Early Life Antibiotic Exposure and Intestinal Colonization by Enterobacteriaceae upon Admission to a Neonatal Referral Unit: A Case–Control Study
Abstract
1. Introduction
2. Results
3. Discussion
4. Materials and Methods
4.1. Case and Controls Definitions
4.2. Microbiological Methods and Definitions
4.3. Data Collection and Definition of Exposure
4.4. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
| ESBL-E | Extended-Spectrum β-Lactamase-Producing Enterobacteriaceae |
| E-CPE | Enterobacteriaceae producing carbapenemases |
| WHO | World Health Organization |
| AMR | Antimicrobial resistance |
| LMIC | Low- and Middle-Income Country |
| IHT | Inter-hospital transfers |
| NICU | Neonatal intensive care unit |
| MDR | Multidrug-resistant |
| TPN | Total parenteral nutrition |
| PROA | Antimicrobial Optimization Program |
| CLSI | Clinical and Laboratory Standards Institute |
| EUCAST | European Committee on Antimicrobial Susceptibility Testing |
References
- Strunk, T.; Molloy, E.J.; Mishra, A.; Bhutta, Z.A. Neonatal bacterial sepsis. Lancet 2024, 404, 277–293. [Google Scholar] [CrossRef]
- Milton, R.; Gillespie, D.; Dyer, C.; Taiyari, K.; Carvalho, M.J.; Thomson, K.; Sands, K.; Portal, E.A.R.; Hood, K.; Ferreira, A.; et al. Neonatal sepsis and mortality in low-income and middle-income countries from a facility-based birth cohort: An international multisite prospective observational study. Lancet Glob. Health 2022, 10, e661–e672. [Google Scholar] [CrossRef] [PubMed]
- Campos, J.C.D.M.; Antunes, L.C.; Ferreira, R.B. Global priority pathogens: Virulence, antimicrobial resistance and prospective treatment options. Future Microbiol. 2020, 15, 649–677. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Zhang, H.; Yan, J.; Zhang, T. Literature review on the distribution characteristics and antimicrobial resistance of bacterial pathogens in neonatal sepsis. J. Matern. Fetal Neonatal Med. 2022, 35, 861–870. [Google Scholar] [CrossRef] [PubMed]
- Aslam, B.; Khurshid, M.; Arshad, M.I.; Muzammil, S.; Rasool, M.; Yasmeen, N.; Shah, T.; Chaudhry, T.H.; Rasool, M.H.; Shahid, A.; et al. Antibiotic Resistance: One Health One World Outlook. Front. Cell. Infect. Microbiol. 2021, 11, 771510, Erratum in Front. Cell. Infect. Microbiol. 2024, 14, 1488430. https://doi.org/10.3389/fcimb.2024.1488430. [Google Scholar] [CrossRef]
- Folgori, L.; Bielicki, J.; Heath, P.T.; Sharland, M. Antimicrobial-resistant Gram-negative infections in neonates: Burden of disease and challenges in treatment. Curr. Opin. Infect. Dis. 2017, 30, 281–288. [Google Scholar] [CrossRef]
- Sands, K.; Carvalho, M.J.; Portal, E.; Thomson, K.; Dyer, C.; Akpulu, C.; Andrews, R.; Ferreira, A.; Gillespie, D.; Hender, T.; et al. Characterization of antimicrobial-resistant Gram-negative bacteria that cause neonatal sepsis in seven low- and middle-income countries. Nat. Microbiol. 2021, 6, 512–523. [Google Scholar] [CrossRef]
- Smith, A.; Anandan, S.; Veeraraghavan, B.; Thomas, N. Colonization of the preterm neonatal gut with carbapenem-resistant Enterobacteriaceae and its association with neonatal sepsis and maternal gut flora. J. Glob. Infect. Dis. 2020, 12, 101–104. [Google Scholar] [CrossRef]
