AdpA, a Global Regulator of Hundreds of Genes, Including Those for Secondary Metabolism, in Streptomyces venezuelae
Abstract
1. Introduction
2. Results and Discussion
2.1. AdpASv Exerts a Global Impact on Gene Expression in Streptomyces venezuelae
BGC | BGC Type (Known or Putative Product(s)) | Gene Range | No. of Genes | % of Downregulated/Upregulated Genes [12 h] * | % of Downregulated/Upregulated Genes [20 h] * | No. of AdpA Sites ** |
---|---|---|---|---|---|---|
1 | Ectoine (ectoine) | vnz_01060–01105 | 10 | 10/0 | 30/10 | 1 |
2 | Terpene (geosmin) | vnz_01250–01320 | 15 | 20/0 | 13/33 | 1 |
3 | PKS-NRPS, NRP-metallophore (venamycin/thiazostatin/watasemycins) | vnz_02200–02530 | 66 | 6/0 | 16/16 | 0 |
4 | Lanthipeptide-Terpene (chrysomycin, geosmin) | vnz_02580–02675 | 20 | 20/5 | 60/15 | 2 |
5 | Lanthipeptide (venezuelin) | vnz_02920–02995 | 16 | 6/0 | 6/19 | 0 |
6 | Indole (rebeccamycin) | vnz_03615–03695 | 17 | 6/0 | 0/24 | 1 |
7 | NRPS (chloramphenicol) | vnz_04355–04560 | 42 | 12/2 | 55/2 | 2 |
8 | CDPS (malacidins) | vnz_09090–09185 | 20 | 10/0 | 10/30 | 1 |
9 | Siderophore (desferrioxamine B) | vnz_12535–12650 | 23 | 25/25 | 8/25 | 0 |
10 | Lassopeptide (albusnodin) | vnz_15295–15400 | 22 | 5/5 | 5/41 | 0 |
11 | NRPS (lactonamycin) | vnz_20080–20290 | 43 | 0/9 | 30/2 | 0 |
12 | Butyrolactone (gaburedins) | vnz_20635–20675 | 9 | 22/0 | 22/0 | 0 |
13 | Melanin (istamycin, melanin) | vnz_22965–23015 | 11 | 18/9 | 73/0 | 2 |
14 | Other-Butyrolactone (A-factor) | vnz_25145–25260 | 24 | 8/0 | 33/25 | 2 |
15 | RiPP-Thiopeptide (BD-12, cutimycin) | vnz_25310–25435 | 26 | 15/4 | 12/4 | 4 |
16 | PKS (flaviolin, tetrahydroxynaphthalene) | vnz_26470–26620 | 31 | 0/0 | 29/26 | 0 |
17 | Siderophore (murayaquinone) | vnz_26765–26890 | 26 | 4/0 | 12/42 | 2 |
18 | Siderophore (kinamycin) | vnz_27055–27160 | 22 | 0/5 | 9/14 | 2 |
19 | RiPP (ND) | vnz_28840–28880 | 9 | 67/0 | 0/56 | 0 |
20 | PKS-Butyrolactone (auricin, jadomycin, SCBs) | vnz_29390–29720 | 67 | 6/0 | 30/18 | 2 |
21 | NAPAA (formicamycins) | vnz_30285–30395 | 23 | 4/4 | 30/26 | 0 |
22 | NRPS-PKS-RiPP-Thioamide (colibrimycin, esmeralidin) | vnz_30505–30990 | 98 | 1/0 | 36/3 | 3 |
23 | Terpene (hopene) | vnz_31755–31865 | 23 | 0/0 | 4/4 | 2 |
24 | Lanthipeptide (SapB) | vnz_31920–32015 | 19 | 25/0 | 20/20 | 4 |
25 | RiPP (ND) | vnz_32195–32230 | 8 | 0/0 | 63/13 | 0 |
26 | PKS (spore pigment) | vnz_33355–33670 | 64 | 0/3 | 38/6 | 1 |
27 | Melanin (melanin) | vnz_33695–33730 | 8 | 63/0 | 0/25 | 1 |
28 | NRP-metallophore-NRPS (peucechelin, saccharochelins) | vnz_34675–34880 | 42 | 76/0 | 33/5 | 2 |
29 | Terpene (2-methylisoborneol) | vnz_34995–35080 | 18 | 0/6 | 67/6 | 0 |
30 | hydrogen–cyanide (aborycin) | vnz_35165–35215 | 11 | 0/0 | 36/0 | 0 |
31 | PKS (alkylresorcinol) | vnz_35605–35770 | 34 | 6/0 | 29/6 | 0 |
32 | Terpene-NRPS (ND) | vnz_36585–36745 | 33 | 0/3 | 27/12 | 1 |
2.2. AdpASv Directly Binds About 200 Gene Promoters Across the Genome
2.3. AdpA Directly Regulates a Limited Set of Genes Including Developmental Genes but Likely Exerts Most of Its Transcriptional Effects Through Other Regulators
2.4. AdpASv Directly Affects the Majority of SM-BGCs and Associated Metabolite Biosynthesis
3. Materials and Methods
3.1. Strains and Growth Conditions
3.2. Chromatin Immunoprecipitation-Sequencing and Bioinformatics Analysis
3.3. Identification of Regulatory Protein Binding Motif
3.4. RNA-Sequencing and Bioinformatics Analysis
