Bacteriocins, Potent Antimicrobial Peptides and the Fight against Multi Drug Resistant Species: Resistance Is Futile?
Abstract
1. Introduction
2. Bacteriocins
2.1. Classes of Bacteriocins
2.2. Mode of Action
2.3. Bacteriocin Resistance Mechanisms
3. Medical Applications of Bacteriocin Therapeutics
3.1. Infectious Disease
3.2. Anti-Cancer Activity
3.3. Factors Affecting Medical Application
4. Food Applications
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Mathur, H.; Field, D.; Rea, M.C.; Cotter, P.D.; Hill, C.; Ross, R.P. Bacteriocin-Antimicrobial Synergy: A Medical and Food Perspective. Front. Microbiol. 2017, 8, 1205. [Google Scholar] [CrossRef]
- Harkins, C.P.; Pichon, B.; Doumith, M.; Parkhill, J.; Westh, H.; Tomasz, A.; Holden, M. Methicillin-resistant Staphylococcus aureus emerged long before the introduction of methicillin into clinical practice. Genome Boil. 2017, 18, 130. [Google Scholar] [CrossRef]
- Gould, K. Antibiotics: From prehistory to the present day. J. Antimicrob. Chemother. 2016, 71, 572–575. [Google Scholar] [CrossRef]
- Romero-Calle, D.; Guimarães Benevides, R.; Góes-Neto, A.; Billington, C. Bacteriophages as Alternatives to Antibiotics in Clinical Care. Antibiotics 2019, 8, 138. [Google Scholar] [CrossRef]
- Nicolaou, K.C.; Rigol, S. A brief history of antibiotics and select advances in their synthesis. J. Antibiot. 2017, 71, 153–184. [Google Scholar] [CrossRef]
- Ghodhbane, H.; Elaidi, S.; Sabatier, J.M.; Achour, S.; Benhmida, J.; Regaya, I. Bacteriocins Active Against Multi-Resistant Gram-Negative Bacteria Implicated in Nosocomial Infections. Infect. Disord. Drug Targets 2015, 15, 2–12. [Google Scholar] [CrossRef] [PubMed]
- Baindara, P.; Korpole, S.; Grover, V. Bacteriocins: Perspective for the development of novel anticancer drugs. Appl. Microbiol. Biotechnol. 2018, 102, 10393–10408. [Google Scholar] [CrossRef] [PubMed]
- Mokoena, M.P. Lactic Acid Bacteria and Their Bacteriocins: Classification, Biosynthesis and Applications against Uropathogens: A Mini-Review. Molecules 2017, 22, 1255. [Google Scholar] [CrossRef] [PubMed]
- Abanoz, H.S.; Kunduhoglu, B. Antimicrobial Activity of a Bacteriocin Produced by Enterococcus faecalis KT11 against Some Pathogens and Antibiotic-Resistant Bacteria. Korean J. Food Sci. Anim. Resour. 2018, 38, 1064–1079. [Google Scholar] [CrossRef]
- Geng, M.; Austin, F.R.; Smith, L. Covalent structure and bioactivity of the type AII lantibiotic salivaricin A2. Appl. Environ. Microbiol. 2018, 84, e02528-17. [Google Scholar] [CrossRef]
- Bakhtiary, A.; Cochrane, S.A.; Mercier, P.; McKay, R.T.; Miskolzie, M.; Sit, C.S.; Vederas, J.C. Insights into the mechanism of action of the two-peptide lantibiotic lacticin 3147. J. Am. Chem. Soc. 2017, 139, 17803–17810. [Google Scholar] [CrossRef] [PubMed]
- Grove, T.L.; Himes, P.M.; Hwang, S.; Yumerefendi, H.; Bonanno, J.B.; Kuhlman, B.; Almo, S.C.; Bowers, A.A. Structural insights into thioether bond formation in the biosynthesis of sactipeptides. J. Am. Chem. Soc. 2017, 139, 11734–11744. [Google Scholar] [CrossRef] [PubMed]
- Norris, G.E.; Patchett, M.L. The glycocins: In a class of their own. Curr. Opin. Struct. Biol. 2016, 40, 112–119. [Google Scholar] [CrossRef] [PubMed]
