Ellagic Acid as a Promising Antifungal Agent: A Review of Mechanisms, Synergy, and Formulation Strategies
Abstract
1. Introduction
2. Chemical Characteristics and Sources of Ellagic Acid
2.1. Chemistry of Ellagic Acid
2.2. Natural Sources of Ellagic Acid
3. Antifungal Activity
3.1. In Vitro Activity
- i.
- Differences in the source and purity of EA;
- ii.
- Variations in susceptibility testing methodologies (e.g., broth microdilution vs. agar diffusion);
- iii.
- Differences in growth medium, incubation time, and inoculum size;
- iv.
- Inherent variability in membrane composition and efflux pump activity among different clinical isolates.
3.2. In Vivo Activity
3.3. Antivirulence Activity
- i.
- Morphological Transition and Hyphal Inhibition: The yeast-to-hypha transition is critical for C. albicans adhesion, invasion, and tissue penetration [79,80]. While EA alone showed only a modest effect on hyphal extension [24], its combination with fluconazole induced a significant reduction in hypha formation compared to the untreated control (p < 0.05), indicating that EA can potentiate the inhibition of this key morphogenetic process under specific conditions [12].
- ii.
- Biofilm Disruption: Biofilm formation is a major therapeutic challenge, as it confers protection against antifungals and host defenses [80,81]. EA exhibits promising antibiofilm properties. It prevents biofilm formation in C. auris and C. albicans [24] and, remarkably, eradicates pre-formed biofilms of C. neoformans by up to 91% [63]. Against C. albicans biofilms, EA, alone or in combination with fluconazole, shows efficacy against early-stage structures; however, the eradication of mature biofilms requires much higher concentrations, reaching up to eight times the MIC [12]. However, this stage-dependent activity presents a challenge when comparing different experimental models. While one study found that higher EA concentrations were needed to impact more established biofilms [12], another reported that EA significantly reduced viability (p < 0.05) in 48 h-old biofilms but not in 24 h-old ones [68]. This apparent discrepancy likely stems from differences in biofilm maturation models, definitions of “mature” biofilms, and the specific metabolic or architectural characteristics of biofilms at these precise time points, highlighting the complex and context-dependent nature of EA’s antibiofilm activity.
- iii.
- Inhibition of Hydrolytic Enzymes: EA also targets enzymatic virulence factors. Although it does not inhibit Candida proteinase production, EA significantly reduces phospholipase secretion (p < 0.05) in C. auris, a critical factor for host cell damage and invasion [24].
3.4. Synergistic Interactions
4. Mechanisms of Action
Well-Validated Mechanisms: Cell Membrane and Cell Wall Disruption
5. Cytotoxicity and Safety Profile
6. Therapeutic Challenges and Technological Advances
6.1. The Bioavailability and Solubility Challenge
6.2. Promising Formulation Strategies
- i.
- Nanocarrier Systems for Systemic Delivery: Encapsulation of EA into nanocarriers represents a powerful approach for systemic therapy. The most compelling evidence comes from a liposomal formulation (Lip-EA). In a murine model of systemic cryptococcosis in immunocompromised hosts, intraperitoneal administration of Lip-EA (40 mg/kg) achieved a 70% survival rate and significantly reduced the lung fungal burden (p < 0.001), outperforming fluconazole (20% survival) [63]. This demonstrates the potential of nanocarriers to rescue the in vivo efficacy of EA against severe disseminated infections. Another nanotechnological approach, gallium nanoparticles coated with EA (EA-GaNPs), has shown preliminary antifungal activity against Aspergillus terreus [100].
- ii.
- Complexation and Solubility Enhancement: Cyclodextrins (CDs) are well-established excipients for improving drug solubility and stability, with a proven track record in commercial antimicrobial formulations [101,102,103]. The complexation of EA with hydroxypropyl-β-cyclodextrin (HP-β-CD) successfully increased its aqueous solubility [23]. Although this did not consistently lower the MIC in vitro [23], the EA/HP-β-CD complex demonstrated significant in vivo activity (p < 0.0001) in a murine model of oral candidiasis, reducing hyphal invasion and tissue damage [68]. This highlights that improved solubility can translate to enhanced biological activity in relevant infection models, even without a drastic change in the standard in vitro susceptibility.
- iii.
- Polymeric Systems for Local/Topical Application: For localized infections, polymeric matrices offer controlled release and mucosal adhesion properties. Gellan gum (GG) hydrogels loaded with EA (and its combination with caffeic acid phenethyl ester, CAPE) were effective against C. albicans biofilms, inhibiting hyphal formation and showing high biocompatibility. These formulations provided sustained EA release, making them promising candidates for the topical treatment of oral candidiasis [74]. This aligns with the strategic rationale for developing topical EA products, given its low systemic absorption after oral administration [104], a characteristic shared with successful topical antifungals, such as miconazole and nystatin [105,106]. Therefore, owing to its inherent pharmacokinetic profile, EA is a prime candidate for development as a topical antifungal agent [23]. The feasibility of non-oral routes is further supported by studies showing improved bioavailability of EA via subcutaneous delivery [30].
- iv.
- Strategic Outlook: The choice of formulation is critically guided by the target infection. As summarized in Table 4, nanocarriers, such as liposomes, are ideal for severe systemic diseases, whereas biocompatible hydrogels are suited for localized mucosal infections. Cyclodextrin complexes are versatile tools for enhancing solubility across various applications. This portfolio of advanced formulations effectively decouples EA’s potent antifungal pharmacology of EA from its poor pharmacokinetics, paving a concrete path toward its clinical development.