3.5. Secondary Metabolite Extraction
3.6. High-Performance Liquid Chromatography
3.7. Liquid Chromatography-Mass Spectrometry
3.8. LC-MS Data Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Barka, E.A.; Vatsa, P.; Sanchez, L.; Gaveau-Vaillant, N.; Jacquard, C.; Klenk, H.-P.; Clément, C.; Ouhdouch, Y.; van Wezel, G.P. Taxonomy, Physiology, and Natural Products of Actinobacteria. Microbiol. Mol. Biol. Rev. 2016, 80, 1–43. [Google Scholar] [CrossRef]
- Genilloud, O. Actinomycetes: Still a source of novel antibiotics. Nat. Prod. Rep. 2017, 34, 1203–1232. [Google Scholar] [CrossRef]
- Blin, K.; Shaw, S.; Kloosterman, A.M.; Charlop-Powers, Z.; Van Wezel, G.P.; Medema, M.H.; Weber, T. antiSMASH 6.0: Improving cluster detection and comparison capabilities. Nucleic Acids Res. 2021, 49, W29–W35. [Google Scholar] [CrossRef]
- Ziemert, N.; Alanjary, M.; Weber, T. The evolution of genome mining in microbes—A review. Nat. Prod. Rep. 2016, 33, 988–1005. [Google Scholar] [CrossRef]
- Baltz, R.H. Gifted microbes for genome mining and natural product discovery. J. Ind. Microbiol. Biotechnol. 2017, 44, 573–588. [Google Scholar] [CrossRef] [PubMed]
- Rutledge, P.J.; Challis, G.L. Discovery of microbial natural products by activation of silent biosynthetic gene clusters. Nat. Rev. Microbiol. 2015, 13, 509–523. [Google Scholar] [CrossRef] [PubMed]
- Van Der Heul, H.U.; Bilyk, B.L.; McDowall, K.J.; Seipke, R.F.; Van Wezel, G.P. Regulation of antibiotic production in Actinobacteria: New perspectives from the post-genomic era. Nat. Prod. Rep. 2018, 35, 575–604. [Google Scholar] [CrossRef] [PubMed]
- Alwali, A.Y.; Parkinson, E.I. Small molecule inducers of actinobacteria natural product biosynthesis. J. Ind. Microbiol. Biotechnol. 2023, 50, 19. [Google Scholar] [CrossRef]
- Traxler, M.F.; Watrous, J.D.; Alexandrov, T.; Dorrestein, P.C.; Kolter, R. Interspecies interactions stimulate diversification of the Streptomyces coelicolor secreted metabolome. mBio 2013, 4, e00459-13. [Google Scholar] [CrossRef]
- Liu, G.; Chater, K.F.; Chandra, G.; Niu, G.; Tan, H. Molecular Regulation of Antibiotic Biosynthesis in Streptomyces. Microbiol. Mol. Biol. Rev. 2013, 77, 112–143. [Google Scholar] [CrossRef]
- Romero-Rodríguez, A.; Robledo-Casados, I.; Sánchez, S. An overview on transcriptional regulators in Streptomyces. Biochim. Biophys. Acta BBA Gene Regul. Mech. 2015, 1849, 1017–1039. [Google Scholar] [CrossRef] [PubMed]
- Zhu, H.; Sandiford, S.K.; Van Wezel, G.P. Triggers and cues that activate antibiotic production by actinomycetes. J. Ind. Microbiol. Biotechnol. 2014, 41, 371–386. [Google Scholar] [CrossRef]
- Gehrke, E.J.; Zhang, X.; Pimentel-Elardo, S.M.; Johnson, A.R.; Rees, C.A.; Jones, S.E.; Hindra Gehrke, S.S.; Turvey, S.; Boursalie, S.; Hill, J.E.; et al. Silencing cryptic specialized metabolism in Streptomyces by the nucleoid-associated protein Lsr2. ELife 2019, 8, e47691. [Google Scholar] [CrossRef]
- Płachetka, M.; Krawiec, M.; Zakrzewska-Czerwińska, J.; Wolański, M. AdpA Positively Regulates Morphological Differentiation and Chloramphenicol Biosynthesis in Streptomyces venezuelae. Microbiol. Spectr. 2021, 9, e01981-21. [Google Scholar] [CrossRef]
- Pullan, S.T.; Chandra, G.; Bibb, M.J.; Merrick, M. Genome-wide analysis of the role of GlnR in Streptomyces venezuelae provides new insights into global nitrogen regulation in actinomycetes. BMC Genom. 2011, 12, 175. [Google Scholar] [CrossRef] [PubMed]