- Tan, S.; Moore, G.; Nodwell, J. Put a bow on it: Knotted antibiotics take center stage. Antibiotics 2019, 8, 117. [Google Scholar] [CrossRef]
- Chen, M.; Wang, S.; Yu, X. Cryptand-imidazolium supported total synthesis of the lasso peptide BI-32169 and its d-enantiomer. Chem. Commun. 2019, 55, 3323–3326. [Google Scholar] [CrossRef]
- Perez, R.H.; Zendo, T.; Sonomoto, K. Novel bacteriocins from lactic acid bacteria (LAB): Various structures and applications. Microb. Cell Fact. 2014, 13. [Google Scholar] [CrossRef]
- Baquero, F.; Lanza, V.F.; Baquero, M.R.; del Campo, R.; Bravo-Vázquez, D.A. Microcins in Enterobacteriaceae: Peptide Antimicrobials in the Eco-Active Intestinal Chemosphere. Front. Microbiol. 2019, 10. [Google Scholar] [CrossRef]
- Gupta, V.G.; Pandey, A. New and Future Developments in Microbial Biotechnology and Bioengineering: Microbial Secondary Metabolites Biochemistry and Applications; Elsevier Science: Amsterdam, The Netherlands, 2019; ISBN 978-0-444-63504-4. [Google Scholar]
- Ge, J.; Kang, J.; Ping, W. Effect of Acetic Acid on Bacteriocin Production by Gram-Positive Bacteria. J. Microbiol. Biotechnol. 2019, 29, 1341–1348. [Google Scholar] [CrossRef]
- Bobbarala, V. Concepts, Compounds and the Alternatives of Antibacterials; IntechOpen: London, UK, 2015. [Google Scholar] [CrossRef]
- Hahn-Löbmann, S.; Stephan, A.; Schulz, S.; Schneider, T.; Shaverskyi, A.; Tusé, D.; Giritch, A.; Gleba, Y. Colicins and salmocins—New classes of plant-made non-antibiotic food antibacterials. Front. Plant Sci. 2019, 10, 437. [Google Scholar] [CrossRef]
- Yang, S.C.; Lin, C.H.; Sung, C.T.; Fang, J.Y. Antibacterial activities of bacteriocins: Application in foods and pharmaceuticals. Front. Microbiol. 2014, 5. [Google Scholar] [CrossRef]
- Ghequire, M.G.; De Mot, R. Ribosomally encoded antibacterial proteins and peptides from Pseudomonas. FEMS Microbiol. Rev. 2014, 38, 523–568. [Google Scholar] [CrossRef]
- Egan, K.; Field, D.; Rea, M.C.; Ross, R.P.; Hill, C.; Cotter, P.D. Bacteriocins: Novel Solutions to Age Old Spore-Related Problems? Front. Microbiol. 2016, 7. [Google Scholar] [CrossRef] [PubMed]
- Hols, P.; Ledesma-García, L.; Gabant, P.; Mignolet, J. Mobilization of Microbiota Commensals and Their Bacteriocins for Therapeutics. Trends Microbiol. 2019, 27. [Google Scholar] [CrossRef]
- Potter, A.; Ceotto, H.; Coelho, M.L.V.; Guimaraes, A.J.; Bastos, M.D.C.F. The gene cluster of aureocyclicin 4185: The first cyclic bacteriocin of Staphylococcus aureus. Microbiology 2014, 160, 917–928. [Google Scholar] [CrossRef] [PubMed]
- Gabrielsen, C.; Brede, D.A.; Nes, I.F.; Diep, D.B. Circular bacteriocins: Biosynthesis and mode of action. Appl. Environ. Microbiol. 2014, 80, 6854–6862. [Google Scholar] [CrossRef] [PubMed]
- Kumariya, R.; Kumari, G.; Raiput, Y.S.; Akhtar, N.; Patel, S. Bacteriocins: Classification, synthesis, mechanism of action and resistance development in food spoilage causing bacteria. Microb. Pathog. 2019, 128, 171–177. [Google Scholar] [CrossRef] [PubMed]
- O’Bryan, C.A.; Koo, O.K.; Sostrin, M.L.; Ricke, S.C.; Crandall, P.G.; Johnson, M.G. Characteristics of Bacteriocins and Use as Food Antimicrobials in the United States. Food Feed Saf. Syst. Anal. 2018, 273–286. [Google Scholar] [CrossRef]
