Molecular Diversity of Mytilin-Like Defense Peptides in Mytilidae (Mollusca, Bivalvia)
Abstract
:1. Introduction
2. Results and Discussion
2.1. Taxonomic Distribution of Mytilin-Like AMPs
2.2. Analysis of Novel Mytilin Sequence Precursors
2.3. Molecular Evolution of Mytilins
2.4. Building of a Mytilin-Specific Hidden Markov Model
2.5. Structural Prediction
3. Materials and Methods
3.1. Identification of Mytilin Sequences
3.2. Primary Sequence Analysis
3.3. Construction of a Mytilin-Specific Hidden Markov Model
3.4. Phylogenetic Analysis
3.5. Structural Prediction
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Tincu, J.A.; Taylor, S.W. Antimicrobial peptides from marine invertebrates. Antimicrob. Agents Chemother. 2004, 48, 3645–3654. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hubert, F.; Noël, T.; Roch, P. A Member of the Arthropod Defensin Family from Edible Mediterranean Mussels (Mytilus galloprovincialis). Eur. J. Biochem. 1996, 240, 302–306. [Google Scholar] [CrossRef] [PubMed]
- Charlet, M.; Chernysh, S.; Philippe, H.; Hetru, C.; Hoffmann, J.A.; Bulet, P. Innate immunity: Isolation of several cysteine-rich antimicrobial peptides from the blood of a mollusk, Mytilus edulis. J. Biol. Chem. 1996, 271, 21808–21813. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mitta, G.; Vandenbulcke, F.; Noel, T.; Romestand, B.; Beauvillain, J.C.; Salzet, M.; Roch, P. Differential distribution and defence involvement of antimicrobial peptides in mussel. J. Cell Sci. 2000, 113, 2759–2769. [Google Scholar]
- Mitta, G.; Hubert, F.; Noel, T.; Roch, P. Myticin, a novel cysteine-rich antimicrobial peptide isolated from haemocytes and plasma of the mussel Mytilus galloprovincialis. Eur. J. Biochem. 1999, 265, 71–78. [Google Scholar] [CrossRef]
- Novoa, B.; Romero, A.; Álvarez, Á.L.; Moreira, R.; Pereiro, P.; Costa, M.M.; Dios, S.; Estepa, A.; Parra, F.; Figueras, A. Antiviral Activity of Myticin C Peptide from Mussel: An Ancient Defense against Herpesviruses. J. Virol. 2016, 90, 7692–7702. [Google Scholar] [CrossRef] [Green Version]
- Balseiro, P.; Falcó, A.; Romero, A.; Dios, S.; Martínez-López, A.; Figueras, A.; Estepa, A.; Novoa, B. Mytilus galloprovincialis Myticin C: A Chemotactic Molecule with Antiviral Activity and Immunoregulatory Properties. PLoS ONE 2011, 6, e23140. [Google Scholar] [CrossRef] [Green Version]
- Lambert, J.; Keppi, E.; Dimarcq, J.L.; Wicker, C.; Reichhart, J.M.; Dunbar, B.; Lepage, P.; Van Dorsselaer, A.; Hoffmann, J.; Fothergill, J. Insect immunity: Isolation from immune blood of the dipteran Phormia terranovae of two insect antibacterial peptides with sequence homology to rabbit lung macrophage bactericidal peptides. Proc. Natl. Acad. Sci. USA 1989, 86, 262–266. [Google Scholar] [CrossRef] [Green Version]
