA | NA | NA | |
13 | NA | NA | NA | NA | NA | NA | NA | NA | |
14 | NA | NA | NA | NA | NA | NA | NA | NA | |
15 | NA | NA | NA | NA | NA | NA | NA | NA | |
16 | NA | NA | NA | 3.125 | 25 | 3.125 | NA | NA | |
17 | NA | NA | NA | 1.56 | 3.125 | 1.56 | NA | NA | |
18 | NA | NA | NA | 0.78 | 3.125 | 1.56 | NA | NA | |
19 | NA | NA | NA | 3.125 | 25 | 3.125 | NA | NA | |
20 | NA | NA | NA | 3.125 | 6.25 | 3.125 | NA | NA | |
21 | NA | NA | NA | 3.125 | 6.25 | 3.125 | NA | NA | |
22 | NA | NA | NA | 6.25 | 6.25 | 3.125 | NA | NA | |
23 | NA | NA | NA | 3.125 | 6.25 | 3.125 | NA | NA | |
24 | NA | NA | NA | 12.5 | 50 | 25 | NA | NA | |
25 | NA | NA | NA | NA | NA | NA | NA | NA | |
26 | NA | NA | NA | NA | NA | NA | NA | NA | |
27 | NA | NA | NA | NA | NA | NA | NA | ||
28 | NA | NA | NA | NA | NA | NA | NA | ||
29 | NA | NA | NA | NA | NA | NA | NA | ||
DMSO | NA | NA | NA | NA | NA | NA | NA | ||
Colistin | 1.56 | 3.125 | 0.78 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Delancey, E.; Allison, D.; KC, H.R.; Gilmore, D.F.; Fite, T.; Basnakian, A.G.; Alam, M.A. Synthesis of 4,4′-(4-Formyl-1H-pyrazole-1,3-diyl)dibenzoic Acid Derivatives as Narrow Spectrum Antibiotics for the Potential Treatment of Acinetobacter Baumannii Infections. Antibiotics 2020, 9, 650. https://doi.org/10.3390/antibiotics9100650
Delancey E, Allison D, KC HR, Gilmore DF, Fite T, Basnakian AG, Alam MA. Synthesis of 4,4′-(4-Formyl-1H-pyrazole-1,3-diyl)dibenzoic Acid Derivatives as Narrow Spectrum Antibiotics for the Potential Treatment of Acinetobacter Baumannii Infections. Antibiotics. 2020; 9(10):650. https://doi.org/10.3390/antibiotics9100650
Chicago/Turabian StyleDelancey, Evan, Devin Allison, Hansa Raj KC, David F. Gilmore, Todd Fite, Alexei G. Basnakian, and Mohammad A. Alam. 2020. "Synthesis of 4,4′-(4-Formyl-1H-pyrazole-1,3-diyl)dibenzoic Acid Derivatives as Narrow Spectrum Antibiotics for the Potential Treatment of Acinetobacter Baumannii Infections" Antibiotics 9, no. 10: 650. https://doi.org/10.3390/antibiotics9100650
APA StyleDelancey, E., Allison, D., KC, H. R., Gilmore, D. F., Fite, T., Basnakian, A. G., & Alam, M. A. (2020). Synthesis of 4,4′-(4-Formyl-1H-pyrazole-1,3-diyl)dibenzoic Acid Derivatives as Narrow Spectrum Antibiotics for the Potential Treatment of Acinetobacter Baumannii Infections. Antibiotics, 9(10), 650. https://doi.org/10.3390/antibiotics9100650