Anti-Mycoplasma Activity of Daptomycin and Its Use for Mycoplasma Elimination in Cell Cultures of Rickettsiae
Abstract
:1. Introduction
2. Results
2.1. Antimicrobial Susceptibilities of Mycoplasma, Rickettsia, and Orientia
2.2. Acquisition of High-Level Resistance to Daptomycin after Incomplete Mycoplasma Eradication
2.3. Successful Protocols for Complete Eradication of Mycoplasma
3. Discussion
4. Materials and Methods
4.1. Antibiotics
4.2. Cell Line, Rickettsia, and Orientia Culture
4.3. Mycoplasma Detection and Identification
4.4. Antimicrobial Susceptibility Testing
4.5. Mycoplasma Decontamination of Rickettsia Cultures
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Drexler, H.G.; Uphoff, C.C. Mycoplasma contamination of cell cultures: Incidence, sources, effects, detection, elimination, prevention. Cytotechnology 2002, 39, 75–90. [Google Scholar] [CrossRef] [PubMed]
- Gautier-Bouchardon, A.V. Antimicrobial Resistance in Mycoplasma spp. Microbiol. Spectr. 2018, 6. [Google Scholar] [CrossRef] [PubMed]
- Nikfarjam, L.; Farzaneh, P. Prevention and detection of Mycoplasma contamination in cell culture. Cell J. 2012, 13, 203–212. [Google Scholar]
- Tantibhedhyangkul, W.; Inthasin, N.; Wongprompitak, P.; Ekpo, P. Suspected Mycoplasma Contamination in the Study “Toll-Like Receptor 2 Recognizes Orientia tsutsugamushi and Increases Susceptibility to Murine Experimental Scrub Typhus”. Infect. Immun. 2017, 85. [Google Scholar] [CrossRef]
- Fadiel, A.; Eichenbaum, K.D.; El Semary, N.; Epperson, B. Mycoplasma genomics: Tailoring the genome for minimal life requirements through reductive evolution. Front. Biosci. 2007, 12, 2020–2028. [Google Scholar] [CrossRef] [PubMed]
- Poddighe, D. Extra-pulmonary diseases related to Mycoplasma pneumoniae in children: Recent insights into the pathogenesis. Curr. Opin. Rheumatol. 2018, 30, 380–387. [Google Scholar] [CrossRef]
- Golden, M.R.; Workowski, K.A.; Bolan, G. Developing a Public Health Response to Mycoplasma genitalium. J. Infect. Dis. 2017, 216, S420–S426. [Google Scholar] [CrossRef] [Green Version]
- Yoshida, T.; Maeda, S.; Deguchi, T.; Ishiko, H. Phylogeny-based rapid identification of mycoplasmas and ureaplasmas from urethritis patients. J. Clin. Microbiol. 2002, 40, 105–110. [Google Scholar] [CrossRef]
- Thompson, C.C.; Vieira, N.M.; Vicente, A.C.; Thompson, F.L.; Woubit, S.; Manso-Silvan, L.; Lorenzon, S.; Gaurivaud, P.; Poumarat, F.; Pellet, M.P.; et al. Towards a genome based taxonomy of Mycoplasmas A PCR for the detection of mycoplasmas belonging to the Mycoplasma mycoides cluster: Application to the diagnosis of contagious agalactia. Infect. Genet. Evol. 2011, 11, 1798–1804. [Google Scholar] [CrossRef]
- Hannan, P.C. Comparative susceptibilities of various AIDS-associated and human urogenital tract mycoplasmas and strains of Mycoplasma pneumoniae to 10 classes of antimicrobial agent in vitro. J. Med. Microbiol. 1998, 47, 1115–1122. [Google Scholar] [CrossRef] [PubMed]