- Dimarcq, J.L.; Hoffmann, D.; Meister, M.; Bulet, P.; Lanot, R.; Reichhart, J.M.; Hoffmann, J.A. Characterization and transcriptional profiles of a Drosophila gene encoding an insect defensin: A study in insect immunity. Eur. J. Biochem. 1994, 221, 201–209. [Google Scholar] [CrossRef]
- Gerdol, M.; Venier, P. An updated molecular basis for mussel immunity. Fish Shellfish Immunol. 2015, 46, 17–38. [Google Scholar] [CrossRef] [Green Version]
- Yang, Y.S.; Mitta, G.; Chavanieu, A.; Calas, B.; Sanchez, J.F.; Roch, P.; Aumelas, A. Solution structure and activity of the synthetic four-disulfide bond Mediterranean mussel defensin (MGD-1). Biochemistry 2000, 39, 14436–14447. [Google Scholar] [CrossRef] [PubMed]
- Roch, P.; Yang, Y.; Toubiana, M.; Aumelas, A. NMR structure of mussel mytilin, and antiviral-antibacterial activities of derived synthetic peptides. Dev. Comp. Immunol. 2008, 32, 227–238. [Google Scholar] [CrossRef] [Green Version]
- Domeneghetti, S.; Franzoi, M.; Damiano, N.; Norante, R.M.; El Halfawy, N.; Mammi, S.; Marin, O.; Bellanda, M.; Venier, P. Structural and Antimicrobial Features of Peptides Related to Myticin C, a Special Defense Molecule from the Mediterranean Mussel Mytilus galloprovincialis. J. Agric. Food Chem. 2015, 63, 9251–9259. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Kato, Y. Common structural properties specifically found in the CSαβ-type antimicrobial peptides in nematodes and mollusks: Evidence for the same evolutionary origin? Dev. Comp. Immunol. 2003, 27, 499–503. [Google Scholar] [CrossRef]
- Mitta, G.; Vandenbulcke, F.; Hubert, F.; Salzet, M.; Roch, P. Involvement of Mytilins in Mussel Antimicrobial Defense. J. Biol. Chem. 2000, 275, 12954–12962. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mitta, G.; Vandenbulcke, F.; Hubert, F.; Roch, P. Mussel defensins are synthesised and processed in granulocytes then released into the plasma after bacterial challenge. J. Cell Sci. 1999, 112, 4233–4242. [Google Scholar] [PubMed]
- Mitta, G.; Hubert, F.; Dyrynda, E.A.; Boudry, P.; Roch, P. Mytilin B and MGD2, two antimicrobial peptides of marine mussels: Gene structure and expression analysis. Dev. Comp. Immunol. 2000, 24, 381–393. [Google Scholar] [CrossRef]
- Rosani, U.; Varotto, L.; Rossi, A.; Roch, P.; Novoa, B.; Figueras, A.; Pallavicini, A.; Venier, P. Massively Parallel Amplicon Sequencing Reveals Isotype-Specific Variability of Antimicrobial Peptide Transcripts in Mytilus galloprovincialis. PLoS ONE 2011, 6, e26680. [Google Scholar] [CrossRef] [Green Version]
- Núñez-Acuña, G.; Tapia, F.J.; Haye, P.A.; Gallardo-Escárate, C. Gene expression analysis in Mytilus chilensis populations reveals local patterns associated with ocean environmental conditions. J. Exp. Mar. Biol. Ecol. 2012, 420–421, 56–64. [Google Scholar] [CrossRef]