- Lu, Y.; Cai, X.; Zheng, Y.; Lyv, Q.; Wu, J. Dominant bacteria and influencing factors of early intestinal colonization in very low birth weight infants: A prospective cohort study. J. Clin. Lab. Anal. 2022, 36, e24290. [Google Scholar] [CrossRef]
- Ferreira, I.C.D.S.; Menezes, R.D.P.; Jesus, T.A.D.; Machado, I.C.D.B.; Lopes, M.S.M.; Costa, A.D.; Araújo, L.B.; Röder, D.V.D.B. Impact of intestinal colonization by Gram-negative bacteria on the incidence of bloodstream infections and lethality in critically ill neonates. J. Infect. Public Health 2023, 16, 9–18. [Google Scholar] [CrossRef]
- Piotrowska, M.J.; Sakowski, K.; Lonc, A.; Tahir, H.; Kretzschmar, M.E. Impact of inter-hospital transfers on the prevalence of resistant pathogens in a hospital–community system. Epidemics 2020, 33, 100408. [Google Scholar] [CrossRef]
- Edwards, T.; Williams, C.T.; Olwala, M.; Andang’o, P.; Otieno, W.; Nalwa, G.N.; Akindolire, A.; Cubas-Atienzar, A.I.; Ross, T.; Tongo, O.O.; et al. Molecular surveillance reveals widespread colonisation by carbapenemase and extended spectrum beta-lactamase producing organisms in neonatal units in Kenya and Nigeria. Antimicrob. Resist. Infect. Control 2023, 12, 14. [Google Scholar] [CrossRef]
- Organización Mundial de la Salud. Guía AWaRe (Acceso, Precaución y Reserva) de la OMS Para el uso de Antibióticos: Infografías en Anexo Web. Organización Mundial de la Salud. 2023. Report No.: WHO/MHP/HPS/EML/2022.02. Available online: https://iris.who.int/handle/10665/375875 (accessed on 3 December 2025).
- Moja, L.; Zanichelli, V.; Mertz, D.; Gandra, S.; Cappello, B.; Cooke, G.S.; Chuki, P.; Harbarth, S.; Pulcini, C.; Mendelson, M.; et al. WHO’s essential medicines and AWaRe: Recommendations on first- and second-choice antibiotics for empiric treatment of clinical infections. Clin. Microbiol. Infect. 2024, 30, S1–S51. [Google Scholar] [CrossRef]
- Thampi, N.; Shah, P.S.; Nelson, S.; Agarwal, A.; Steinberg, M.; Diambomba, Y.; Morris, A.M. Prospective audit and feedback on antibiotic use in neonatal intensive care: A retrospective cohort study. BMC Pediatr. 2019, 19, 105. [Google Scholar] [CrossRef] [PubMed]
- Assen, K.H.; Paquette, V.; Albert, A.Y.; Shi, G.; Srigley, J.A.; Osiovich, H.; Roberts, A.D.; Ting, J.Y. Effectiveness of a neonatal intensive care unit-specific antimicrobial stewardship program: A ten-year review. Infect. Control Hosp. Epidemiol. 2023, 44, 1718–1724. [Google Scholar] [CrossRef]
- Viel-Thériault, I.; Agarwal, A.; Bariciak, E.; Le Saux, N.; Thampi, N. Antimicrobial Prophylaxis Use in the Neonatal Intensive Care Unit: An Antimicrobial Stewardship Target That Deserves Attention! Am. J. Perinatol. 2022, 39, 1288–1291. [Google Scholar] [CrossRef] [PubMed]
- Russell, N.J.; Stohr, W.; Plakka, N.; Cook, A.; Berkley, J.A.; Adhisivam, B.; Agarwal, R.; Ahmed, N.U.; Balasegaram, M.; Ballot, D.; et al. Patterns of antibiotic use, pathogens, and prediction of mortality in hospitalized neonates and young infants with sepsis: A global neonatal sepsis observational cohort study (NeoOBS). PLoS Med. 2023, 20, e1004179. [Google Scholar] [CrossRef] [PubMed]
- Sturrock, S.; Sadoo, S.; Nanyunja, C.; Le Doare, K. Improving the Treatment of Neonatal Sepsis in Resource-Limited Settings: Gaps and Recommendations. Res. Rep. Trop. Med. 2023, 14, 121–134. [Google Scholar] [CrossRef]
