Loss-of-Function Mutations in the Penicillin-Binding Protein PonA1 Confer Agar-Dependent Resistance to Durlobactam in Mycobacterium abscessus
Abstract
1. Introduction
2. Results
3. Discussion
4. Materials and Methods
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
| DUR | Durlobactam |
| Mab | Mycobacterium abscessus |
References
- Kumar, K.; Loebinger, M.R. Nontuberculous Mycobacterial Pulmonary Disease: Clinical Epidemiologic Features, Risk Factors, and Diagnosis: The Nontuberculous Mycobacterial Series. Chest 2022, 161, 637–646. [Google Scholar] [CrossRef]
- Cristancho-Rojas, C.; Varley, C.D.; Lara, S.C.; Kherabi, Y.; Henkle, E.; Winthrop, K.L. Epidemiology of Mycobacterium abscessus. Clin. Microbiol. Infect. 2023, 30, 712–717. [Google Scholar] [CrossRef] [PubMed]
- Nessar, R.; Cambau, E.; Reyrat, J.M.; Murray, A.; Gicquel, B. Mycobacterium abscessus: A new antibiotic nightmare. J. Antimicrob. Chemother. 2012, 67, 810–818. [Google Scholar] [CrossRef]
- Dartois, V.; Dick, T. Therapeutic developments for tuberculosis and nontuberculous mycobacterial lung disease. Nat. Rev. Drug Discov. 2024, 23, 381–403. [Google Scholar] [CrossRef]
- McLeod, S.M.; O’Donnell, J.P.; Narayanan, N.; Mills, J.P.; Kaye, K.S. Sulbactam-durlobactam: A beta-lactam/beta-lactamase inhibitor combination targeting Acinetobacter baumannii. Future Microbiol. 2024, 19, 563–576. [Google Scholar] [CrossRef]
- Watkins, R.R.; Bonomo, R.A. Sulbactam-durlobactam: A Step Forward in Treating Carbapenem-Resistant Acinetobacter baumannii (CRAB) Infections. Clin. Infect. Dis. 2023, 76, S163–S165. [Google Scholar] [CrossRef]
- Dousa, K.M.; Shin, E.; Kurz, S.G.; Rubin, E.J.; Holland, S.M.; Olivier, K.N.; Daley, C.L.; Kreiswirth, B.N.; Pottinger, P.S.; Bonomo, R.A. The Role of beta-Lactam Antibiotics in Treating Mycobacterium abscessus: From Laboratory Insights to Clinical Applications and the Case for Clinical Trials. Clin. Infect. Dis. 2025; online ahead of print. [Google Scholar] [CrossRef]
- Nantongo, M.; Nguyen, D.C.; Bethel, C.R.; Taracila, M.A.; Li, Q.; Dousa, K.M.; Shin, E.; Kurz, S.G.; Nguyen, L.; Kreiswirth, B.N.; et al. Durlobactam, a Diazabicyclooctane beta-Lactamase Inhibitor, Inhibits BlaC and Peptidoglycan Transpeptidases of Mycobacterium tuberculosis. ACS Infect. Dis. 2024, 10, 1767–1779. [Google Scholar] [CrossRef] [PubMed]
- Shin, E.; Dousa, K.M.; Taracila, M.A.; Bethel, C.R.; Nantongo, M.; Nguyen, D.C.; Akusobi, C.; Kurz, S.G.; Plummer, M.S.; Daley, C.L.; et al. Durlobactam in combination with beta-lactams to combat Mycobacterium abscessus. Antimicrob. Agents Chemother. 2025, 69, e0117424. [Google Scholar] [CrossRef]
- Shrivastava, A.; Boorgula, G.D.; Singh, S.; Stiles, D.; McShane, P.J.; Devine, M.; Gumbo, T.; Srivastava, S. Sulbactam-durlobactam improves cephalosporin and carbapenem susceptibility and time-kill effect against Mycobacterium abscessus. Microbiol. Spectr. 2025, 13, e0149225. [Google Scholar] [CrossRef]
- Negatu, D.A.; Aragaw, W.W.; Gebresilase, T.T.; Paruchuri, S.; Kaya, F.; Shin, S.J.; Sander, P.; Dartois, V.; Dick, T. Durlobactam to boost the clinical utility of standard of care beta-lactams against Mycobacterium abscessus lung disease. Antimicrob. Agents Chemother. 2025, 69, e0104624. [Google Scholar] [CrossRef]
- Singh, S.; Shrivastava, A.; Boorgula, G.D.; Long, M.C.; Robbins, B.; McShane, P.J.; Gumbo, T.; Srivastava, S. Sulbactam-Durlobactam Plus Ceftriaxone Dosing and Novel Treatment Regimens for Mycobacterium abscessus Lung Disease. bioRxiv 2025. [Google Scholar] [CrossRef] [PubMed]