- Philipp, E.E.R.; Kraemer, L.; Melzner, F.; Poustka, A.J.; Thieme, S.; Findeisen, U.; Schreiber, S.; Rosenstiel, P. Massively Parallel RNA Sequencing Identifies a Complex Immune Gene Repertoire in the lophotrochozoan Mytilus edulis. PLoS ONE 2012, 7, e33091. [Google Scholar] [CrossRef] [Green Version]
- Liao, Z.; Liu, M.; Wang, R.; Wu, M.; Yang, L.; Lu, T.; Xu, T.; Shi, G. cDNA clone and sequence analysis of mytilin and myticin from Mytilus coruscus. J. Fish. China 2010, 34, 1025–1033. [Google Scholar]
- Lee, M.J.; Oh, R.; Kim, Y.O.; Nam, B.Y.; Kong, H.J.; Km, J.W.; Park, J.Y.; Seo, J.K.; Kim, D.G. Mytilin B, an Antimicrobial Peptide from the Hemocyte of the Hard-shelled Mussel, Mytilus coruscus: Isolation, Purification, and Characterization. J. Life Sci. 2018, 28, 1301–1315. [Google Scholar]
- Suárez-Ulloa, V.; Fernández-Tajes, J.; Manfrin, C.; Gerdol, M.; Venier, P.; Eirín-López, J. Bivalve Omics: State of the Art and Potential Applications for the Biomonitoring of Harmful Marine Compounds. Mar. Drugs 2013, 11, 4370–4389. [Google Scholar] [CrossRef] [Green Version]
- Moreira, R.; Pereiro, P.; Canchaya, C.; Posada, D.; Figueras, A.; Novoa, B. RNA-Seq in Mytilus galloprovincialis: Comparative transcriptomics and expression profiles among different tissues. BMC Genom. 2015, 16, 728. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gerdol, M.; Moreira, R.; Cruz, F.; Gómez-Garrido, J.; Vlasova, A.; Rosani, U.; Venier, P.; Naranjo-Ortiz, M.A.; Murgarella, M.; Balseiro, P.; et al. Massive gene presence/absence variation in the mussel genome as an adaptive strategy: First evidence of a pan-genome in Metazoa. BioRxiv 2019. [Google Scholar] [CrossRef]
- Sun, J.; Zhang, Y.; Xu, T.; Zhang, Y.; Mu, H.; Zhang, Y.; Lan, Y.; Fields, C.J.; Hui, J.H.L.; Zhang, W.; et al. Adaptation to deep-sea chemosynthetic environments as revealed by mussel genomes. Nat. Ecol. Evol. 2017, 1, 0121. [Google Scholar] [CrossRef] [Green Version]
- Uliano-Silva, M.; Dondero, F.; Dan Otto, T.; Costa, I.; Lima, N.C.B.; Americo, J.A.; Mazzoni, C.J.; Prosdocimi, F.; Rebelo, M.F. A hybrid-hierarchical genome assembly strategy to sequence the invasive golden mussel, Limnoperna fortunei. Gigascience 2018, 7. [Google Scholar] [CrossRef] [Green Version]
- Gerdol, M.; Fujii, Y.; Hasan, I.; Koike, T.; Shimojo, S.; Spazzali, F.; Yamamoto, K.; Ozeki, Y.; Pallavicini, A.; Fujita, H. The purplish bifurcate mussel Mytilisepta virgata gene expression atlas reveals a remarkable tissue functional specialization. BMC Genom. 2017, 18, 590. [Google Scholar] [CrossRef] [Green Version]
- Morton, B.; Leung, P.T.; Wei, J.; Lee, G.Y. A morphological and genetic comparison of Septifer bilocularis, Mytilisepta virgata and Brachidontes variabilis (Bivalvia: Mytiloidea) from Hong Kong and erection of the Mytiliseptiferinae sub-fam. nov. Reg. Stud. Mar. Sci. 2020, 34, 100981. [Google Scholar] [CrossRef]
- MolluscaBase. 2019. Available online: http://www.molluscabase.org (accessed on 19 December 2019).