- Pereyre, S.; Goret, J.; Bebear, C. Mycoplasma pneumoniae: Current Knowledge on Macrolide Resistance and Treatment. Front. Microbiol. 2016, 7, 974. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gerber, L.; Gaspert, A.; Braghetti, A.; Zwahlen, H.; Wuthrich, R.; Zbinden, R.; Mueller, N.; Fehr, T. Ureaplasma and Mycoplasma in kidney allograft recipients-A case series and review of the literature. Transpl. Infect. Dis. 2018, 20, e12937. [Google Scholar] [CrossRef]
- Paessler, M.; Levinson, A.; Patel, J.B.; Schuster, M.; Minda, M.; Nachamkin, I. Disseminated Mycoplasma orale infection in a patient with common variable immunodeficiency syndrome. Diagn. Microbiol. Infect. Dis. 2002, 44, 201–204. [Google Scholar] [CrossRef]
- Watanabe, M.; Hitomi, S.; Goto, M.; Hasegawa, Y. Bloodstream infection due to Mycoplasma arginini in an immunocompromised patient. J. Clin. Microbiol. 2012, 50, 3133–3135. [Google Scholar] [CrossRef] [PubMed]
- Taylor-Robinson, D.; Bebear, C. Antibiotic susceptibilities of mycoplasmas and treatment of mycoplasmal infections. J. Antimicrob. Chemother. 1997, 40, 622–630. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ogawa, M.; Uchiyama, T.; Satoh, M.; Ando, S. Decontamination of mycoplasma-contaminated Orientia tsutsugamushi strains by repeating passages through cell cultures with antibiotics. BMC Microbiol. 2013, 13, 32. [Google Scholar] [CrossRef]
- Tantibhedhyangkul, W.; Angelakis, E.; Tongyoo, N.; Newton, P.N.; Moore, C.E.; Phetsouvanh, R.; Raoult, D.; Rolain, J.M. Intrinsic fluoroquinolone resistance in Orientia tsutsugamushi. Int. J. Antimicrob. Agents 2010, 35, 338–341. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rolain, J.M.; Maurin, M.; Vestris, G.; Raoult, D. In vitro susceptibilities of 27 rickettsiae to 13 antimicrobials. Antimicrob. Agents Chemother. 1998, 42, 1537–1541. [Google Scholar] [CrossRef] [PubMed]
- Straus, S.K.; Hancock, R.E. Mode of action of the new antibiotic for Gram-positive pathogens daptomycin: Comparison with cationic antimicrobial peptides and lipopeptides. Biochim. Biophys. Acta 2006, 1758, 1215–1223. [Google Scholar] [CrossRef] [Green Version]
- Randall, C.P.; Mariner, K.R.; Chopra, I.; O’Neill, A.J. The target of daptomycin is absent from Escherichia coli and other gram-negative pathogens. Antimicrob. Agents Chemother. 2013, 57, 637–639. [Google Scholar] [CrossRef]
- Phee, L.; Hornsey, M.; Wareham, D.W. In vitro activity of daptomycin in combination with low-dose colistin against a diverse collection of Gram-negative bacterial pathogens. Eur. J. Clin. Microbiol. Infect. Dis. 2013, 32, 1291–1294. [Google Scholar] [CrossRef]
- Bouanchaud, D.H. In-vitro and in-vivo antibacterial activity of quinupristin/dalfopristin. J. Antimicrob. Chemother. 1997, 39 (Suppl. S1), 15–21. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bebear, C.; Bouanchaud, D.H. A review of the in-vitro activity of quinupristin/dalfopristin against intracellular pathogens and mycoplasmas. J. Antimicrob. Chemother. 1997, 39, 59–62. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kenny, G.E.; Cartwright, F.D. Susceptibilities of Mycoplasma hominis, M. pneumoniae, and Ureaplasma urealyticum to GAR-936, dalfopristin, dirithromycin, evernimicin, gatifloxacin, linezolid, moxifloxacin, quinupristin-dalfopristin, and telithromycin compared to their susceptibilities to reference macrolides, tetracyclines, and quinolones. Antimicrob. Agents Chemother. 2001, 45, 2604–2608. [Google Scholar] [PubMed]