7. Conclusions and Future Directions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
| EA | Ellagic acid |
| WHO | World Health Organization |
| MIC | Minimum Inhibitory Concentration |
| ATCC | American Type Culture Collection |
| HHDP | Hexahydroxydiphenic acid |
| LIP-EA | Liposomal ellagic acid |
| AST | Aspartate aminotransferase |
| ALT | Alanine Aminotransferase |
| BUN | Blood Urea Nitrogen |
| CDs | Cyclodextrins |
| MD | Microdilution |
| AD | Agar Diffusion |
| CLSI | Clinical and Laboratory Standards Institute |
| EUCAST | European Committee on Antimicrobial Susceptibility Testing |
| CAPE | Caffeic acid |
| IC50 | Inhibitory Concentration 50% |
| GG | Gellan gum |
| EA–GaNPs | Newly synthesized gallium nanoparticles coated with EA |
| EA/HP-β-CD | EA complexed with cyclodextrin |
| EA-NPs | Ellagic Acid-loaded Nanoparticles |
| SEDDS | Self-Emulsifying Drug Delivery Systems |
| NAC | non-albicans Candida |
| FICI | Fractional Inhibitory Concentration Index |
| EA-GaNPs | Gallium nanoparticles coated with ellagic acid |
| isoUro-A | Urolithin A Isomer |
| Uro-D | Urolithin D |
| Uro-E | Urolithin E |
| Uro-M6 | Urolithin M6 |
| Uro-C | Urolithin C |
| Uro-M7 | Urolithin M7 |
| Uro-A | Urolithin A |
| Uro-B | Urolithin B |
| Uro-M5 | Urolithin M5 |
References
- Casalini, G.; Giacomelli, A.; Antinori, S. The WHO fungal priority pathogens list: A crucial reappraisal to review the prioritisation. Lancet Microbe 2024, 5, 717–724. [Google Scholar] [CrossRef] [PubMed]
- WHO. WHO Fungal Priority Pathogens List to Guide Research, Development and Public Health Action; World Health Organization: Geneva, Switzerland, 2022. [Google Scholar]
- Denning, D.W. Global incidence and mortality of severe fungal disease. Lancet. Infect. Dis. 2024, 24, e428–e438. [Google Scholar] [CrossRef]
- WHO. Antifungal Agents in Clinical and Preclinical Development: Overview and Analysis; World Health Organization: Geneva, Switzerland, 2025; p. 73. [Google Scholar]
- Wolfgruber, S.; Salmanton-Garcia, J.; Kuate, M.P.N.; Hoenigl, M.; Brunelli, J.G.P. Antifungal pipeline: New tools for the treatment of mycoses. Rev. Iberoam. De Micol. 2024, 41, 68–78. [Google Scholar] [CrossRef]
- Lee, Y.; Puumala, E.; Robbins, N.; Cowen, L.E. Antifungal Drug Resistance: Molecular Mechanisms in Candida albicans and Beyond. Chem. Rev. 2021, 121, 3390–3411. [Google Scholar] [CrossRef]
- Murphy, S.E.; Bicanic, T. Drug Resistance and Novel Therapeutic Approaches in Invasive Candidiasis. Front. Cell. Infect. Microbiol. 2021, 11, 759408. [Google Scholar] [CrossRef]
- Rios, J.L.; Giner, R.M.; Marin, M.; Recio, M.C. A Pharmacological Update of Ellagic Acid. Planta Medica 2018, 84, 1068–1093. [Google Scholar] [CrossRef] [PubMed]
- Okuda, T. Systematics and health effects of chemically distinct tannins in medicinal plants. Phytochemistry 2005, 66, 2012–2031. [Google Scholar] [CrossRef]
- Wink, M. Modes of Action of Herbal Medicines and Plant Secondary Metabolites. Medicines 2015, 2, 251–286. [Google Scholar] [CrossRef] [PubMed]
- Macedo, N.S.; Barbosa, C.; Bezerra, A.H.; Silveira, Z.S.; da Silva, L.; Coutinho, H.D.M.; Dashti, S.; Kim, B.; da Cunha, F.A.B.; da Silva, M.V. Evaluation of ellagic acid and gallic acid as efflux pump inhibitors in strains of Staphylococcus aureus. Biol. Open 2022, 11, bio059434. [Google Scholar] [CrossRef] [PubMed]
- Mendes, A.G.G.; Campos, C.D.L.; Pereira-Filho, J.L.; Pereira, A.P.A.; Reis, G.S.A.; Araujo, A.; Monteiro, P.M.; Vidal, F.C.B.; Monteiro, S.G.; da Silva Figueiredo, I.F.; et al. Ellagic Acid Potentiates the Inhibitory Effects of Fluconazole Against Candida albicans. Antibiotics 2024, 13, 1174. [Google Scholar] [CrossRef]
- Yang, Y.; Liu, M.; Liu, C.; Tang, S.; Gu, D.; Tian, J.; Huang, D.; He, F. Ellagic acid from pomegranate peel: Consecutive countercurrent chromatographic separation and antioxidant effect. Biomed. Chromatogr. BMC 2023, 37, e5662. [Google Scholar] [CrossRef]
- Zhang, T.; Guo, L.; Li, R.; Shao, J.; Lu, L.; Yang, P.; Zhao, A.; Liu, Y. Ellagic Acid-Cyclodextrin Inclusion Complex-Loaded Thiol-Ene Hydrogel with Antioxidant, Antibacterial, and Anti-inflammatory Properties for Wound Healing. ACS Appl. Mater. Interfaces 2023, 15, 4959–4972. [Google Scholar] [CrossRef]
- Ieda, A.; Wada, M.; Moriyasu, Y.; Okuno, Y.; Zaima, N.; Moriyama, T. Ellagic Acid Suppresses ApoB Secretion and Enhances ApoA-1 Secretion from Human Hepatoma Cells, HepG2. Molecules 2021, 26, 3885. [Google Scholar] [CrossRef] [PubMed]
- Park, S.W.; Kwon, M.J.; Yoo, J.Y.; Choi, H.J.; Ahn, Y.J. Antiviral activity and possible mode of action of ellagic acid identified in Lagerstroemia speciosa leaves toward human rhinoviruses. BMC Complement. Altern. Med. 2014, 14, 171. [Google Scholar] [CrossRef] [PubMed]
- Huang, S.T.; Wang, C.Y.; Yang, R.C.; Wu, H.T.; Yang, S.H.; Cheng, Y.C.; Pang, J.H. Ellagic Acid, the Active Compound of Phyllanthus urinaria, Exerts In vivo Anti-Angiogenic Effect and Inhibits MMP-2 Activity. Evid.-Based Complement. Altern. Med. Ecam 2011, 2011, 215035. [Google Scholar] [CrossRef]
- Tan, Z.; Li, X.; Chen, X.; Wang, L.; Chen, B.; Ren, S.; Zhao, M. Ellagic acid inhibits tumor growth and potentiates the therapeutic efficacy of sorafenib in hepatocellular carcinoma. Heliyon 2024, 10, e23931. [Google Scholar] [CrossRef] [PubMed]
- Goudarzi, M.; Fatemi, I.; Siahpoosh, A.; Sezavar, S.H.; Mansouri, E.; Mehrzadi, S. Protective Effect of Ellagic Acid Against Sodium Arsenite-Induced Cardio- and Hematotoxicity in Rats. Cardiovasc. Toxicol. 2018, 18, 337–345. [Google Scholar] [CrossRef]