- Mahlapuu, M.; Håkansson, J.; Ringstad, L.; Björn, C. Antimicrobial Peptides: An Emerging Category of Therapeutic Agents. Front. Cell. Infect. Microbiol. 2016, 6. [Google Scholar] [CrossRef]
- Jenssen, H.; Hamill, P.; Hancock, R.E.W. Peptide Antimicrobial Agents. Clin. Microbiol. Rev. 2016, 19, 491–511. [Google Scholar] [CrossRef]
- Dicks, L.; Dreyer, L.; Smith, C.; van Staden, A.D. A Review: The Fate of Bacteriocins in the Human Gastro-Intestinal Tract: Do They Cross the Gut-Blood Barrier? Front. Microbiol. 2018, 9, 2297. [Google Scholar] [CrossRef]
- Cotter, P.D.; Hill, C.; Ross, R.P. Bacteriocins: Developing innate immunity for food. Nat. Rev. Microbiol. 2005, 3, 777–788. [Google Scholar] [CrossRef] [PubMed]
- Cameron, A.; Zaheer, R.; Adator, E.H.; Barbieri, R.; Reuter, T.; McAllister, T.A. Bacteriocin Occurrence and Activity in Escherichia coli Isolated from Bovines and Wastewater. Toxins 2019, 11, 475. [Google Scholar] [CrossRef] [PubMed]
- Bastos Mdo, C.; Coelho, M.L.; Santos, O.C. Resistance to bacteriocins produced by Gram-positive bacteria. Microbiology 2015, 161, 683–700. [Google Scholar] [CrossRef] [PubMed]
- Field, D.; Daly, K.; O’Connor, P.M.; Cotter, P.D.; Hill, C.; Ross, R.P. Efficacies of nisin A and nisin V semipurified preparations alone and in combination with plant essential oils for controlling Listeria monocytogenes. Appl. Environ. Microbiol. 2015, 81, 2762–2769. [Google Scholar] [CrossRef]
- Rodrigues, G.; Silva, G.G.O.; Buccini, D.F.; Duque, H.M.; Dias, S.C.; Franco, O.L. Bacterial Proteinaceous Compounds with Multiple Activities Toward Cancers and Microbial Infection. Front. Microbiol. 2019, 10. [Google Scholar] [CrossRef]
- Tong, Z.; Zhang, Y.; Ling, J.; Ma, J.; Huang, L.; Zhang, L. In vitro study on the effects of Nisin on the antibacterial activities of 18 antibiotics against Enterococcus faecalis. PLoS ONE 2014, 9, e89209. [Google Scholar] [CrossRef]
- Ongey, E.L.; Neubauer, P. Lanthipeptides: Chemical synthesis versus in vivo biosynthesis as tools for pharmaceutical production. Microb. Cell Fact. 2016, 15. [Google Scholar] [CrossRef]
- Mathur, H.; Field, D.; Rea, M.C.; Cotter, P.D.; Hill, C.; Ross, R.P. Fighting biofilms with lantibiotics and other groups of bacteriocins. NPJ Biofilms Microbiomes 2018, 4. [Google Scholar] [CrossRef]
- Lagha, A.B.; Hass, B.; Gottschalk, M.; Grenier, D. Antimicrobial potential of bacteriocins in poultry and swine production. Vet. Res. 2017, 48. [Google Scholar] [CrossRef]
- Lopetuso, L.R.; Giorgio, M.E.; Saviano, A.; Scaldaferri, F.; Gasbarrini, A.; Cammarota, G. Bacteriocins and Bacteriophages: Therapeutic Weapons for Gastrointestinal Diseases? Int. J. Mol. Sci. 2019, 20, 183. [Google Scholar] [CrossRef]
- Ghoul, M.; West, S.A.; Johansen, H.K.; Molin, S.; Harrison, O.B.; Maiden, M.C.J.; Griffin, A.S. Bacteriocin-mediated competition in cystic fibrosis lung infections. Proc. R. Soc. B Biol. Sci. 2015, 282, 20150972. [Google Scholar] [CrossRef] [PubMed]
- Tabata, A.; Yamada, T.; Ohtani, H.; Ohkura, K.; Tomoyasu, T.; Nagamune, H. β-Hemolytic Streptococcus anginosus subsp. anginosus causes streptolysin S-dependent cytotoxicity to human cell culture lines in vitro. J. Oral Microbiol. 2019, 11, 1609839. [Google Scholar] [CrossRef] [PubMed]
