Next Article in Journal / Special Issue
Acyltransferases as Tools for Polyketide Synthase Engineering
Previous Article in Journal
Epidemiological Trends of Antibiotic Resistant Gonorrhoea in the United Kingdom
Previous Article in Special Issue
Lysoquinone-TH1, a New Polyphenolic Tridecaketide Produced by Expressing the Lysolipin Minimal PKS II in Streptomyces albus
Open AccessReview

Production of β-Lactamase Inhibitors by Streptomyces Species

Campus Serra Talhada, University of Pernambuco, Avenida Custódio Conrado, 600, AABB, Serra Talhada, Pernambuco 56912-550, Brazil
Department of Antibiotics, Federal University of Pernambuco, Avenida da Engenharia, 2° andar, Cidade Universitária, Recife, Pernambuco 50740-600, Brazil
Department of Bioprocesses and Biotechnology, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Rodovia Araraquara-Jaú/Km 01, Araraquara 14800-903, Brazil
Campus Garanhuns, University of Pernambuco, Rua Capitão Pedro Rodrigues, 105, São José, Garanhuns, Pernambuco 55295-110, Brazil
Department of Civil, Chemical and Environmental Engineering, Chemical Pole, University of Genoa, Via Opera Pia 15, 16145 Genoa, Italy
Department of Morphology and Animal Physiology, Federal Rural University of Pernambuco, Av. Dom Manoel de Medeiros, Recife, Pernambuco 52171-900, Brazil
Author to whom correspondence should be addressed.
Antibiotics 2018, 7(3), 61;
Received: 30 May 2018 / Revised: 7 July 2018 / Accepted: 12 July 2018 / Published: 17 July 2018
(This article belongs to the Special Issue Actinomycetes: The Antibiotics Producers)
β-Lactamase inhibitors have emerged as an effective alternative to reduce the effects of resistance against β-lactam antibiotics. The Streptomyces genus is known for being an exceptional natural source of antimicrobials and β-lactamase inhibitors such as clavulanic acid, which is largely applied in clinical practice. To protect against the increasing prevalence of multidrug-resistant bacterial strains, new antibiotics and β-lactamase inhibitors need to be discovered and developed. This review will cover an update about the main β-lactamase inhibitors producers belonging to the Streptomyces genus; advanced methods, such as genetic and metabolic engineering, to enhance inhibitor production compared with wild-type strains; and fermentation and purification processes. Moreover, clinical practice and commercial issues are discussed. The commitment of companies and governments to develop innovative strategies and methods to improve the access to new, efficient, and potentially cost-effective microbial products to combat the antimicrobial resistance is also highlighted. View Full-Text
Keywords: actinobacteria; β-lactamase; resistance; antibiotic; β-lactamase inhibitor actinobacteria; β-lactamase; resistance; antibiotic; β-lactamase inhibitor
Show Figures

Figure 1

MDPI and ACS Style

Viana Marques, D.D.A.; Machado, S.E.F.; Ebinuma, V.C.S.; Duarte, C.D.A.L.; Converti, A.; Porto, A.L.F. Production of β-Lactamase Inhibitors by Streptomyces Species. Antibiotics 2018, 7, 61.

AMA Style

Viana Marques DDA, Machado SEF, Ebinuma VCS, Duarte CDAL, Converti A, Porto ALF. Production of β-Lactamase Inhibitors by Streptomyces Species. Antibiotics. 2018; 7(3):61.

Chicago/Turabian Style

Viana Marques, Daniela D.A.; Machado, Suellen E.F.; Ebinuma, Valéria C.S.; Duarte, Carolina D.A.L.; Converti, Attilio; Porto, Ana L.F. 2018. "Production of β-Lactamase Inhibitors by Streptomyces Species" Antibiotics 7, no. 3: 61.

Find Other Styles
Note that from the first issue of 2016, MDPI journals use article numbers instead of page numbers. See further details here.

Article Access Map by Country/Region

Search more from Scilit
Back to TopTop