- Morosetti, G.; Criscuolo, A.A.; Santi, F.; Perno, C.F.; Piccione, E.; Ciotti, M. Ellagic acid and Annona muricata in the chemoprevention of HPV-related pre-neoplastic lesions of the cervix. Oncol. Lett. 2017, 13, 1880–1884. [Google Scholar] [CrossRef]
- Gupta, A.; Singh, A.K.; Kumar, R.; Jamieson, S.; Pandey, A.K.; Bishayee, A. Neuroprotective Potential of Ellagic Acid: A Critical Review. Adv. Nutr. 2021, 12, 1211–1238. [Google Scholar] [CrossRef]
- Harakeh, S.; Almuhayawi, M.; Jaouni, S.A.; Almasaudi, S.; Hassan, S.; Amri, T.A.; Azhar, N.; Abd-Allah, E.; Ali, S.; El-Shitany, N.; et al. Antidiabetic effects of novel ellagic acid nanoformulation: Insulin-secreting and anti-apoptosis effects. Saudi J. Biol. Sci. 2020, 27, 3474–3480. [Google Scholar] [CrossRef] [PubMed]
- Gontijo, A.V.; AD, G.S.; Koga-Ito, C.Y.; Salvador, M.J. Biopharmaceutical and antifungal properties of ellagic acid-cyclodextrin using an in vitro model of invasive candidiasis. Future Microbiol. 2019, 14, 957–967. [Google Scholar] [CrossRef]
- Possamai Rossatto, F.C.; Tharmalingam, N.; Escobar, I.E.; d’Azevedo, P.A.; Zimmer, K.R.; Mylonakis, E. Antifungal Activity of the Phenolic Compounds Ellagic Acid (EA) and Caffeic Acid Phenethyl Ester (CAPE) against Drug-Resistant Candida auris. J. Fungi 2021, 7, 763. [Google Scholar] [CrossRef]
- Sampaio, A.D.G.; Gontijo, A.V.L.; Araujo, H.M.; Koga-Ito, C.Y. In vivo Efficacy of Ellagic Acid against Candida albicans in a Drosophila melanogaster Infection Model. Antimicrob. Agents Chemother. 2018, 62, 1110–1128. [Google Scholar] [CrossRef]
- Wojtunik-Kulesza, K.; Nizinski, P.; Krajewska, A.; Oniszczuk, T.; Combrzynski, M.; Oniszczuk, A. Therapeutic Potential of Ellagic Acid in Liver Diseases. Molecules 2025, 30, 2596. [Google Scholar] [CrossRef]
- Savjani, K.T.; Gajjar, A.K.; Savjani, J.K. Drug solubility: Importance and enhancement techniques. ISRN Pharm. 2012, 2012, 195727. [Google Scholar] [CrossRef]
- Castellacci, R.; Bergonzi, M.C. An Insight on Ellagic Acid Formulations for the Management of Skin Diseases. Molecules 2025, 30, 4493. [Google Scholar] [CrossRef] [PubMed]
- Seeram, N.P.; Lee, R.; Heber, D. Bioavailability of ellagic acid in human plasma after consumption of ellagitannins from pomegranate (Punica granatum L.) juice. Clin. Chim. Acta 2004, 348, 63–68. [Google Scholar] [CrossRef]
- Sharma, G.; Italia, J.L.; Sonaje, K.; Tikoo, K.; Ravi Kumar, M.N. Biodegradable in situ gelling system for subcutaneous administration of ellagic acid and ellagic acid loaded nanoparticles: Evaluation of their antioxidant potential against cyclosporine induced nephrotoxicity in rats. J. Control. Release Off. J. Control. Release Soc. 2007, 118, 27–37. [Google Scholar] [CrossRef] [PubMed]
- Maatta-Riihinen, K.R.; Kamal-Eldin, A.; Torronen, A.R. Identification and quantification of phenolic compounds in berries of Fragaria and Rubus species (family Rosaceae). J. Agric. Food Chem. 2004, 52, 6178–6187. [Google Scholar] [CrossRef] [PubMed]
- Daniel, E.M.; Krupnick, A.S.; Heur, Y.-H.; Blinzler, J.A.; Nims, R.W.; Stoner, G.D. Extraction, stability, and quantitation of ellagic acid in various fruits and nuts. J. Food Compos. Anal. 1989, 2, 338–349. [Google Scholar] [CrossRef]
- Fischer, U.A.; Carle, R.; Kammerer, D.R. Identification and quantification of phenolic compounds from pomegranate (Punica granatum L.) peel, mesocarp, aril and differently produced juices by HPLC-DAD-ESI/MS(n). Food Chem. 2011, 127, 807–821. [Google Scholar] [CrossRef] [PubMed]
- Dedrie, M.; Jacquet, N.; Bombeck, P.-L.; Hébert, J.; Richel, A. Oak barks as raw materials for the extraction of polyphenols for the chemical and pharmaceutical sectors: A regional case study. Ind. Crops Prod. 2015, 70, 316–321. [Google Scholar] [CrossRef]
- Comandini, P.; Lerma-Garcia, M.J.; Simo-Alfonso, E.F.; Toschi, T.G. Tannin analysis of chestnut bark samples (Castanea sativa Mill.) by HPLC-DAD-MS. Food Chem. 2014, 157, 290–295. [Google Scholar] [CrossRef] [PubMed]
- Govindarajan, R.; Vijayakumar, M.; Singh, M.; Rao Ch, V.; Shirwaikar, A.; Rawat, A.K.; Pushpangadan, P. Antiulcer and antimicrobial activity of Anogeissus latifolia. J. Ethnopharmacol. 2006, 106, 57–61. [Google Scholar] [CrossRef]
- Brighenti, F.L.; Salvador, M.J.; Gontijo, A.V.L.; Delbem, A.C.B.; Delbem, A.C.B.; Soares, C.P.; de Oliveira, M.A.C.; Girondi, C.M.; Koga-Ito, C.Y. Plant extracts: Initial screening, identification of bioactive compounds and effect against Candida albicans biofilms. Future Microbiol. 2017, 12, 15–27. [Google Scholar] [CrossRef]
- Bottari, N.B.; Lopes, L.Q.; Pizzuti, K.; Filippi Dos Santos Alves, C.; Correa, M.S.; Bolzan, L.P.; Zago, A.; de Almeida Vaucher, R.; Boligon, A.A.; Giongo, J.L.; et al. Antimicrobial activity and phytochemical characterization of Carya illinoensis. Microb. Pathog. 2017, 104, 190–195. [Google Scholar] [CrossRef]
- Ureyen Esertas, U.Z.; Kara, Y.; Kilic, A.O.; Kolayli, S. A comparative study of antimicrobial, anti-quorum sensing, anti-biofilm, anti-swarming, and antioxidant activities in flower extracts of pecan (Carya illinoinensis) and chestnut (Castanea sativa). Arch. Microbiol. 2022, 204, 589. [Google Scholar] [CrossRef]
- Breda, C.A.; Gasperini, A.M.; Garcia, V.L.; Monteiro, K.M.; Bataglion, G.A.; Eberlin, M.N.; Duarte, M.C.T. Phytochemical analysis and antifungal activity of extracts from leaves and fruit residues of Brazilian savanna plants aiming its use as safe fungicides. Nat. Prod. Bioprospect. 2016, 6, 195–204. [Google Scholar] [CrossRef] [PubMed]