- Naveen, S.V.; Kalaivani, K. Cancer stem cells and evolving novel therapies: A paradigm shift. Stem Cell Investig. 2018, 5. [Google Scholar] [CrossRef] [PubMed]
- Kaur, S.; Kaur, S. Bacteriocins as Potential Anticancer Agents. Front. Pharmacol. 2015, 10, 272. [Google Scholar] [CrossRef] [PubMed]
- Hetz, C.; Bono, M.R.; Barros, L.F.; Lagos, R. Microcin E492, a channel-forming bacteriocin from Klebsiella pneumoniae, induces apoptosis in some human cell lines. Proc. Natl. Acad. Sci. USA 2002, 99, 2696–2701. [Google Scholar] [CrossRef] [PubMed]
- Shin, J.M.; Gwak, J.W.; Kamarajan, P.; Fenno, J.C.; Rickard, A.H.; Kapila, Y.L. Biomedical applications of nisin. J. Appl. Microbiol. 2016, 120, 14491465. [Google Scholar] [CrossRef]
- Baindara, P.; Gautam, A.; Raghava, G.; Korple, S. Anticancer properties of a defensin like class IId bacteriocin Laterosporulin10. Sci. Rep. 2017, 7, 46541. [Google Scholar] [CrossRef]
- Hoskin, D.W.; Ramamoorthy, A. Studies on anticancer activities of antimicrobial peptides. Biochem. Biophys. Acta 2008, 1778, 357–375. [Google Scholar] [CrossRef]
- Oppegård, C.; Rogne, P.; Kristiansen, P.E.; Nissen-Meyer, J. Structure analysis of the two-peptide bacteriocin lactococcin G by introducing d-amino acid residues. Microbiology 2010, 156, 1883–1889. [Google Scholar] [CrossRef]
- BoÈttger, R.; Hoffmann, R.; Knappe, D. Differential stability of therapeutic peptides with different proteolytic cleavage sites in blood, plasma and serum. PLoS ONE 2017, 12, e0178943. [Google Scholar] [CrossRef]
- Shea, E.F.; O’Connor, P.M.; Cotter, P.D.; Ross, R.; Hill, C. Synthesis of trypsin-resistant variants of the Listeria bacteriocin salivaricin P. Appl. Environ. Microbiol. 2010, 76, 5356–5362. [Google Scholar] [CrossRef] [PubMed]
- Garvey, M.; Rowan, N. Pulsed UV as a potential surface sanitizer in food production processes to ensure consumer safety. Curr. Opin. Food Sci. 2019, 26, 65–70. [Google Scholar] [CrossRef]
- Meade, E.; Slattery, M.A.; Garvey, M. Antimicrobial resistance: An agent in zoonotic disease and increased morbidity. J. Clin. Exp. Toxicol. 2017, 1, 30–37. [Google Scholar]
- Silva, C.C.G.; Silva, S.P.M.; Ribeiro, S.C. Application of Bacteriocins and Protective Cultures in Dairy Food Preservation. Front. Microbiol. 2018, 9. [Google Scholar] [CrossRef]
- Field, D.; Ross, R.P.; Hill, C. Developing bacteriocins of lactic acid bacteria into next generation biopreservatives. Curr. Opin. Food Sci. 2018, 20, 1–6. [Google Scholar] [CrossRef]
- Da Costa, R.J.; Voloski, F.L.S.; Mondadori, R.G.; Duval, E.H.; Fiorentini, Â.M. Preservation of Meat Products with Bacteriocins Produced by Lactic Acid Bacteria Isolated from Meat. J. Food Qual. 2019, 1–12. [Google Scholar] [CrossRef]
- Skarp, C.P.A.; Hänninen, M.L.; Rautelin, H.I.K. Campylobacteriosis: The role of poultry meat. Clin. Microbiol. Infect. 2016, 22, 103–109. [Google Scholar] [CrossRef]
- Yongkiettrakul, S.; Maneerat, K.; Arechanajan, B.; Malila, Y.; Srimanote, P.; Gottschalk, M.; Visessanguan, W. Antimicrobial susceptibility of Streptococcus suis isolated from diseased pigs, asymptomatic pigs, and human patients in Thailand. BMC Vet. Res. 2019, 15, 5. [Google Scholar] [CrossRef]
Bacteriocin | Host Producer | Intrinsic Function | Mol. Mass (kDa) | No. A. Acids | Physiochemical Properties |