- Fields, P.A.; Eurich, C.; Gao, W.L.; Cela, B. Changes in protein expression in the salt marsh mussel Geukensia demissa: Evidence for a shift from anaerobic to aerobic metabolism during prolonged aerial exposure. J. Exp. Biol. 2014, 217, 1601–1612. [Google Scholar] [CrossRef] [Green Version]
- Sivka, U.; Toplak, N.; Koren, S.; Jakše, J. De novo transcriptome of the pallial gland of the date mussel (Lithophaga lithophaga). Comp. Biochem. Physiol. Part D 2018, 26, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Bierne, N.; Borsa, P.; Daguin, C.; Jollivet, D.; Viard, F.; Bonhomme, F.; David, P. Introgression patterns in the mosaic hybrid zone between Mytilus edulis and M. galloprovincialis. Mol. Ecol. 2003, 12, 447–461. [Google Scholar] [CrossRef] [PubMed]
- Jones, D.T.; Taylor, W.R.; Thornton, J.M. The rapid generation of mutation data matrices. Comput. Appl. Biosci. 1992, 8, 275–282. [Google Scholar] [PubMed]
- Froy, O.; Gurevitz, M. Arthropod and mollusk defensins—Evolution by exon-shuffling. Trends Genet. 2003, 19, 684–687. [Google Scholar] [CrossRef]
- Yang, Y.; Gao, J.; Wang, J.; Heffernan, R.; Hanson, J.; Paliwal, K.; Zhou, Y. Sixty-five years of the long march in protein secondary structure prediction: The final stretch? Brief. Bioinform. 2018, 19, 482–494. [Google Scholar] [CrossRef] [Green Version]
- Min, H.J.; Yun, H.; Ji, S.; Rajasekaran, G.; Kim, J.I.; Kim, J.S.; Shin, S.Y.; Lee, C.W. Rattusin structure reveals a novel defensin scaffold formed by intermolecular disulfide exchanges. Sci. Rep. 2017, 7, 45282. [Google Scholar] [CrossRef]
- Campopiano, D.J.; Clarke, D.J.; Polfer, N.C.; Barran, P.E.; Langley, R.J.; Govan, J.R.W.; Maxwell, A.; Dorin, J.R. Structure-activity relationships in defensin dimers: A novel link between β-defensin tertiary structure and antimicrobial activity. J. Biol. Chem. 2004, 279, 48671–48679. [Google Scholar] [CrossRef] [Green Version]
- Lee, J.Y.; Yang, S.-T.; Lee, S.K.; Jung, H.H.; Shin, S.Y.; Hahm, K.-S.; Kim, J.I. Salt-resistant homodimeric bactenecin, a cathelicidin-derived antimicrobial peptide. FEBS J. 2008, 275, 3911–3920. [Google Scholar] [CrossRef]
- Suresh, A.; Verma, C. Modelling study of dimerization in mammalian defensins. BMC Bioinform. 2006, 7, S17. [Google Scholar] [CrossRef] [Green Version]
- Grabherr, M.G.; Haas, B.J.; Yassour, M.; Levin, J.Z.; Thompson, D.A.; Amit, I.; Adiconis, X.; Fan, L.; Raychowdhury, R.; Zeng, Q.; et al. Full-length transcriptome assembly from RNA-Seq data without a reference genome. Nat. Biotechnol. 2011, 29, 644–652. [Google Scholar] [CrossRef] [Green Version]
- Venier, P.; Varotto, L.; Rosani, U.; Millino, C.; Celegato, B.; Bernante, F.; Lanfranchi, G.; Novoa, B.; Roch, P.; Figueras, A.; et al. Insights into the innate immunity of the Mediterranean mussel Mytilus galloprovincialis. BMC Genom. 2011, 12, 69. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nielsen, H. Predicting Secretory Proteins with SignalP; Humana Press: New York, NY, USA, 2017; pp. 59–73. [Google Scholar]