- Aragaw, W.W.; Gebresilase, T.T.; Negatu, D.A.; Dartois, V.; Dick, T. Multidrug tolerance conferred by loss-of-function mutations in anti-sigma factor RshA of Mycobacterium abscessus. Antimicrob. Agents Chemother. 2024, 68, e0105124. [Google Scholar] [CrossRef]
- Le Run, E.; Tettelin, H.; Holland, S.M.; Zelazny, A.M. Evolution toward extremely high imipenem resistance in Mycobacterium abscessus outbreak strains. Antimicrob. Agents Chemother. 2024, 68, e0067324. [Google Scholar] [CrossRef]
- Rifat, D.; Chen, L.; Kreiswirth, B.N.; Nuermberger, E.L. Genome-Wide Essentiality Analysis of Mycobacterium abscessus by Saturated Transposon Mutagenesis and Deep Sequencing. mBio 2021, 12, e0104921. [Google Scholar] [CrossRef]
- Kumar, G.; Galanis, C.; Batchelder, H.R.; Townsend, C.A.; Lamichhane, G. Penicillin Binding Proteins and beta-Lactamases of Mycobacterium tuberculosis: Reexamination of the Historical Paradigm. mSphere 2022, 7, e0003922. [Google Scholar] [CrossRef]
- Dousa, K.M.; Nguyen, D.C.; Kurz, S.G.; Taracila, M.A.; Bethel, C.R.; Schinabeck, W.; Kreiswirth, B.N.; Brown, S.T.; Boom, W.H.; Hotchkiss, R.S.; et al. Inhibiting Mycobacterium abscessus Cell Wall Synthesis: Using a Novel Diazabicyclooctane beta-Lactamase Inhibitor to Augment beta-Lactam Action. mBio 2022, 13, e0352921. [Google Scholar] [CrossRef]
- Nguyen, D.C.; Dousa, K.M.; Kurz, S.G.; Brown, S.T.; Drusano, G.; Holland, S.M.; Kreiswirth, B.N.; Boom, W.H.; Daley, C.L.; Bonomo, R.A. “One-Two Punch”: Synergistic ss-Lactam Combinations for Mycobacterium abscessus and Target Redundancy in the Inhibition of Peptidoglycan Synthesis Enzymes. Clin. Infect. Dis. 2021, 73, 1532–1536. [Google Scholar] [CrossRef]
- Wivagg, C.N.; Wellington, S.; Gomez, J.E.; Hung, D.T. Loss of a Class A Penicillin-Binding Protein Alters beta-Lactam Susceptibilities in Mycobacterium tuberculosis. ACS Infect. Dis. 2016, 2, 104–110. [Google Scholar] [CrossRef] [PubMed]
- Aguilera-Correa, J.J.; Boudehen, Y.M.; Kremer, L. Characterization of Mycobacterium abscessus colony-biofilms based on bi-dimensional images. Antimicrob. Agents Chemother. 2023, 67, e0040223. [Google Scholar] [CrossRef] [PubMed]
- CLSI M100; Performance Standards for Antimicrobial Susceptibility Testing. Clinical and Laboratory Standards Institute (CLSI): Malvern, PA, USA, 2020.
- Fennelly, K.P.; Ojano-Dirain, C.; Yang, Q.; Liu, L.; Lu, L.; Progulske-Fox, A.; Wang, G.P.; Antonelli, P.; Schultz, G. Biofilm Formation by Mycobacterium abscessus in a Lung Cavity. Am. J. Respir. Crit. Care Med. 2016, 193, 692–693. [Google Scholar] [CrossRef]
- Sriramulu, D.D.; Lunsdorf, H.; Lam, J.S.; Romling, U. Microcolony formation: A novel biofilm model of Pseudomonas aeruginosa for the cystic fibrosis lung. J. Med. Microbiol. 2005, 54, 667–676. [Google Scholar] [CrossRef]
- Sarathy, J.; Xie, M.; Wong, C.; Negatu, D.; Rodriguez, S.; Zimmerman, M.; Jimenez, D.; Alshiraihi, I.; Gonzalez-Juarrero, M.; Dartois, V.; et al. Towards a bactericidal oral drug combination for the treatment of Mycobacterium abscessus lung disease. ACS Inf. Dis. 2025, 11, 929–939. [Google Scholar] [CrossRef] [PubMed]
- Ganapathy, U.S.; Lan, T.; Krastel, P.; Lindman, M.; Zimmerman, M.D.; Ho, H.; Sarathy, J.P.; Evans, J.C.; Dartois, V.; Aldrich, C.C.; et al. Blocking Bacterial Naphthohydroquinone Oxidation and ADP-Ribosylation Improves Activity of Rifamycins against Mycobacterium abscessus. Antimicrob. Agents Chemother. 2021, 65, e0097821. [Google Scholar] [CrossRef] [PubMed]
- Kolbe, K.; Bell, A.C.; Prosser, G.A.; Assmann, M.; Yang, H.J.; Forbes, H.E.; Gallucci, S.; Mayer-Barber, K.D.; Boshoff, H.I.; Barry, C.E., III. Development and Optimization of Chromosomally-Integrated Fluorescent Mycobacterium tuberculosis Reporter Constructs. Front. Microbiol. 2020, 11, 591866. [Google Scholar] [CrossRef] [PubMed]