---|---|---|---|---|---|
Class I: Ripps—Ribosomally synthesized Post-translationally modified Peptides | |||||
Heat stable, lanthionine and methyllanthionine containing peptides (<5 kDa) | |||||
Lantibiotics | |||||
Subtype A1: Leader peptides are cleaved by a dedicated serin proteinase | |||||
Microbisporicin | Microbispora corallina | Bind to a docking molecule, either inhibiting cell wall synthesis or forming pores in the cell membrane | 2.2 | 24 | Modified by LanB (dehydration) and LanC (ring formation). Exported by LanT and released from leader peptide by LanP [10] Elongated, linear, flexible, amphipathic molecules |
Nisin A/Z | Lactococcus lactis | 3.4 | 34 | ||
Pep5 | Staphylococcus epidermidis | 3.3 | 34 | ||
Subtilin | Bacillus subtilis | 3.3 | 32 | ||
Subtype A2: Leader peptides are cleaved by a dedicated ABC ATP-binding cassette [ATP] transporter | |||||
Carnobacterium piscicola | Bind to a docking molecule, inhibiting cell wall synthesis | 4.6 | 35–37 | Modified by LanM (bifunctional—dehydration and ring formation). Transported and processed by LanT [10] Globular, negatively charged or neutral molecules. | |
Lacticin 481 | Lactococcus lactis | 2.9 | 27 | ||
Plantaricin C | Lactobacillus plantarum LL441 | 2.9 | 27 | ||
Subtype B | |||||
Actagardine | Actinoplanes liguriae | Bind to a docking molecule, inhibiting cell wall synthesis | 1.9 | 19 | |
Mersacidin | Bacillus sp. strain HIL Y-85,54728 | 1.8 | 19 | ||
Lacticin 3147 (LtnA1 and LtnA2) | Lactococcus lactis subsp. lactis DPC3147 | Bind to lipid II, inhibiting cell wall synthesis or forming pores [11] | 4.2 | 59 | |
Sactipeptides | |||||
Subtilosin A | Bacillus subtilis | Not completely understood | 3.4 | 32 | Peptides with cysteine sulfur to α-carbon crosslinks which are catalyzed by radical S-adenosylmethionine (SAM) [12] |
Thurincin H | Bacillus thuringiensis SF361 | 3.1 | 31 | ||
Thuricin CD (Trn-R and Trn-β) | Bacillus thuringiensis | 2.8 | 30 | ||
Glycocins | |||||
Glycocin F | Lactobacillus plantarum | Bacteriostatic—Little know | 4.0 | 43 | Glycosylated antimicrobial peptides [13] |
Sublancin 168 | Bacillus subtilis | Bactericidal—Affects protein and DNA synthesis | 3.7 | 37 | |
Lasso Peptides: An N-terminal macrolactam with the C-terminal tail threaded through the ring | |||||
Subtype I | |||||
Siamycin-I | Streptomyces spp. | Inhibition of cell wall synthesis | 2.1 | 21 | two disulfide bridges linking the macrocyclic ring with the threaded tail |
Aborycin | Streptomyces spp. | 2.1 | 21 | ||
Subtype II | |||||
Capistruin | Burkholderia thailandensis E264 | Inhibition of RNA synthesis [14] | 2.0 | 19 | Contain no disulfide bridge |
Microcin J25 | Escherichia coli | 2.1 | 21 | ||
Klebsidin | Klebsiella pneumoniae | 2.0 | 19 | ||
Subtype III | |||||
BI-32169 | Streptomyces spp. | Glucagon receptor antagonist [15] | 2.0 | 19 | one disulfide bridge that links the N-terminal ring and the C-terminal tail |
Subtype IV | |||||
LP2006 | Nocardiopsis alba | Not completely understood | 2.0 | 17 | one disulfide bridge that links the C-terminal tail to itself [14] |
Class II: Unmodified peptides | |||||
Heat-stable, non-lanthionine containing bacteriocins (<10 kDa) | |||||
Subtype IIa: Pediocin-like peptides | |||||