- Saleem, Z.; Moore, C.E.; Kalungia, A.C.; Schellack, N.; Ogunleye, O.; Chigome, A.; Chowdhury, K.; Kitutu, F.E.; Massele, A.; Ramdas, N.; et al. Status and implications of the knowledge, attitudes and practices towards AWaRe antibiotic use, resistance and stewardship among low- and middle-income countries. JAC Antimicrob. Resist. 2025, 7, dlaf033. [Google Scholar] [CrossRef]
- Hsia, Y.; Sharland, M.; Jackson, C.; Wong, I.C.K.; Magrini, N.; Bielicki, J.A. Consumption of oral antibiotic formulations for young children according to the WHO Access, Watch, Reserve (AWaRe) antibiotic groups: An analysis of sales data from 70 middle-income and high-income countries. Lancet Infect. Dis. 2019, 19, 67–75. [Google Scholar] [CrossRef]
- Esaiassen, E.; Fjalstad, J.W.; Juvet, L.K.; van den Anker, J.N.; Klingenberg, C. Antibiotic exposure in neonates and early adverse outcomes: A systematic review and meta-analysis. J. Antimicrob. Chemother. 2017, 72, 1858–1870. [Google Scholar] [CrossRef]
- Cairns, J.; Frickel, J.; Jalasvuori, M.; Hiltunen, T.; Becks, L. Genomic evolution of bacterial populations under coselection by antibiotics and phage. Mol. Ecol. 2017, 26, 1848–1859. [Google Scholar] [CrossRef]
- Wistrand-Yuen, E.; Knopp, M.; Hjort, K.; Koskiniemi, S.; Berg, O.G.; Andersson, D.I. Evolution of high-level resistance during low-level antibiotic exposure. Nat. Commun. 2018, 9, 1599. [Google Scholar] [CrossRef]
- Ramamurthy, T.; Ghosh, A.; Chowdhury, G.; Mukhopadhyay, A.K.; Dutta, S.; Miyoshi, S.I. Deciphering the genetic network and programmed regulation of antimicrobial resistance in bacterial pathogens. Front. Cell. Infect. Microbiol. 2022, 12, 952491. [Google Scholar] [CrossRef]
- Wu, Y.H.; Chiang, H.Y.; Chiang, M.C.; Chang, Y.J.; Chiu, C.H.; Lee, C.C. High cumulative antibiotic exposure in extremely low birth weight infants during the first month of life: Risk factors and clinical outcomes. Pediatr. Neonatol. 2025, 66, 357–362. [Google Scholar] [CrossRef]
- Fjalstad, J.W.; Esaiassen, E.; Juvet, L.K.; van den Anker, J.N.; Klingenberg, C. Antibiotic therapy in neonates and impact on gut microbiota and antibiotic resistance development: A systematic review. J. Antimicrob. Chemother. 2018, 73, 569–580. [Google Scholar] [CrossRef] [PubMed]
- Ouedraogo, A.S.; Jean Pierre, H.; Bañuls, A.L.; Ouédraogo, R.; Godreuil, S. Emergence and spread of antibiotic resistance in West Africa: Contributing factors and threat assessment. Med. Sante Trop. 2017, 27, 147–154. [Google Scholar] [CrossRef]
- Desorcy-Scherer, K.; Bendixen, M.M.; Parker, L.A. Determinants of the Very Low-Birth-Weight Infant’s Intestinal Microbiome: A Systematic Review. J. Perinat. Neonatal Nurs. 2020, 34, 257–275. [Google Scholar] [CrossRef] [PubMed]
- Gasparrini, A.J.; Crofts, T.S.; Gibson, M.K.; Tarr, P.I.; Warner, B.B.; Dantas, G. Antibiotic perturbation of the preterm infant gut microbiome and resistome. Gut Microbes 2016, 7, 443–449. [Google Scholar] [CrossRef]
- Langdon, A.; Crook, N.; Dantas, G. The effects of antibiotics on the microbiome throughout development and alternative approaches for therapeutic modulation. Genome Med. 2016, 8, 39. [Google Scholar] [CrossRef] [PubMed]