- Amano, K.; Tamura, A.; Ohashi, N.; Urakami, H.; Kaya, S.; Fukushi, K. Deficiency of peptidoglycan and lipopolysaccharide components in Rickettsia tsutsugamushi. Infect. Immun. 1987, 55, 2290–2292. [Google Scholar] [PubMed]
- Salje, J. Orientia tsutsugamushi: A neglected but fascinating obligate intracellular bacterial pathogen. PLoS Pathog. 2017, 13, e1006657. [Google Scholar] [CrossRef] [PubMed]
- Ter Laak, E.A.; Pijpers, A.; Noordergraaf, J.H.; Schoevers, E.C.; Verheijden, J.H. Comparison of methods for in vitro testing of susceptibility of porcine Mycoplasma species to antimicrobial agents. Antimicrob. Agents Chemother. 1991, 35, 228–233. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Waites, K.B.; Crabb, D.M.; Bing, X.; Duffy, L.B. In vitro susceptibilities to and bactericidal activities of garenoxacin (BMS-284756) and other antimicrobial agents against human mycoplasmas and ureaplasmas. Antimicrob. Agents Chemother. 2003, 47, 161–165. [Google Scholar] [CrossRef]
- Triglia, T.; Burns, G.F. A method for in vitro clearance of mycoplasma from human cell lines. J. Immunol. Methods 1983, 64, 133–139. [Google Scholar] [CrossRef]
- Waites, K.B.; Crabb, D.M.; Duffy, L.B. In vitro activities of ABT-773 and other antimicrobials against human mycoplasmas. Antimicrob. Agents Chemother. 2003, 47, 39–42. [Google Scholar] [CrossRef]
- Beko, K.; Felde, O.; Sulyok, K.M.; Kreizinger, Z.; Hrivnak, V.; Kiss, K.; Biksi, I.; Jerzsele, A.; Gyuranecz, M. Antibiotic susceptibility profiles of Mycoplasma hyorhinis strains isolated from swine in Hungary. Vet. Microbiol. 2019, 228, 196–201. [Google Scholar] [CrossRef] [PubMed]
- Wu, C.C.; Shryock, T.R.; Lin, T.L.; Faderan, M.; Veenhuizen, M.F. Antimicrobial susceptibility of Mycoplasma hyorhinis. Vet. Microbiol. 2000, 76, 25–30. [Google Scholar] [CrossRef]
- Hannan, P.C. Antibiotic susceptibility of Mycoplasma fermentans strains from various sources and the development of resistance to aminoglycosides in vitro. J. Med. Microbiol. 1995, 42, 421–428. [Google Scholar] [CrossRef] [PubMed]
- Valentine-King, M.A.; Brown, M.B. Antibacterial Resistance in Ureaplasma Species and Mycoplasma hominis Isolates from Urine Cultures in College-Aged Females. Antimicrob. Agents Chemother. 2017, 61, e01104–e011017. [Google Scholar] [CrossRef]
- Rolain, J.M.; Stuhl, L.; Maurin, M.; Raoult, D. Evaluation of antibiotic susceptibilities of three rickettsial species including Rickettsia felis by a quantitative PCR DNA assay. Antimicrob. Agents Chemother. 2002, 46, 2747–2751. [Google Scholar] [CrossRef]