- Esposito, T.; Celano, R.; Pane, C.; Piccinelli, A.L.; Sansone, F.; Picerno, P.; Zaccardelli, M.; Aquino, R.P.; Mencherini, T. Chestnut (Castanea sativa Miller.) Burs Extracts and Functional Compounds: UHPLC-UV-HRMS Profiling, Antioxidant Activity, and Inhibitory Effects on Phytopathogenic Fungi. Molecules 2019, 24, 302. [Google Scholar] [CrossRef] [PubMed]
- Baraich, A.; Elbouzidi, A.; El Hachlafi, N.; Taibi, M.; Haddou, M.; Baddaoui, S.; Bellaouchi, R.; Addi, M.; Benabbes, R.; Asehraou, A.; et al. Optimization of antibacterial and antifungal activities in Moroccan saffron by-products using mixture design and simplex centroid methodology. Sci. Rep. 2025, 15, 28425. [Google Scholar] [CrossRef]
- Rangkadilok, N.; Tongchusak, S.; Boonhok, R.; Chaiyaroj, S.C.; Junyaprasert, V.B.; Buajeeb, W.; Akanimanee, J.; Raksasuk, T.; Suddhasthira, T.; Satayavivad, J. In vitro antifungal activities of longan (Dimocarpus longan Lour.) seed extract. Fitoterapia 2012, 83, 545–553. [Google Scholar] [CrossRef]
- Elansary, H.O.; Salem, M.Z.M.; Ashmawy, N.A.; Yessoufou, K.; El-Settawy, A.A.A. In vitro antibacterial, antifungal and antioxidant activities of Eucalyptus spp. leaf extracts related to phenolic composition. Nat. Prod. Res. 2017, 31, 2927–2930. [Google Scholar] [CrossRef] [PubMed]
- Tenorio, C.J.L.; Dantas, T.D.S.; Abreu, L.S.; Ferreira, M.R.A.; Soares, L.A.L. Influence of Major Polyphenols on the Anti-Candida Activity of Eugenia uniflora Leaves: Isolation, LC-ESI-HRMS/MS Characterization and In vitro Evaluation. Molecules 2024, 29, 2761. [Google Scholar] [CrossRef]
- Ochoa-Pacheco, A.; Escalona Arranz, J.C.; Beaven, M.; Peres-Roses, R.; Gamez, Y.M.; Camacho-Pozo, M.I.; Maury, G.L.; de Macedo, M.B.; Cos, P.; Tavares, J.F.; et al. Bioassay-guided In vitro Study of the Antimicrobial and Cytotoxic Properties of the Leaves from Excoecaria Lucida Sw. Pharmacogn. Res. 2017, 9, 396–400. [Google Scholar] [CrossRef]
- Kuntubek, G.N.; Kasela, M.; Kozhanova, K.K.; Kukula-Koch, W.; Swiatek, L.; Salwa, K.; Okinczyc, P.; Jozefczyk, A.; Widelski, J.; Kadyrbayeva, G.M.; et al. Unraveling the Chemical Composition and Biological Activity of Geum aleppicum Jacq.: Insights from Plants Collected in Kazakhstan. Molecules 2025, 30, 3888. [Google Scholar] [CrossRef] [PubMed]
- Wansi, J.D.; Chiozem, D.D.; Tcho, A.T.; Toze, F.A.; Devkota, K.P.; Ndjakou, B.L.; Wandji, J.; Sewald, N. Antimicrobial and antioxidant effects of phenolic constituents from Klainedoxa gabonensis. Pharm. Biol. 2010, 48, 1124–1129. [Google Scholar] [CrossRef]
- Silva Junior, I.F.; Raimondi, M.; Zacchino, S.; Cechinel Filho, V.; Noldin, V.F.; Rao, V.S.; Lima, J.; Martins, D.T.O. Evaluation of the antifungal activity and mode of action of Lafoensia pacari A. St.-Hil. Lythraceae, stem-bark extracts, fractions and ellagic acid. Rev. Bras. De Farmacogn. 2010, 20, 422–428. [Google Scholar] [CrossRef]
- Joyroy, N.; Ngiwsara, L.; Wannachat, S.; Mingma, R.; Svasti, J.; Wongchawalit, J. Unveiling the potentials of Lawsonia inermis L.: Its antioxidant, antimicrobial, and anticancer potentials. PeerJ 2025, 13, e19170. [Google Scholar] [CrossRef] [PubMed]
- Gatto, L.J.; Veiga, A.; Gribner, C.; Moura, P.F.; Rech, K.S.; Murakami, F.S.; Dias, J.F.G.; Miguel, O.G.; Miguel, M.D. Myrcia hatschbachii: Antifungal activity and structural elucidation of ellagic and 3-O-methyl ellagic acids. Nat. Prod. Res. 2021, 35, 5540–5543. [Google Scholar] [CrossRef]
- Albuquerque, B.R.; Pinela, J.; Dias, M.I.; Pereira, C.; Petrovic, J.; Sokovic, M.; Calhelha, R.C.; Oliveira, M.; Ferreira, I.; Barros, L. Valorization of rambutan (Nephelium lappaceum L.) peel: Chemical composition, biological activity, and optimized recovery of anthocyanins. Food Res. Int. 2023, 165, 112574. [Google Scholar] [CrossRef]
- Waller, S.B.; Peter, C.M.; Hoffmann, J.F.; Cleff, M.B.; Faria de, R.O.; Zani, J.L. Jabuticaba [Plinia peruviana (Poir.) Govaerts]: A Brazilian fruit with a promising application against itraconazole-susceptible and -resistant Sporothrix brasiliensis. Nat. Prod. Res. 2021, 35, 5988–5992. [Google Scholar] [CrossRef]
- Wang, S.S.; Wang, D.M.; Pu, W.J.; Li, D.W. Phytochemical profiles, antioxidant and antimicrobial activities of three Potentilla species. BMC Complement. Altern. Med. 2013, 13, 321. [Google Scholar] [CrossRef]
- Rosas-Burgos, E.C.; Burgos-Hernandez, A.; Noguera-Artiaga, L.; Kacaniova, M.; Hernandez-Garcia, F.; Cardenas-Lopez, J.L.; Carbonell-Barrachina, A.A. Antimicrobial activity of pomegranate peel extracts as affected by cultivar. J. Sci. Food Agric. 2017, 97, 802–810. [Google Scholar] [CrossRef]
- Elansary, H.O.; Szopa, A.; Kubica, P.; Ekiert, H.; Mattar, M.A.; Al-Yafrasi, M.A.; El-Ansary, D.O.; El-Abedin, T.K.Z.; Yessoufou, K. Polyphenol Profile and Pharmaceutical Potential of Quercus spp. Bark Extracts. Plants 2019, 8, 486. [Google Scholar] [CrossRef]
- Costa, A.R.; de Lima Silva, J.; Lima, K.R.R.; Rocha, M.I.; Barros, L.M.; da Costa, J.G.M.; Boligon, A.A.; Kamdem, J.P.; Carneiro, J.N.P.; Leite, N.F.; et al. Rhaphiodon echinus (Nees & Mart.) Schauer: Chemical, toxicological activity and increased antibiotic activity of antifungal drug activity and antibacterial. Microb. Pathog. 2017, 107, 280–286. [Google Scholar] [CrossRef] [PubMed]
- Khamis, W.M.; Behiry, S.I.; Marey, S.A.; Al-Askar, A.A.; Amer, G.; Heflish, A.A.; Su, Y.; Abdelkhalek, A.; Gaber, M.K. Phytochemical analysis and insight into insecticidal and antifungal activities of Indian hawthorn leaf extract. Sci. Rep. 2023, 13, 17194. [Google Scholar] [CrossRef] [PubMed]