Pediocin PA-1 | P. acidilactici PAC1.0 | Membrane active—Disrupt the proton motive force of the target cell by pore formation. | 4.6 | 44 | Linear peptides which contain a highly conserved hydrophilic and charged N-terminal region that has a disulphide bond linkage and a consensus sequence of YGNGVXC [16] |
Leucocin A | Leuconostoc geldium UAL 187 | 3.9 | 37 | ||
Enterocin NKR-5-3C | Enterococcus faecium NKR-5-3 | 4.5 | 43 | ||
Microcin L | Escherichia coli | Disruption of cell membrane [17] | 8.9 | 90 | Plasmid-mediated, contain disulfide bonds but no further posttranslational modification [18] |
Microcin N/24 | Escherichia coli | Unknown | 7.3 | 73 | |
Subtype IIb: Two-peptides | |||||
Lactacin F | Lactobacillus acidophilus | Disrupt the proton motive force of the target cell by pore formation. | 6.3 | 57 | Mostly cationic peptides. Requires synergy of two different peptides to form an active poration complex [16] |
Enterocin NKR-5-3AZ | Enterococcus faecium | 5.2 | 59 | ||
Microcin M | Escherichia coli | Impairs the cellular proton channel [17] | 7.3 | 77 | Chromosomally encoded, linear peptides that may carry a C-terminal posttranslational modification [18] |
Microcin H47 | Escherichia coli | Unknown | 4.9 | 60 | |
Subtype IIc: Circular | |||||
Lactococcin B | Lactococcus lactissubsp. cremoris 9 B4 | Disrupt the proton motive force of the target cell by pore formation. | 5.3 | 47 | Cyclic peptides formed by the ligation of their N-terminus to the C-terminus via an amide bond (saposin fold) [16] |
Enterocin B [19] | Enterococcus faecium T136 | 5.5 | 53 | ||
Subtype IId: Non-pediocin-like linear | |||||
Lacticin Q | Lactococcus lactis QU 5 | Disrupt the proton motive force of the target cell by pore formation. | 5.9 | 53 | Other class II bacteriocins, including sec-dependent bacteriocins and leaderless bacteriocins [16] |
Leucocin N | Leuconostoc pseudomesenteroides QU 15 | 3.7 | 32 | ||
Class III: Large proteins | |||||
Heat-sensitive, hydrophilic peptides (>10 kDa) | |||||
Subtype IIIa: Bacteriolytic | |||||
Helveticin V-1829 | Lactobacillus helveticus 1829 | bacteriolysins catalyze the hydrolysis of cell wall resulting in cell lysis | The C-terminal contain a recognition site for the target cell while the N-terminus has homology to endopeptidases involved in cell wall synthesis [20] | ||
Lysostaphin | Staphylococcus simulans subsp. staphylolyticus | 27 | 246 | ||
Subtype IIIb: Non-bacteriolytic | |||||
Helveticin J | Lactobacillus helveticus 481 | Can disturb the glucose uptake by cells, starving them and also disturbs the membrane potential [19] | 37 | 37 | |
Caseicin 80 | Lactobacillus casei | 42 | |||
Colicins, Pyocins, Salmocins | |||||
SalE1a | Salmonella enterica | Membrane pore formation | 52.8 | Colicin-like bacteriocins. Can be efficiently expressed in plants [21] | |
Colicin B | Escherichia coli | 54.9 | 511 | Subtype B—Use Ton system to penetrate the outer membrane of bacteria [22] | |
Colicin A | Escherichia coli | 63.0 | 204 | Subtype A—Use Tol system to penetrate the outer membrane of sensitive bacteria [22] | |
Colicin E2 | Escherichia coli | DNase activity | 59.6 | 581 | |
Pyocin S1 | Pseudomonas aeruginosa | 65.5 | 617 | protease-sensitive “soluble” (S-type) Pyocins [23] | |