- Wong, A.I.; Rock, J.M. CRISPR Interference (CRISPRi) for Targeted Gene Silencing in Mycobacteria. Methods Mol. Biol. 2021, 2314, 343–364. [Google Scholar] [CrossRef]
- Kurepina, N.; Chen, L.; Composto, K.; Rifat, D.; Nuermberger, E.L.; Kreiswirth, B.N. CRISPR Inhibition of Essential Peptidoglycan Biosynthesis Genes in Mycobacterium abscessus and Its Impact on beta-Lactam Susceptibility. Antimicrob. Agents Chemother. 2022, 66, e0009322. [Google Scholar] [CrossRef]
- Sarathy, J.P.; Xie, M.; Jones, R.M.; Chang, A.; Osiecki, P.; Weiner, D.; Tsao, W.S.; Dougher, M.; Blanc, L.; Fotouhi, N.; et al. A Novel Tool to Identify Bactericidal Compounds against Vulnerable Targets in Drug-Tolerant M. tuberculosis found in Caseum. mBio 2023, 14, e0059823. [Google Scholar] [CrossRef]


| Strain * | Round of Selection | Agar MIC ** (mg/L) | Broth MIC ** (mg/L) | Mutations | Gene Function | ||
|---|---|---|---|---|---|---|---|
| Gene | DNA Alteration | Amino Acid Sequence Alteration | |||||
| WT | 8 | 4 | wt | wt | wt | - | |
| DUR_res1 | 1st | >128 | 8 | MAB_4901c (ponA1) | 1312delC | Q438fs | Penicillin-binding protein |
| DUR_res2 | 1st | >128 | 8 | 369_370del | D123fs | ||
| DUR_res3 | 1st | >128 | 8 | C1156T | Q386stop | ||
| DUR_res4 | 2nd | >128 | 8 | G2027T | G676V | ||
| DUR_res5 | 2nd | >128 | 8 | C1333T | Q445stop | ||
| DUR_res6 | 2nd | >128 | 8 | C1333T | Q445stop | ||
| DUR_res7 | 2nd | >128 | 8 | 776_778del | 259_260del | ||
| DUR_res8 | 1st | 32 | 8 | MAB_0505c | 439dupC | R147fs | Hypothetical protein |
| DUR_res9 | 1st | 64 | 8 | T608C | L203P | ||
| DUR_res10 | 2nd | 32 | 8 | 439dupC | R147fs | ||
| DUR_res11 | 2nd | 32 | 8 | 71_82del | 24_28del | ||
| DUR_res12 | 1st | 64 | 8 | MAB_0205c | G124C | G42R | Hypothetical protein |
| DUR_res13 | 1st | 64 | 8 | G124C | G42R | ||
| DUR_res14 | 2nd | 64 | 8 | G124C | G42R | ||
| Mab Strain | Agar MIC (mg/L) | Broth MIC (mg/L) | Strain Characteristics |
|---|---|---|---|
| Wild-type | 8 | 4 | Wild-type ATCC 19977 |
| DUR_res2 | >128 | 8 | Spontaneous DUR resistant ponA1 (MAB_4901c) frameshift mutant (Table 1) |
| ∆ponA1 | >128 | 4 | Engineered ponA1 deletion mutant (Figure S1) |
| ponA1 KD | 32 | 4 | CRISPRi ponA1 knockdown (Figure S2) |
| MAB_4900c KD | 8 | 4 | CRISPRi MAB_4900c (hypothetical protein) knockdown (Figure S2) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Negatu, D.A.; Aragaw, W.W.; Xie, M.; Dartois, V.; Dick, T. Loss-of-Function Mutations in the Penicillin-Binding Protein PonA1 Confer Agar-Dependent Resistance to Durlobactam in Mycobacterium abscessus. Antibiotics 2026, 15, 7. https://doi.org/10.3390/antibiotics15010007
Negatu DA, Aragaw WW, Xie M, Dartois V, Dick T. Loss-of-Function Mutations in the Penicillin-Binding Protein PonA1 Confer Agar-Dependent Resistance to Durlobactam in Mycobacterium abscessus. Antibiotics. 2026; 15(1):7. https://doi.org/10.3390/antibiotics15010007
Chicago/Turabian StyleNegatu, Dereje Abate, Wassihun Wedajo Aragaw, Min Xie, Véronique Dartois, and Thomas Dick. 2026. "Loss-of-Function Mutations in the Penicillin-Binding Protein PonA1 Confer Agar-Dependent Resistance to Durlobactam in Mycobacterium abscessus" Antibiotics 15, no. 1: 7. https://doi.org/10.3390/antibiotics15010007
APA StyleNegatu, D. A., Aragaw, W. W., Xie, M., Dartois, V., & Dick, T. (2026). Loss-of-Function Mutations in the Penicillin-Binding Protein PonA1 Confer Agar-Dependent Resistance to Durlobactam in Mycobacterium abscessus. Antibiotics, 15(1), 7. https://doi.org/10.3390/antibiotics15010007