- Balde, M.A.; Tuenter, E.; Matheeussen, A.; Traore, M.S.; Cos, P.; Maes, L.; Camara, A.; Diallo, M.S.T.; Balde, E.S.; Balde, A.M.; et al. Bioassay-guided isolation of antiplasmodial and antimicrobial constituents from the roots of Terminalia albida. J. Ethnopharmacol. 2021, 267, 113624. [Google Scholar] [CrossRef]
- El-Shahir, A.A.; El-Wakil, D.A.; Abdel Latef, A.A.H.; Youssef, N.H. Bioactive Compounds and Antifungal Activity of Leaves and Fruits Methanolic Extracts of Ziziphus spina-christi L. Plants 2022, 11, 746. [Google Scholar] [CrossRef]
- Golmei, P.; Kasna, S.; Roy, K.P.; Kumar, S. A review on pharmacological advancement of ellagic acid. J. Pharmacol. Pharmacother. 2024, 15, 93–104. [Google Scholar] [CrossRef]
- Evtyugin, D.D.; Magina, S.; Evtuguin, D.V. Recent Advances in the Production and Applications of Ellagic Acid and Its Derivatives. A Review. Molecules 2020, 25, 2745. [Google Scholar] [CrossRef]
- Alam Khan, M.; Khan, A.; Azam, M.; Allemailem, K.S.; Alrumaihi, F.; Almatroudi, A.; Alhumaydhi, F.A.; Azam, F.; Khan, S.H.; Zofair, S.F.F.; et al. Liposomal Ellagic Acid Alleviates Cyclophosphamide-Induced Toxicity and Eliminates the Systemic Cryptococcus neoformans Infection in Leukopenic Mice. Pharmaceutics 2021, 13, 882. [Google Scholar] [CrossRef]
- Wicaksono, S.; Rezkita, F.; Wijaya, F.N.; Nugraha, A.P.; Winias, S. Ellagic acid: An alternative for antifungal drugs resistance in HIV/AIDS patients with oropharyngeal candidiasis. HIV AIDS Review. Int. J. HIV-Relat. Probl. 2020, 19, 153–156. [Google Scholar] [CrossRef]
- Azam, F.; Khan, M.A.; Khan, A.; Ahmad, S.; Zofair, S.F.F.; Younus, H. In silico and in vitro studies on the inhibition of laccase activity by Ellagic acid: Implications in drug designing for the treatment of Cryptococcal infections. Int. J. Biol. Macromol. 2022, 209, 642–654. [Google Scholar] [CrossRef]
- Li, Z.J.; Guo, X.; Dawuti, G.; Aibai, S. Antifungal Activity of Ellagic Acid In vitro and In vivo. Phytother. Res. PTR 2015, 29, 1019–1025. [Google Scholar] [CrossRef]
- Teodoro, G.R.; Brighenti, F.L.; Delbem, A.C.; Delbem, A.C.; Khouri, S.; Gontijo, A.V.; Pascoal, A.C.; Salvador, M.J.; Koga-Ito, C.Y. Antifungal activity of extracts and isolated compounds from Buchenavia tomentosa on Candida albicans and non-albicans. Future Microbiol. 2015, 10, 917–927. [Google Scholar] [CrossRef]
- Sampaio, A.D.G.; Gontijo, A.V.L.; Lima, G.M.G.; de Oliveira, M.A.C.; Lepesqueur, L.S.S.; Koga-Ito, C.Y. Ellagic Acid-Cyclodextrin Complexes for the Treatment of Oral Candidiasis. Molecules 2021, 26, 505. [Google Scholar] [CrossRef]
- Brighenti, V.; Iseppi, R.; Pinzi, L.; Mincuzzi, A.; Ippolito, A.; Messi, P.; Sanzani, S.M.; Rastelli, G.; Pellati, F. Antifungal Activity and DNA Topoisomerase Inhibition of Hydrolysable Tannins from Punica granatum L. Int. J. Mol. Sci. 2021, 22, 4175. [Google Scholar] [CrossRef] [PubMed]
- CLSI M27; Reference Method for Broth Dilution Antifungal Susceptibility Testing of Yeasts. CLSI: Malvern, PA, USA, 2017.
- Cos, P.; Vlietinck, A.J.; Berghe, D.V.; Maes, L. Anti-infective potential of natural products: How to develop a stronger in vitro ‘proof-of-concept’. J. Ethnopharmacol. 2006, 106, 290–302. [Google Scholar] [CrossRef] [PubMed]
- Mouton, J.W.; Muller, A.E.; Canton, R.; Giske, C.G.; Kahlmeter, G.; Turnidge, J. MIC-based dose adjustment: Facts and fables. J. Antimicrob. Chemother. 2018, 73, 564–568. [Google Scholar] [CrossRef] [PubMed]
- Ribas, E.R.A.D.; Spolti, P.; Del Ponte, E.M.; Donato, K.Z.; Schrekker, H.; Fuentefria, A.M. Is the emergence of fungal resistance to medical triazoles related to their use in the agroecosystems? A mini review. Braz. J. Microbiol. 2016, 47, 793–799. [Google Scholar] [CrossRef]
- Ganesan, N.; Felix, L.O.; Mishra, B.; Zhang, L.; Dellis, C.; Shehadeh, F.; Wu, D.; Cruz, L.A.; Arce, R.M.; Mylonakis, E. Gellan gum formulations containing natural polyphenolic compounds to treat oral candidiasis. Microbiol. Spectr. 2025, 13, e0079825. [Google Scholar] [CrossRef]
- Lee, W.; Lee, D.G. A novel mechanism of fluconazole: Fungicidal activity through dose-dependent apoptotic responses in Candida albicans. Microbiology 2018, 164, 194–204. [Google Scholar] [CrossRef]
- Li, Z.J.; Abula, A.; Abulizi, A.; Wang, C.; Dou, Q.; Maimaiti, Y.; Abudouaini, A.; Huo, S.X.; Aibai, S. Ellagic Acid Inhibits Trichophyton rubrum Growth via Affecting Ergosterol Biosynthesis and Apoptotic Induction. Evid.-Based Complement. Altern. Med. Ecam 2020, 2020, 7305818. [Google Scholar] [CrossRef]
- Brunke, S.; Mogavero, S.; Kasper, L.; Hube, B. Virulence factors in fungal pathogens of man. Curr. Opin. Microbiol. 2016, 32, 89–95. [Google Scholar] [CrossRef]
- Casadevall, A.; Pirofski, L.A. Host-pathogen interactions: Redefining the basic concepts of virulence and pathogenicity. Infect. Immun. 1999, 67, 3703–3713. [Google Scholar] [CrossRef] [PubMed]
- Hwang, E.I.; Ahn, B.T.; Lee, H.B.; Kim, Y.K.; Lee, K.S.; Bok, S.H.; Kim, Y.T.; Kim, S.U. Inhibitory activity for chitin synthase II from Saccharomyces cerevisiae by tannins and related compounds. Planta Medica 2001, 67, 501–504. [Google Scholar] [CrossRef]
- Ramage, G.; Saville, S.P.; Thomas, D.P.; Lopez-Ribot, J.L. Candida biofilms: An update. Eukaryot. Cell 2005, 4, 633–638. [Google Scholar] [CrossRef] [PubMed]
- Cavalheiro, M.; Teixeira, M.C. Candida Biofilms: Threats, Challenges, and Promising Strategies. Front. Med. 2018, 5, 28. [Google Scholar] [CrossRef]