- Moussa, B.; Oumokhtar, B.; Arhoune, B.; Massik, A.; Elfakir, S.; Khalis, M.; Soudi, H.; Hmami, F. Gut acquisition of Extended-spectrum β-lactamases-producing Klebsiella pneumoniae in preterm neonates: Critical role of enteral feeding, and endotracheal tubes in the neonatal intensive care unit (NICU). PLoS ONE 2023, 18, e0293949. [Google Scholar] [CrossRef]
- Petersen, S.M.; Greisen, G.; Krogfelt, K.A. Nasogastric feeding tubes from a neonatal department yield high concentrations of potentially pathogenic bacteria- even 1 d after insertion. Pediatr. Res. 2016, 80, 395–400. [Google Scholar] [CrossRef]
- Hurrell, E.; Kucerova, E.; Loughlin, M.; Caubilla-Barron, J.; Hilton, A.; Armstrong, R.; Smith, C.; Grant, J.; Shoo, S.; Forsythe, S. Neonatal enteral feeding tubes as loci for colonisation by members of the Enterobacteriaceae. BMC Infect. Dis. 2009, 9, 146. [Google Scholar] [CrossRef]
- Jara, J.; Alba, C.; Del Campo, R.; Fernández, L.; Sáenz de Pipaón, M.; Rodríguez, J.M.; Orgaz, B. Linking preterm infant gut microbiota to nasograstric enteral feeding tubes: Exploring potential interactions and microbial strain transmission. Front. Pediatr. 2024, 12, 1397398. [Google Scholar] [CrossRef]
- Jara Pérez, J.; Moreno-Sanz, B.; Castro Navarro, I.; Alba Rubio, C.; Chinea Jiménez, B.; Escribano Palomino, E.; Fernández Álvarez, L.; Rodríguez, J.M.; Orgaz Martín, B.; Sáenz de Pipaón, M. Nasogastric enteral feeding tubes modulate preterm colonization in early life. Pediatr. Res. 2022, 92, 838–847. [Google Scholar] [CrossRef] [PubMed]
- Masi, A.C.; Stewart, C.J. The role of the preterm intestinal microbiome in sepsis and necrotising enterocolitis. Early Hum. Dev. 2019, 138, 104854. [Google Scholar] [CrossRef] [PubMed]
- Díaz, A.; Ortiz, D.C.; Trujillo, M.; Garcés, C.; Jaimes, F.; Restrepo, A.V. Clinical Characteristics of Carbapenem-resistant Klebsiella pneumoniae Infections in Ill and Colonized Children in Colombia. Pediatr. Infect. Dis. J. 2016, 35, 237–241. [Google Scholar] [CrossRef]
- Vilches, T.N.; Bonesso, M.F.; Guerra, H.M.; Fortaleza, C.M.C.B.; Park, A.W.; Ferreira, C.P. The role of intra and inter-hospital patient transfer in the dissemination of heathcare-associated multidrug-resistant pathogens. Epidemics 2019, 26, 104–115. [Google Scholar] [CrossRef]
- Iqbal, F.; Barche, A.; Shenoy, P.A.; Lewis, L.E.S.; Purkayastha, J.; Vandana, K.E. Gram-Negative Colonization and Bacterial Translocation Drive Neonatal Sepsis in the Indian Setting. J. Epidemiol. Glob. Health 2024, 14, 1525–1535. [Google Scholar] [CrossRef] [PubMed]
- Garpvall, K.; Duong, V.; Linnros, S.; Quốc, T.N.; Mucchiano, D.; Modeen, S.; Lagercrantz, L.; Edman, A.; Le, N.K.; Huong, T.; et al. Admission screening and cohort care decrease carbapenem resistant enterobacteriaceae in Vietnamese pediatric ICU’s. Antimicrob. Resist. Infect. Control 2021, 10, 128. [Google Scholar] [CrossRef]
- Lineamientos Técnicos Para la Implementación de PROA en el Escenario Hospitalario y Ambulatorio-OPS/OMS|Organización Panamericana de la Salud. Available online: https://www.paho.org/es/documentos/lineamientos-tecnicos-para-implementacion-proa-escenario-hospitalario-ambulatorio (accessed on 27 April 2022).