- Dvorchik, B.H.; Brazier, D.; DeBruin, M.F.; Arbeit, R.D. Daptomycin pharmacokinetics and safety following administration of escalating doses once daily to healthy subjects. Antimicrob. Agents Chemother. 2003, 47, 1318–1323. [Google Scholar] [CrossRef]
- Taylor-Robinson, D.; Davies, H.A.; Sarathchandra, P.; Furr, P.M. Intracellular location of mycoplasmas in cultured cells demonstrated by immunocytochemistry and electron microscopy. Int. J. Exp. Pathol. 1991, 72, 705–714. [Google Scholar]
- Hopfe, M.; Deenen, R.; Degrandi, D.; Kohrer, K.; Henrich, B. Host cell responses to persistent mycoplasmas--different stages in infection of HeLa cells with Mycoplasma hominis. PLoS ONE 2013, 8, e54219. [Google Scholar] [CrossRef]
- Kornspan, J.D.; Tarshis, M.; Rottem, S. Invasion of melanoma cells by Mycoplasma hyorhinis: Enhancement by protease treatment. Infect. Immun. 2010, 78, 611–617. [Google Scholar] [CrossRef]
- Bongers, S.; Hellebrekers, P.; Leenen, L.P.H.; Koenderman, L.; Hietbrink, F. Intracellular Penetration and Effects of Antibiotics on Staphylococcus aureus Inside Human Neutrophils: A Comprehensive Review. Antibiotics 2019, 8, 54. [Google Scholar] [CrossRef]
- Maurin, M.; Raoult, D. Use of aminoglycosides in treatment of infections due to intracellular bacteria. Antimicrob. Agents Chemother. 2001, 45, 2977–2986. [Google Scholar] [CrossRef] [PubMed]
- Jiang, J.H.; Dexter, C.; Cameron, D.R.; Monk, I.R.; Baines, S.L.; Abbott, I.J.; Spelman, D.W.; Kostoulias, X.; Nethercott, C.; Howden, B.P.; et al. Evolution of Daptomycin Resistance in Coagulase-Negative Staphylococci Involves Mutations of the Essential Two-Component Regulator WalKR. Antimicrob. Agents Chemother. 2019, 63. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stefani, S.; Campanile, F.; Santagati, M.; Mezzatesta, M.L.; Cafiso, V.; Pacini, G. Insights and clinical perspectives of daptomycin resistance in Staphylococcus aureus: A review of the available evidence. Int. J. Antimicrob. Agents 2015, 46, 278–289. [Google Scholar] [CrossRef] [PubMed]
- Tantibhedhyangkul, W.; Wongsawat, E.; Silpasakorn, S.; Waywa, D.; Saenyasiri, N.; Suesuay, J.; Thipmontree, W.; Suputtamongkol, Y. Use of Multiplex Real-Time PCR to Diagnose Scrub Typhus. J. Clin. Microbiol. 2017, 55, 1377–1387. [Google Scholar] [CrossRef] [PubMed]
- Weng, J.; Li, Y.; Cai, L.; Li, T.; Peng, G.; Fu, C.; Han, X.; Li, H.; Jiang, Z.; Zhang, Z.; et al. Elimination of Mycoplasma Contamination from Infected Human Hepatocyte C3A Cells by Intraperitoneal Injection in BALB/c Mice. Front. Cell. Infect. Microbiol. 2017, 7, 440. [Google Scholar] [CrossRef] [PubMed]
- Eremeeva, M.E.; Balayeva, N.M.; Raoult, D. Purification of rickettsial cultures contaminated by mycoplasmas. Acta Virol. 1994, 38, 231–233. [Google Scholar]
Drugs | MICs (mg/L) for organisms | ||
---|---|---|---|
Mycoplasma spp. | Rickettsia spp. | O. tsutsugamushi | |
Daptomycin | 2 (M. orale, M. arginini) 32 (M. hyorhinis) * | >256 (R. typhi, R. japonica, R. helvetica) * | 128 (Karp) * |
Quinupristin/Dalfopristin | 0.05–2 [23,24] 8 (M. hyorhinis) * | 8 (R. typhi) * | 1 (Gilliam) * |