- Ahmad, A.; Wani, M.Y.; Khan, A.; Manzoor, N.; Molepo, J. Synergistic interactions of eugenol-tosylate and its congeners with fluconazole against Candida albicans. PLoS ONE 2015, 10, e0145053. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Lu, C.; Zhao, X.; Wang, D.; Liu, Y.; Sun, S. Antifungal activity and potential mechanism of Asiatic acid alone and in combination with fluconazole against Candida albicans. Biomed. Pharmacother. 2021, 139, 111568. [Google Scholar] [CrossRef]
- Hagihara, K.; Hosonaka, K.; Hoshino, S.; Iwata, K.; Ogawa, N.; Satoh, R.; Takasaki, T.; Maeda, T.; Sugiura, R. Ellagic Acid Combined with Tacrolimus Showed Synergistic Cell Growth Inhibition in Fission Yeast. Biocontrol Sci. 2022, 27, 31–39. [Google Scholar] [CrossRef]
- Feldmesser, M.; Kress, Y.; Casadevall, A. Dynamic changes in the morphology of Cryptococcus neoformans during murine pulmonary infection. Microbiology 2001, 147, 2355–2365. [Google Scholar] [CrossRef]
- Lee, D.; Jang, E.H.; Lee, M.; Kim, S.W.; Lee, Y.; Lee, K.T.; Bahn, Y.S. Unraveling Melanin Biosynthesis and Signaling Networks in Cryptococcus neoformans. MBio 2019, 10. [Google Scholar] [CrossRef]
- Williamson, P.R.; Wakamatsu, K.; Ito, S. Melanin biosynthesis in Cryptococcus neoformans. J. Bacteriol. 1998, 180, 1570–1572. [Google Scholar] [CrossRef]
- Regar, R.K.; Sharma, M.; Behera, S.; Gupta, P.; Lal, R.; Prajapati, S.; Kumar, A.; Kumar, G.V.N.; Saka, V.P.; Agrawal, A.; et al. Exploring the therapeutic potential of Terminalia chebula against systemic candidiasis: An in vitro, in vivo, and in silico study. Fitoterapia 2025, 184, 106649. [Google Scholar] [CrossRef]
- Farag, M.R.; Alagawany, M. Erythrocytes as a biological model for screening of xenobiotics toxicity. Chem.-Biol. Interact. 2018, 279, 73–83. [Google Scholar] [CrossRef] [PubMed]
- Pagano, M.; Faggio, C. The use of erythrocyte fragility to assess xenobiotic cytotoxicity. Cell Biochem. Funct. 2015, 33, 351–355. [Google Scholar] [CrossRef] [PubMed]
- Yuce, A.; Atessahin, A.; Ceribasi, A.O. Amelioration of cyclosporine A-induced renal, hepatic and cardiac damages by ellagic acid in rats. Basic. Clin. Pharmacol. Toxicol. 2008, 103, 186–191. [Google Scholar] [CrossRef] [PubMed]
- Bala, I.; Bhardwaj, V.; Hariharan, S.; Kumar, M.N. Analytical methods for assay of ellagic acid and its solubility studies. J. Pharm. Biomed. Anal. 2006, 40, 206–210. [Google Scholar] [CrossRef]
- Espín, J.C.; Larrosa, M.; García-Conesa, M.T.; Tomás-Barberán, F. Biological significance of urolithins, the gut microbial ellagic acid-derived metabolites: The evidence so far. Evid.-Based Complement. Altern. Med. 2013, 2013, 270418. [Google Scholar] [CrossRef]
- Leng, P.; Wang, Y.; Xie, M. Ellagic acid and gut microbiota: Interactions, and implications for health. Food Sci. Nutr. 2025, 13, e70133. [Google Scholar] [CrossRef] [PubMed]
- Tomás-Barberán, F.A.; González-Sarrías, A.; García-Villalba, R.; Núñez-Sánchez, M.A.; Selma, M.V.; García-Conesa, M.T.; Espín, J.C. Urolithins, the rescue of “old” metabolites to understand a “new” concept: Metabotypes as a nexus among phenolic metabolism, microbiota dysbiosis, and host health status. Mol. Nutr. Food Res. 2017, 61, 1500901. [Google Scholar] [CrossRef]
- García-Villalba, R.; Vissenaekens, H.; Pitart, J.; Romo-Vaquero, M.; Espín, J.C.; Grootaert, C.; Selma, M.V.; Raes, K.; Smagghe, G.; Possemiers, S. Gastrointestinal simulation model TWIN-SHIME shows differences between human urolithin-metabotypes in gut microbiota composition, pomegranate polyphenol metabolism, and transport along the intestinal tract. J. Agric. Food Chem. 2017, 65, 5480–5493. [Google Scholar] [CrossRef]
- García-Villalba, R.; Giménez-Bastida, J.A.; Cortés-Martín, A.; Ávila-Gálvez, M.Á.; Tomás-Barberán, F.A.; Selma, M.V.; Espín, J.C.; González-Sarrías, A. Urolithins: A comprehensive update on their metabolism, bioactivity, and associated gut microbiota. Mol. Nutr. Food Res. 2022, 66, 2101019. [Google Scholar] [CrossRef]
- Herbrecht, R.; Neuville, S.; Letscher-Bru, V.; Natarajan-Ame, S.; Lortholary, O. Fungal infections in patients with neutropenia: Challenges in prophylaxis and treatment. Drugs Aging 2000, 17, 339–351. [Google Scholar] [CrossRef] [PubMed]
- Miceli, M.H.; Diaz, J.A.; Lee, S.A. Emerging opportunistic yeast infections. Lancet. Infect. Dis. 2011, 11, 142–151. [Google Scholar] [CrossRef]
- El-Sonbaty, S.M.; Moawed, F.S.; I Kandil, E.; Tamamm, A.M. Antitumor and Antibacterial Efficacy of Gallium Nanoparticles Coated by Ellagic Acid. Dose-Response A Publ. Int. Hormesis Soc. 2022, 20, 15593258211068998. [Google Scholar] [CrossRef]
- Davis, M.E.; Brewster, M.E. Cyclodextrin-based pharmaceutics: Past, present and future. Nat. Rev. Drug Discov. 2004, 3, 1023–1035. [Google Scholar] [CrossRef]
- Jansook, P.; Ogawa, N.; Loftsson, T. Cyclodextrins: Structure, physicochemical properties and pharmaceutical applications. Int. J. Pharm. 2018, 535, 272–284. [Google Scholar] [CrossRef] [PubMed]
- Stella, V.J.; He, Q. Cyclodextrins. Toxicol. Pathol. 2008, 36, 30–42. [Google Scholar] [CrossRef]
- Stoner, G.D.; Sardo, C.; Apseloff, G.; Mullet, D.; Wargo, W.; Pound, V.; Singh, A.; Sanders, J.; Aziz, R.; Casto, B.; et al. Pharmacokinetics of anthocyanins and ellagic acid in healthy volunteers fed freeze-dried black raspberries daily for 7 days. J. Clin. Pharmacol. 2005, 45, 1153–1164. [Google Scholar] [CrossRef] [PubMed]
- Obiero, J.; Rulisa, S.; Ogongo, P.; Wiysonge, C.S. Nifuratel-Nystatin combination for the treatment of mixed infections of bacterial vaginosis, vulvovaginal candidiasis, and trichomonal vaginitis. Cochrane Database Syst. Rev. 2018, 2018, CD013012. [Google Scholar] [CrossRef]