| Characteristic | Overall N = 435 | Control N = 348 | Case N = 87 | p-Value |
|---|---|---|---|---|
| Sex, n (%) | 0.40 | |||
| Female | 218 (50.0) | 178 (51.0) | 40 (46.0) | |
| Male | 217 (50.0) | 170 (49.0) | 47 (54.0) | |
| Birth weight, n (%) | <0.001 | |||
| ≥2500 g | 261 (60.0) | 221 (63.5) | 40 (46.0) | |
| 1500–2499 g | 115 (26.4) | 90 (25.9) | 25 (28.7) | |
| <1500 g | 59 (13.6) | 37 (10.6) | 22 (25.3) | |
| Gestational Age by Ballard (weeks), Median (IQR) | 37.0 (4) | 37.0 (3) | 36.0 (9) | <0.001 * |
| Admission weight (grams), Median (IQR) | 2685 (1062) | 2737 (940) | 2423 (1455) | 0.002 * |
| Days of Hospital Stay †, median (IQR) | 5 (10) | 4 (7) | 15 (23) | <0.001 * |
| Days of Catheter Use †, median (IQR) | 0 (2) | 0 (0) | 8 (20) | <0.001 * |
| Days on Total Parenteral Nutrition † median (IQR) | 0.0 (0) | 0.0 (0) | 0.0 (5) | <0.001 * |
| Days on Mechanical ventilation †, median (IQR) | 1.0 (3) | 1.0 (0) | 1.0 (20) | 0.01 * |
| Type of Feeding Route, n (%) | 0.37 | |||
| Oral | 273 (62.8) | 224 (64.4) | 49 (56.3) | |
| Mixed feeding | 66 (15.2) | 51 (14.7) | 15 (17.2) | |
| Total parenteral nutrition | 96 (22.1) | 73 (21.0) | 23 (26.4) | |
| Exclusive breastfeeding, n (%) | 0.30 | |||
| No | 325 (75.0) | 256 (74.0) | 69 (79.0) | |
| Yes | 110 (25.0) | 92 (26.0) | 18 (21.0) | |
| Antibiotic use, n (%) | <0.001 | |||
| No | 244 (56.0) | 218 (63.0) | 26 (30.0) | |
| Yes | 191 (44.0) | 130 (37.0) | 61 (70.0) | |
| Number of antibiotic agents used, n (%) | <0.001 | |||
| None | 244 (56.1) | 218 (62.6) | 26 (30.0) | |
| Two | 137 (31.5) | 102 (29.3) | 35 (40.0) | |
| >2 | 54 (12.4) | 28 (8.1) | 26 (30.0) | |
| AWaRe Classification, n (%) | <0.001 | |||
| None | 244 (56.1) | 218 (63.0) | 26 (30.0) | |
| Access | 22 (5.1) | 4 (1.1) | 18 (21.0) | |
| Watch | 61 (14.0) | 33 (9.5) | 28 (32.0) | |
| Reserve | 108 (24.8) | 93 (27.0) | 15 (17.0) |
| Characteristic | OR | 95% CI | p-Value | aOR | 95% CI | p-Value |
|---|---|---|---|---|---|---|
| Antibiotic use | ||||||
| No | 1.00 (ref.) | 1.00 (ref.) | ||||
| Yes | 3.93 | 2.39, 6.63 | <0.001 | 3.01 | 1.47, 6.37 | 0.004 |
| Days of Hospital Stay † | 1.11 | 1.08, 1.15 | <0.001 | 1.05 | 1.01, 1.09 | 0.020 |
| Days of Catheter Use † | 1.29 | 1.22, 1.39 | <0.001 | 1.32 | 1.22, 1.47 | <0.001 |
| Type of Feeding Route | ||||||
| Oral | 1.00 (ref.) | 1.00 (ref.) | ||||
| Mixed feeding | 1.34 | 0.68, 2.54 | 0.40 | 0.24 | 0.07, 0.70 | 0.008 |
| Total parenteral nutrition | 1.44 | 0.81, 2.50 | 0.20 | 0.30 | 0.10, 0.78 | 0.013 |
| Birth weight, n (%) | ||||||
| ≥2500 g | 1.00 (ref.) | 1.00 (ref.) | ||||
| 1500–2499 g | 1.21 | 0.66, 2.19 | 0.55 | 0.75 | 0.28, 1.85 | 0.53 |
| <1500 g | 4.92 | 2.74, 8.91 | <0.001 | 1.21 | 0.24, 5.98 | 0.82 |
| Gestational Age by Ballard, weeks † | 0.86 | 0.75, 0.99 | 0.038 | 0.79 | 0.38, 1.62 | 0.52 |
| Characteristic | OR | 95% CI | p-Value | aOR | 95% CI | p-Value |
|---|---|---|---|---|---|---|
| Number of antibiotic agents used | ||||||
| None | 1.00 (ref.) | 1.00 (ref.) | ||||
| Two | 4.11 | 2.34, 7.30 | <0.001 | 4.13 | 1.94, 8.89 | <0.001 |