- Edgar, R.C. MUSCLE: Multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res. 2004, 32, 1792–1797. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Henikoff, S.; Henikoff, J.G. Amino acid substitution matrices from protein blocks. Proc. Natl. Acad. Sci. USA 1992, 89, 10915–10919. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hobohm, U.; Scharf, M.; Schneider, R.; Sander, C. Selection of representative protein data sets. Protein Sci. 1992, 1, 409–417. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Eddy, S.R. Accelerated Profile HMM Searches. PLoS Comput. Biol. 2011, 7, e1002195. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Darriba, D.; Posada, D.; Kozlov, A.M.; Stamatakis, A.; Morel, B.; Flouri, T. ModelTest-NG: A new and scalable tool for the selection of DNA and protein evolutionary models. BioRxiv 2019. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ronquist, F.; Teslenko, M.; Van Der Mark, P.; Ayres, D.L.; Darling, A.; Höhna, S.; Larget, B.; Liu, L.; Suchard, M.A.; Huelsenbeck, J.P. Mrbayes 3.2: Efficient bayesian phylogenetic inference and model choice across a large model space. Syst. Biol. 2012, 61, 539–542. [Google Scholar] [CrossRef] [Green Version]
- Altekar, G.; Dwarkadas, S.; Huelsenbeck, J.P.; Ronquist, F. Parallel Metropolis coupled Markov chain Monte Carlo for Bayesian phylogenetic inference. Bioinformatics 2004, 20, 407–415. [Google Scholar] [CrossRef]
- Rambaut, A.; Drummond, A.J.; Xie, D.; Baele, G.; Suchard, M.A. Posterior summarization in Bayesian phylogenetics using Tracer 1.7. Syst. Biol. 2018, 67, 901–904. [Google Scholar] [CrossRef] [Green Version]
- Rambaut, A. FigTree, a Graphical Viewer of Phylogenetic Trees; University of Edinburgh: Edinburgh, UK, 2009. [Google Scholar]
- Zhang, Y. I-TASSER server for protein 3D structure prediction. BMC Bioinform. 2008, 9, 40. [Google Scholar] [CrossRef] [Green Version]
- Roy, A.; Kucukural, A.; Zhang, Y. I-TASSER: A unified platform for automated protein structure and function prediction. Nat. Protoc. 2010, 5, 725–738. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yang, J.; Yan, R.; Roy, A.; Xu, D.; Poisson, J.; Zhang, Y. The I-TASSER suite: Protein structure and function prediction. Nat. Methods 2014, 12, 7–8. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- GNU Parallel: The Command-Line Power Tool|USENIX. Available online: https://www.usenix.org/publications/login/february-2011-volume-36-number-1/gnu-parallel-command-line-power-tool (accessed on 29 December 2019).
- Wiederstein, M.; Sippl, M.J. ProSA-web: Interactive web service for the recognition of errors in three-dimensional structures of proteins. Nucleic Acids Res. 2007, 35, W407–W410. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sippl, M.J. Recognition of errors in three-dimensional structures of proteins. Proteins 1993, 17, 355–362. [Google Scholar] [CrossRef]
- Pettersen, E.F.; Goddard, T.D.; Huang, C.C.; Couch, G.S.; Greenblatt, D.M.; Meng, E.C.; Ferrin, T.E. UCSF Chimera? A visualization system for exploratory research and analysis. J. Comput. Chem. 2004, 25, 1605–1612. [Google Scholar] [CrossRef] [Green Version]