- Vazquez, J.A.; Sobel, J.D. Miconazole mucoadhesive tablets: A novel delivery system. Clin. Infect. Dis. Off. Publ. Infect. Dis. Soc. Am. 2012, 54, 1480–1484. [Google Scholar] [CrossRef] [PubMed]




| Scientific Name | Plant Material | References |
|---|---|---|
| Anogeissus latifolia | Bark | [36] |
| Buchenavia tomentosa | Leaves | [37] |
| Carya illinoensis | Leaves | [38] |
| Carya illinoinensis and Castanea sativa | Flowers | [39] |
| Caryocar brasiliense | Bark | [40] |
| Castanea sativa Miller. | Bark | [41] |
| Crocus sativus L. | Stigmata, tepals, and leaves | [42] |
| Dimocarpus longan Lour. | Seed | [43] |
| Eucalyptus camaldulensis L., Eucalyptus camaldulensis var. obtusa and Eucalyptus gomphocephala | Leaves | [44] |
| Eugenia uniflora Linn. | Leaves | [45] |
| Excoecaria lucida Sw. | Leaves | [46] |
| Geum aleppicum Jacq. | Aerial parts (flowers, leaves and stems) | [47] |
| Klainedoxa gabonensis | Stem bark | [48] |
| Lafoensia pacari A. St.-Hil. | Stem bark | [49] |
| Lawsonia inermis L. | Leaves | [50] |
| Myrcia hatschbachii | Stem | [51] |
| Nephelium lappaceum L. | Bark | [52] |
| Plinia peruviana (Poir.) Govaerts | Bark | [53] |
| Potentilla fruticosa, Potentilla glabra and Potentilla parvifolia | Leaves | [54] |
| Punica granatum L. | Bark | [55] |
| Quercus robur, Quercus macrocarpa and Quercus acutissima | Bark | [56] |
| Rhaphiodon echinus (Nees & Mart.) | Leaves | [57] |
| Rhaphiolepis indica L. | Leaves | [58] |
| Terminalia albida | Roots | [59] |
| Zizyphus spina-christi L. | Leaves and fruits | [60] |
| Origin of EA | Fungus (No. of Strains) | Method * | Activity * (MIC, Unless Noted) | Reference |
|---|---|---|---|---|
| Commercial source | ||||
| Sigma-Aldrich | Cryptococcus neoformans (clinical) | MD | 16 µg/mL | [65] |
| Candida albicans SC5314 (ATCC MYA-2876) | MD | 0.5 µg/mL | [24] | |
| Candida auris (10 clinical) | MD | 0.125–0.25 µg/mL | ||
| Candida glabrata ATCC 90030 | MD | 0.125 µg/mL | ||
| Candida krusei ATCC 6258 | MD | 0.125 µg/mL | ||
| Candida parapsilosis ATCC 22019 | MD | 0.25 µg/mL | ||
| Candida tropicalis ATCC 13803 | MD | 0.25 µg/mL | ||
| C. neoformans (clinical) | MD | 16 µg/mL | [63] | |
| C. albicans ATCC 90028 | AD | IZ: 8.75 ± 0.50 mm (1 mg disc) | [43] | |
| C. neoformans (clinical) | AD | IZ: 15.50 ± 1.52 mm (1 mg disc) | ||
| C. krusei ATCC 6258 | MD | 125 µg/mL | ||
| C. parapsilosis ATCC 20019 | MD | 7.81 µg/mL | ||
| C. albicans ATCC 90028 | MD | 62.50 µg/mL | ||
| C. albicans (5 clinical) | MD | 7.81–125 µg/mL | ||
| C. neoformans (4 clinical) | MD | 15.63–62.50 µg/mL | ||
| C. albicans ATCC 90028 | MD | 500 µg/mL | [12] | |
| C. albicans SC5314 (ATCC MYA-2876) | MD | 250 µg/mL | ||
| C. albicans (21 clinical) | MD | 250–2000 µg/mL | ||
| Aspergillus flavus ATCC 9643 | MD | 0.15 ± 0.01 mg/mL | [56] | |
| Aspergillus ochraceus ATCC 12066 | MD | 0.22 ± 0.03 mg/mL | ||
| Aspergillus niger ATCC 6275 | MD | 0.13 ± 0.01 mg/mL | ||
| C. albicans ATCC 12066 | MD | 0.30 ± 0.03 mg/mL | ||
| Penicillium ochrochloron ATCC 48663 | MD | 0.12 ± 0.01 mg/mL | ||
| Penicillium funiculosum ATCC 56755 | MD | 0.23 ± 0.02 mg/mL | ||
| Shanghai Yuanye Biotech | C. albicans (2) | MD | 25.0–25.0 µg/mL | [66] |
| C. glabrata (2) | MD | >100.0 µg/mL | ||
| C. tropicalis (2) | MD | 50.0–100.0 µg/mL | ||
| Microsporum canis (3) | MD | 25.0–100.0 µg/mL | ||
| Trichophyton mentagrophytes (6) | MD | 6.25–100.0 µg/mL | ||
| Trichophyton rubrum (6) | MD | 6.25–50.0 µg/mL | ||
| Trichophyton schoenleinii (3) | MD | 12.5–50.0 µg/mL | ||
| Trichophyton verrucosum (3) | MD | 25.0–50.0 µg/mL | ||
| Trichophyton violaceum (6) | MD | 25.0–50.0 µg/mL | ||
| Cayman Chemical | C. albicans ATCC 18804 | MD | 1 mg/mL | [67] |
| Candida dubliniensis NCPF 3108 | MD | 1 mg/mL | ||
| C. glabrata ATCC 90030 | MD | 0.004 mg/mL | ||
| C. krusei ATCC 6258 | MD | 0.125 mg/mL | ||
| C. tropicalis ATCC 13803 | MD | 1 mg/mL | ||
| C. parapsilosis ATCC 22019 | MD | 1 mg/mL | ||
| C. albicans SC5314 (ATCC MYA-2876) | MD | 50 µg/mL | [23] | |
| C. albicans ATCC 18804 | MD | 25 µg/mL | [68] | |
| Aktin Chemicals Inc. | Alternaria alternata (isolated from infected pomegranates) | MD | 165.4 µM | [69] |
| Aspergillus brasiliensis ATCC 16404 | MD and AD | 662 µM, IZ: 25 mm (62.5 µg disc) | ||
| Aspergillus candidus (2 clinical) | MD and AD | 662 µM, IZ: 21–25 mm (62.5 µg disc) | ||
| Botrytis cinérea (isolated from infected pomegranates) | MD | 165.4 µM | ||
| C. albicans ATCC 10321 | MD and AD | 2.5 µM, IZ: 32 ± 0.1 mm (62.5 µg disc) | ||
| C. albicans SC5314 (ATCC MYA-2876) | MD and AD | 2.5 µM, IZ: 34 mm (62.5 µg disc) | ||
| C. albicans (6 clinical) | MD and AD | 2.5–331 µM, IZ: 27–34 mm (62.5 µg disc) | ||
| C. parapsilosis (2 clinical) | MD and AD | 331–662 µM, IZ: 25–26 mm (62.5 µg disc) | ||
| Candida zeylanoides (clinical) | MD and AD | 331 µM, IZ: 25 ± 0.4 (62.5 µg disc) | ||
| Colletotrichum acutatum (isolated from infected pomegranates) | MD | 165.4 µM | ||
| Coniella granati (isolated from infected pomegranates) | MD | 165.4 µM | ||
| C. neoformans ATCC 11240 | MD and AD | 331 µM, IZ: 25 mm (62.5 µg disc) | ||
| C. neoformans B 3501 (clinical) | MD and AD | 331 µM, IZ: 24 mm (62.5 µg disc) | ||
| C. neoformans var. grubii H99 (clinical) | MD and AD | 662 µM, IZ: 23 mm (62.5 µg disc) | ||
| Cryptococcus 67 (clinical) | MD and AD | 662 µM, IZ: 21 ± 0.3 mm (62.5 µg disc) | ||
| Saccharomyces cerevisiae (clinical) | MD and AD | 662 µM, IZ: 23 ± 0.2 (62.5 µg disc) | ||
| Plant Source (Part Used) | ||||