Clindamycin | Susceptible ≤1 * [27,28,30] | >32 * | >32 * |
Fluoroquinolones | Susceptible ≤0.12(MXF) [24,28,30] | 0.25–1 (CIP) [18,35] | 4 (CIP) [17] 2 (MXF for Karp) 1 (MXF for Kato, Gilliam) * |
Aminoglycosides (gentamicin) | <4 (GEN, M. hyorhinis) *, [31,32] <0.25–10 (GEN, M. hominis and M. fermentans) [33,34] | 4–16 [18] | >100 (GEN, AMK) * |
Cultures | Contaminants | Treatment 1 |
---|---|---|
R. typhi | M. orale | Daptomycin 32 mg/L |
R. conorii | M. arginini | Daptomycin 32 mg/L |
R. helvetica | M. orale | Daptomycin 32 mg/L |
R. japonica | Mixed M. orale and M. arginini | Daptomycin 32 mg/L for M. orale followed by Daptomycin 256 mg/L for acquired resistant M. arginini (MIC = 64 mg/L) |
O. tsutsugamushi Kato | M. orale | Daptomycin 32 mg/L 2 |
O. tsutsugamushi Gilliam | M. hyorhinis | Gentamicin 50–100 mg/L or Amikacin 100 mg/L |
L929 cells without rickettisae | M. hyorhinis (experimental contamination) | Daptomycin 256 mg/L plus either clindamycin 32 mg/L or quinupristin/dalfopristin 2 mg/L, or 3-drug combination |
Primer or Probe | Sequences 5’-->3’ |
---|---|
Primers | |
Mycop 16S F | GGA GCT GGT AAT RCC CAA AGT C |
Mycop 16S R | CCA TCC CCA CGT TCT CGT AG |
OT 47-kDa F | CCA TCT AAT ACT GTA CTT GAA GCA GTT GA |
OT 47-kDa R1 | GTC CTA AAT TCT CAT TTA ATT CTG GAG T |
TG ompB F | GTG CAG TAT CTT CAG GTG ATG A |
SFG ompB F | GGT GAC GAG GCT GTT GAY AAT G |
TG/SFG ompB R | GGY IGT TTT TGC TTT ATA ACC AGC TA |
Mycop ITS F | CCT AAG GYA GGA CTG GTG ACT GG |
Mycop ITS R | CAC GTC CTT CWT CGA CTT TCA GAC |
(sequencing) | |
Probes | |
Mycop 16S Ra | FAM-CCC AGT CAC CAG TCC TGC CTT AGG-BHQ1 |
OT 47-kDa Rb1 | FAM-TCA TTA AGC/ZEN/ATA ACA TTT AAC ATA CCA CGA CGA-IBFQ |
TG ompB Rb | MAX-TTC TGC GAT GTT ATA GAA AGG TTT AGC CCA- BHQ1 |
SFG ompB Rc | Texas red-ATG TGC ATC AGT ATA GAA AGG TTT TGC CC-BHQ2 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tantibhedhyangkul, W.; Wongsawat, E.; Matamnan, S.; Inthasin, N.; Sueasuay, J.; Suputtamongkol, Y. Anti-Mycoplasma Activity of Daptomycin and Its Use for Mycoplasma Elimination in Cell Cultures of Rickettsiae. Antibiotics 2019, 8, 123. https://doi.org/10.3390/antibiotics8030123
Tantibhedhyangkul W, Wongsawat E, Matamnan S, Inthasin N, Sueasuay J, Suputtamongkol Y. Anti-Mycoplasma Activity of Daptomycin and Its Use for Mycoplasma Elimination in Cell Cultures of Rickettsiae. Antibiotics. 2019; 8(3):123. https://doi.org/10.3390/antibiotics8030123
Chicago/Turabian StyleTantibhedhyangkul, Wiwit, Ekkarat Wongsawat, Sutthicha Matamnan, Naharuthai Inthasin, Jintapa Sueasuay, and Yupin Suputtamongkol. 2019. "Anti-Mycoplasma Activity of Daptomycin and Its Use for Mycoplasma Elimination in Cell Cultures of Rickettsiae" Antibiotics 8, no. 3: 123. https://doi.org/10.3390/antibiotics8030123
APA StyleTantibhedhyangkul, W., Wongsawat, E., Matamnan, S., Inthasin, N., Sueasuay, J., & Suputtamongkol, Y. (2019). Anti-Mycoplasma Activity of Daptomycin and Its Use for Mycoplasma Elimination in Cell Cultures of Rickettsiae. Antibiotics, 8(3), 123. https://doi.org/10.3390/antibiotics8030123