- Tarr, D.E.K. Establishing a reference array for the CS-αβ superfamily of defensive peptides. BMC Res. Notes 2016, 9, 490. [Google Scholar] [CrossRef] [Green Version]
Sequence Name | Mature Peptide Sequence | Length (aa) | Net Charge |
---|---|---|---|
Mcal mytilin 1 | SCASRCKYRCRARRCRYYVSVRYGWFCYCRCLHC | 34 | +9 |
Mcal mytilin 2 | SCASRCKSRCRARRCKYYVSVRYGWFCYCRCLRC | 34 | +10 |
Mcal mytilin 3 | SCALLCKAHCRARRCGYYVSVFYHGRCYCRCLRC | 34 | +7 |
Mcal mytilin 4 | SCASKCKAVCRRRRCAGYDWVLWGGHCFCKCSRC | 34 | +7 |
Mcal mytilin 5 | SCASRCKYRCRRRRCRSYVAVRYCCRCLCKCRRC | 34 | +13 |
Mcal mytilin 6 | SCIPRCKYICTRRRRCGYYAAIYYCHRCYCKCLSC | 35 | +8 |
Mcal PM | SCRTRCRFKCFGRGCGAYFAAQYGDFCYCKCYRC | 34 | +6 |
Mcor mytilin 9 | SCASRCKSRCRARRCRYYVAVRYGWFCYCRCLRC | 34 | +10 |
Mgal mytilin L | YCPQSFRRICSSRCRGRGCQYYVAVCFPRRYYCKCLRC | 38 | +9 |
Mgal mytilin M | SCASRCRSHCRARRCHYSKSVLVGRRCFCKCFLC | 34 | +9 |
Mgal PM 2 | SCRTRCRLKCFGRGCGAYFAAQRGPFCLCKCYRC | 34 | +8 |
Mgal PM 3 | SCRSRCRWKCFRRRCGAYFAAQRGPFCLCKCYRC | 34 | +10 |
Pcan mytilin 1 | SCDRWCNTSCYNKGCRYYAASVSDGRCFCCCITC | 34 | +2 |
Pcan mytilin 2 | NCARSCSSRCYHRNCKAYASVYRNETCYCCCIDC | 34 | +3 |
Pcan mytilin 3 | SCATSCSSRCEYRKCEDYASAIRDGKCYCCCIKC | 34 | +2 |
Pcan mytilin 4 | NCFSCPSTCARRGCRYFACATRLRKSYCCCFVC | 33 | +6 |
Pcan mytilin 5 | SCFSCPRTCGARGCRYYACATRFGTSYCCCFKC | 33 | +5 |
Pcan mytilin 6 | YCDLCRWYCSNKGCAYYLCGNKFGNNYCCCFKC | 33 | +3 |
Pcan mytilin 7 | YCDRCREYCSNTGCGYYMCVRRIVDRRLKYYCCCFKC | 37 | +5 |
Pcan mytilin 8 | GCGGCKYKCRRRGCRGYVCYKKRWLTICKCFRC | 33 | +11 |
Pvir mytilin 1 | SCATSCSSRCYNKGCKYYAAAIRSGTCYCCCFKG | 34 | +5 |
Pvir mytilin 2 | SCSSCPRTCGARGCRYYACATRLGTSYCCCFKC | 33 | +5 |
Pvir mytilin 3 | DCDSNCNHRCYYRGCKAYASALNNGTCYCCCVDC | 43 | 0 |
Pvir mytilin 4 | SCARCKDHCRNKGCGFYMCVLRYGTYYCCCFKC | 33 | +5 |
Pvir mytilin 5 | NCERCKYYCSYKNCSQYMCVRHNANDYCCCFNC | 33 | +2 |
Pvir mytilin 6 | ACDRCKAYCTIKGCGYYLCVHRFPSYYCCCFKC | 33 | +4 |
Pvir mytilin 7 | SCYTCKRRCAARGCRYYLCVIRYYRVYCGCYRC | 33 | +8 |
Thir mytilin 1 | SCSSICRYRCRRCRGFIWINIFGRCYCKCYGC | 32 | +7 |
Thir mytilin 2 | SCASSCKSRCRSRGCKYFVSVRYRYHCYCKCLRC | 34 | +9 |
Thir mytilin 3 | SCASRCKSRCRARRCKYYVSVRYGWFCYCKCLRC | 34 | +10 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Greco, S.; Gerdol, M.; Edomi, P.; Pallavicini, A. Molecular Diversity of Mytilin-Like Defense Peptides in Mytilidae (Mollusca, Bivalvia). Antibiotics 2020, 9, 37. https://doi.org/10.3390/antibiotics9010037
Greco S, Gerdol M, Edomi P, Pallavicini A. Molecular Diversity of Mytilin-Like Defense Peptides in Mytilidae (Mollusca, Bivalvia). Antibiotics. 2020; 9(1):37. https://doi.org/10.3390/antibiotics9010037
Chicago/Turabian StyleGreco, Samuele, Marco Gerdol, Paolo Edomi, and Alberto Pallavicini. 2020. "Molecular Diversity of Mytilin-Like Defense Peptides in Mytilidae (Mollusca, Bivalvia)" Antibiotics 9, no. 1: 37. https://doi.org/10.3390/antibiotics9010037
APA StyleGreco, S., Gerdol, M., Edomi, P., & Pallavicini, A. (2020). Molecular Diversity of Mytilin-Like Defense Peptides in Mytilidae (Mollusca, Bivalvia). Antibiotics, 9(1), 37. https://doi.org/10.3390/antibiotics9010037