| Excoecaria lucida Sw (Leaves) | C. glabrata (B63155) | MD | 128 µg/mL | [46] |
| C kefyr (B46120) | MD | 128 µg/mL | ||
| C. krusei ATCC B68404 | MD | 128 µg/mL | ||
| C. parapsilosis ATCC J941058 | MD | 128 µg/mL | ||
| Eugenia uniflora (Leaves) | C. albicans ATCC 90028 | MD | 500 µg/mL | [45] |
| C. auris ATCC CDC B11903 | MD | 1000 µg/mL | ||
| C. glabrata ATCC 9001 | MD | 125 µg/mL | ||
| Lafoensia pacari (Stem bark) | C. albicans ATCC 10231 | MD and AD | 500 µg/mL, IZ: 13 mm (100 µg discs) | [49] |
| C. krusei ATCC 6258 | MD and AD | 125 µg/mL, IZ: 15 mm (100 µg discs) | ||
| C. parapsilosis ATCC 22019 | MD and AD | 125 µg/mL, IZ: 20 mm (100 µg discs) | ||
| C. tropicalis ATCC 750 | MD and AD | 125 µg/mL, IZ: 13 mm (100 µg discs) | ||
| S. cerevisiae ATCC 9763 | MD and AD | 62 µg/mL, IZ: 17 mm (100 µg discs) | ||
| Klainedoxa gabonenses (Stem bark) | Mucor miehei | MD and AD | 31.4 µg/mL, IZ: 14 mm (20 µg discs) | [48] |
| C. albicans (clinical) | MD and AD | 30.6 µg/mL, IZ: 15 mm (20 µg discs) |
| Fungal Pathogen | Animal Model | Dosage | Route | Duration of Dosage (Days) | Survival Rates | Key Therapeutic Outcome | Reference |
|---|---|---|---|---|---|---|---|
| T. rubrum | Guinea pig | 4.0 and 8.0 mg/cm2 | Topical | 14 | 89% (8.0 mg/cm2) and 75% (4.0 mg/cm2) | Complete lesion resolution and negative mycology, demonstrating efficacy comparable to terbinafine | [66] |
| C. auris and C. albicans | G. mellonella | 32 mg/kg | Intrahemocoelic | 5 | 44% | A single pre-treatment dose of EA significantly increased survival by 44% and prolonged survival time post-infection. | [24] |
| C. albicans | C. elegans | 4 µg/mL | Oral | 6 | 40% | Increased nematode survival rates, confirming a protective antifungal effect in vivo. | |
| C. neoformans | Leukopenic mouse | 20 and 40 mg/kg | Intraperitoneal | 40 | 20% (20 mg/kg) and 30% (40 mg/kg) | Treatment (40 mg/kg) significantly improved survival (30% vs. 0% in controls at 40 days and reduced lung fungal burden in immunocompromised mice. | [63] |
| C. albicans | D. melanogaster | 3.2, 6.4 and 32 µg/mL | Oral | 8 | 45%, 33% and 34% | EA treatment provided a significant survival benefit and protection against infection without evidence of toxicity at the effective dose. | [25] |
| Formulation Type * | Key Findings/Improvements | Limitations/Notes | Reference |
|---|---|---|---|
| Liposomal EA (Lip-EA) | Significantly enhanced in vivo efficacy in a murine cryptococcosis model 70% survival rate (vs. 20% with fluconazole) Reduced fungal load in lungs Alleviated drug-induced toxicity | Complex and potentially costly manufacturing Stability and shelf-life concerns Study focused on intraperitoneal administration | [63] |
| Polymeric Hydrogel (Gellan Gum) | Effective vehicle for topical/oral application Sustained release profile demonstrated Significant reduction in C. albicans biofilm s and inhibition of hyphal formation High biocompatibility with human cells | Primarily suited for localized/topical therapy (e.g., oral cavity) Release kinetics and efficacy are dependent on polymer concentration | [74] |
| Nanoparticles (Gallium NPs coated with EA) | Demonstrated antifungal activity against Aspergillus terreus Represents a novel combinatorial approach (EA + metal ion) | Preliminary evidence, limited to agar diffusion assay Mechanism of action and full spectrum of activity are not yet well characterized | [100] |
| Cyclodextrin Complex (e.g., HP-β-CD) | Increased aqueous solubility of EA Showed efficacy in a murine model of oral candidiasis, reducing tissue invasion Effective against mature biofilms in vitro | Did not consistently improve antifungal MIC in all in vitro models The improvement in solubility does not always directly translate to a proportional increase in antimicrobial potency | [23,68] |
| Subcutaneous Formulations (Plain EA & EA-NPs) | Improved systemic bioavailability compared to oral administration in a toxicity model Demonstrated feasibility of parenteral delivery | Study focused on antioxidant/ nephroprotective effects, not direct antifungal efficacy Parenteral route is less desirable for chronic outpatient therapy | [30] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Mendes, A.G.G.; Campos, C.D.L.; Pereira-Filho, J.L.; Almeida, V.S.S.; Moreira, I.V.; Marques, R.F.; Silva, M.C.P.; Monteiro-Neto, V. Ellagic Acid as a Promising Antifungal Agent: A Review of Mechanisms, Synergy, and Formulation Strategies. Antibiotics 2026, 15, 72. https://doi.org/10.3390/antibiotics15010072
Mendes AGG, Campos CDL, Pereira-Filho JL, Almeida VSS, Moreira IV, Marques RF, Silva MCP, Monteiro-Neto V. Ellagic Acid as a Promising Antifungal Agent: A Review of Mechanisms, Synergy, and Formulation Strategies. Antibiotics. 2026; 15(1):72. https://doi.org/10.3390/antibiotics15010072
Chicago/Turabian StyleMendes, Amanda Graziela G., Carmem D. L. Campos, José L. Pereira-Filho, Viviane S. S. Almeida, Israel V. Moreira, Raphael F. Marques, Mayara Cristina P. Silva, and Valério Monteiro-Neto. 2026. "Ellagic Acid as a Promising Antifungal Agent: A Review of Mechanisms, Synergy, and Formulation Strategies" Antibiotics 15, no. 1: 72. https://doi.org/10.3390/antibiotics15010072
APA StyleMendes, A. G. G., Campos, C. D. L., Pereira-Filho, J. L., Almeida, V. S. S., Moreira, I. V., Marques, R. F., Silva, M. C. P., & Monteiro-Neto, V. (2026). Ellagic Acid as a Promising Antifungal Agent: A Review of Mechanisms, Synergy, and Formulation Strategies. Antibiotics, 15(1), 72. https://doi.org/10.3390/antibiotics15010072