| >2 | 8.61 | 4.42, 17.0 | <0.001 | 3.73 | 1.22, 11.0 | 0.018 |
| Days of Hospital Stay † | 1.11 | 1.08, 1.15 | <0.001 | 1.04 | 1.01, 1.08 | 0.034 |
| Days of Catheter Use † | 1.29 | 1.22, 1.39 | <0.001 | 1.31 | 1.20, 1.45 | <0.001 |
| Type of Feeding Route | ||||||
| Oral | 1.00 (ref.) | 1.00 (ref.) | ||||
| Mixed feeding | 1.34 | 0.68, 2.54 | 0.40 | 0.20 | 0.06, 0.57 | 0.005 |
| Total parenteral nutrition | 1.84 | 1.03, 3.25 | 0.037 | 0.29 | 0.10, 0.75 | 0.015 |
| Characteristic | OR | 95% CI | p-Value | aOR | 95% CI | p-Value |
|---|---|---|---|---|---|---|
| AWaRe Classification | ||||||
| None | 1.00 (ref.) | 1.00 (ref.) | ||||
| Access | 37.7 | 13.0, 138 | <0.001 | 22.2 | 5.83, 101 | <0.001 |
| Watch | 7.11 | 3.74, 13.70 | <0.001 | 4.08 | 1.43, 11.30 | 0.007 |
| Reserve | 1.35 | 0.67, 2.64 | 0.400 | 1.69 | 0.70, 3.93 | 0.200 |
| Days of Hospital Stay † | 1.11 | 1.08, 1.15 | <0.001 | 1.03 | 1.00, 1.07 | 0.094 |
| Days of Catheter Use † | 1.29 | 1.22, 1.39 | <0.001 | 1.30 | 1.20, 1.44 | <0.001 |
| Type of Feeding Route | ||||||
| Oral | 1.00 (ref.) | 1.00 (ref.) | ||||
| Mixed feeding | 1.34 | 0.68, 2.54 | 0.400 | 0.20 | 0.05, 0.60 | 0.007 |
| Total parenteral nutrition | 1.84 | 1.03, 3.25 | 0.037 | 0.30 | 0.10, 0.82 | 0.025 |
| Characteristic | OR | 95% CI | p-Value | aOR | 95% CI | p-Value |
|---|---|---|---|---|---|---|
| AWaRe Classification | ||||||
| None | 1 (Ref.) | 1 (Ref.) | ||||
| Access | 96.4 | 26.13, 477.01 | <0.001 | 49.82 | 11.47, 216.39 | <0.001 |
| Watch | 31.04 | 9.92, 136.99 | <0.001 | 14.31 | 3.70, 55.25 | <0.001 |
| Reserve | 6.43 | 1.82, 29.80 | 0.007 | 5.25 | 1.34, 20.51 | 0.017 |
| Days of Hospital Stay † | 1.09 | 1.06, 1.12 | <0.001 | 1.05 | 1.02, 1.08 | <0.001 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Agudelo-Pérez, S.; Troncoso, G.; Alvarez-Olmos, M.; Pineda, M.; Moscote, A.; Molina Pérez, M.P. Early Life Antibiotic Exposure and Intestinal Colonization by Enterobacteriaceae upon Admission to a Neonatal Referral Unit: A Case–Control Study. Antibiotics 2026, 15, 123. https://doi.org/10.3390/antibiotics15020123
Agudelo-Pérez S, Troncoso G, Alvarez-Olmos M, Pineda M, Moscote A, Molina Pérez MP. Early Life Antibiotic Exposure and Intestinal Colonization by Enterobacteriaceae upon Admission to a Neonatal Referral Unit: A Case–Control Study. Antibiotics. 2026; 15(2):123. https://doi.org/10.3390/antibiotics15020123
Chicago/Turabian StyleAgudelo-Pérez, Sergio, Gloria Troncoso, Martha Alvarez-Olmos, Maria Pineda, Adriana Moscote, and María Paula Molina Pérez. 2026. "Early Life Antibiotic Exposure and Intestinal Colonization by Enterobacteriaceae upon Admission to a Neonatal Referral Unit: A Case–Control Study" Antibiotics 15, no. 2: 123. https://doi.org/10.3390/antibiotics15020123
APA StyleAgudelo-Pérez, S., Troncoso, G., Alvarez-Olmos, M., Pineda, M., Moscote, A., & Molina Pérez, M. P. (2026). Early Life Antibiotic Exposure and Intestinal Colonization by Enterobacteriaceae upon Admission to a Neonatal Referral Unit: A Case–Control Study. Antibiotics, 15(2), 123. https://doi.org/10.3390/antibiotics15020123