SalE2 | Salmonella enterica | 62.0 | Colicin-like bacteriocins. Can be efficiently expressed in plants [21] | ||
Pyocin R1-5 | Pseudomonas aeruginosa | Depolarization of the cytoplasmic membrane | R-type pyocins resemble the contractile tails of Myoviridae bacteriophages, are rigid and non-flexuous particles [23] | ||
Class 1V: Circular proteins | |||||
Heat-stable, hydrophobic lipid- or carbohydrate-conjugated complex proteins (∼5.5–7.5 kDa) | |||||
Enterocin AS-48 | Enterococcus faecalis | Insertion into cell membrane, resulting in membrane permeabilization [24] | 7.14 | 70 | cyclic peptides formed by the ligation of their N-terminus to the C-terminus via an amide bond [20] |
Characteristic | Bacteriocins | Antibiotic |
---|---|---|
Synthesis | Ribosomal (primary metabolite) | Enzymes (secondary metabolite) |
Bioengineering | Highly amendable [16] | Not amendable |
Spectrum of activity | Narrow (confined to closely related species) | Mainly broad |
Potency | often in the nanomolar range [1] | Potent |
Biocompatibility | Only toxic at high concentrations | Toxic |
Working concentrations (MIC) | Lower (Often in the pico-nanomolar range) | Higher (usually in the micromolar range) |
Chemical and thermal Stability | Tolerate a wide range of pH and temperature | Tolerate a narrow range PH and temperature |
Adverse effects | None identified | Many |
Diversity (i.e., in terms of size, microbial target, mode of action, etc.) | Broad | Narrow |
Biodegradable | Completely metabolized in the human body | Persistent |
Antibiofilm properties | Strong [38] | Resistance |
Cost | High | Economically cost-effective |
Purification | Complicated, low yield [25] | Possible, high yield |
Specificity | Non-specific | Specific |
Selectivity | Non-selective | Selective |
Route of administration | protein degradation | Oral, IV, IM, topical, transdermal, nebulization etc. |
Bioavailability | Size dependent | Good |
Oral bioavailability | Poor | Good |
Solubility | Low | Variable (low to high) |
Metabolic stability | Low (Fast biotransformation) | Slow-fast biotransformation |
Plasma stability | Low | Dependent on drug |
Half Life | Low | Dependent on drug |
Degradation | Enzymatic (proteolytic enzymes), [31] | Oxidative, Hydrolysis, photolytic, thermal |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Meade, E.; Slattery, M.A.; Garvey, M. Bacteriocins, Potent Antimicrobial Peptides and the Fight against Multi Drug Resistant Species: Resistance Is Futile? Antibiotics 2020, 9, 32. https://doi.org/10.3390/antibiotics9010032
Meade E, Slattery MA, Garvey M. Bacteriocins, Potent Antimicrobial Peptides and the Fight against Multi Drug Resistant Species: Resistance Is Futile? Antibiotics. 2020; 9(1):32. https://doi.org/10.3390/antibiotics9010032
Chicago/Turabian StyleMeade, Elaine, Mark Anthony Slattery, and Mary Garvey. 2020. "Bacteriocins, Potent Antimicrobial Peptides and the Fight against Multi Drug Resistant Species: Resistance Is Futile?" Antibiotics 9, no. 1: 32. https://doi.org/10.3390/antibiotics9010032
APA StyleMeade, E., Slattery, M. A., & Garvey, M. (2020). Bacteriocins, Potent Antimicrobial Peptides and the Fight against Multi Drug Resistant Species: Resistance Is Futile? Antibiotics, 9(1), 32. https://doi.org/10.3390/antibiotics9010032