- Som, N.F.; Heine, D.; Holmes, N.A.; Munnoch, J.T.; Chandra, G.; Seipke, R.F.; Hoskisson, P.A.; Wilkinson, B.; Hutchings, M.I. The conserved actinobacterial two-component system MtrAB coordinates chloramphenicol production with sporulation in Streptomyces venezuelae NRRL B-65442. Front. Microbiol. 2017, 8, 1145. [Google Scholar] [CrossRef]
- Rigali, S.; Titgemeyer, F.; Barends, S.; Mulder, S.; Thomae, A.W.; Hopwood, D.A.; van Wezel, G.P. Feast or famine: The global regulator DasR links nutrient stress to antibiotic production by Streptomyces. EMBO Rep. 2008, 9, 670–675. [Google Scholar] [CrossRef]
- Thapa, S.S.; Grove, A. Do Global Regulators Hold the Key to Production of Bacterial Secondary Metabolites? Antibiotics 2019, 8, 160. [Google Scholar] [CrossRef]
- Zhang, X.; Hindra; Elliot, M.A. Unlocking the trove of metabolic treasures: Activating silent biosynthetic gene clusters in bacteria and fungi. Curr. Opin. Microbiol. 2019, 51, 9–15. [Google Scholar] [CrossRef] [PubMed]
- Horinouchi, S.; Onaka, H.; Yamazaki, H.; Kameyama, S.; Ohnishi, Y. Isolation of DNA Fragments Bound by Transcriptional Factors, AdpA and ArpA, in the A-Factor Regulatory Cascade. Actinomycetologica 2000, 14, 37–42. [Google Scholar] [CrossRef]
- Ohnishi, Y.; Kameyama, S.; Onaka, H.; Horinouchi, S. The A-factor regulatory cascade leading to streptomycin biosynthesis in Streptomyces griseus: Identification of a target gene of the A-factor receptor. Mol. Microbiol. 1999, 34, 102–111. [Google Scholar] [CrossRef]
- Vujaklija, D.; Horinouchi, S.; Beppu, T. Detection of an A-factor-responsive protein that binds to the upstream activation sequence of strR, a regulatory gene for streptomycin biosynthesis in Streptomyces griseus. J. Bacteriol. 1993, 175, 2652–2661. [Google Scholar] [CrossRef]
- Makitrynskyy, R.; Ostash, B.; Tsypik, O.; Rebets, Y.; Doud, E.; Meredith, T.; Luzhetskyy, A.; Bechthold, A.; Walker, S.; Fedorenko, V. Pleiotropic regulatory genes bldA, adpA and absB are implicated in production of phosphoglycolipid antibiotic moenomycin. Open Biol. 2013, 3, 130121. [Google Scholar] [CrossRef]
- Mao, X.M.; Luo, S.; Zhou, R.C.; Wang, F.; Yu, P.; Sun, N.; Chen, X.X.; Tang, Y.; Li, Y.Q. Transcriptional regulation of the daptomycin gene cluster in Streptomyces roseosporus by an autoregulator, AtrA. J. Biol. Chem. 2015, 290, 7992–8001. [Google Scholar] [CrossRef]
- Otur, Ç.; Kurt-Kızıldoğan, A. Global regulator AdpA directly binds to tunicamycin gene cluster and negatively regulates tunicamycin biosynthesis in Streptomyces clavuligerus. World J. Microbiol. Biotechnol. 2024, 40, 360. [Google Scholar] [CrossRef] [PubMed]
- Higo, A.; Hara, H.; Horinouchi, S.; Ohnishi, Y. Genome-wide distribution of AdpA, a global regulator for secondary metabolism and morphological differentiation in streptomyces, revealed the extent and complexity of the AdpA regulatory network. DNA Res. 2012, 19, 259–273. [Google Scholar] [CrossRef]
- Lu, T.; Wang, Q.; Cao, Q.; Xia, Y.; Xun, L.; Liu, H. The Pleiotropic Regulator AdpA Regulates the Removal of Excessive Sulfane Sulfur in Streptomyces coelicolor. Antioxidants 2023, 12, 312. [Google Scholar] [CrossRef]
- Wolański, M.; Jakimowicz, D.; Zakrzewska-Czerwińska, J. AdpA, key regulator for morphological differentiation regulates bacterial chromosome replication. Open Biol. 2012, 2, 120097. [Google Scholar] [CrossRef]
- Guyet, A.; Benaroudj, N.; Proux, C.; Gominet, M.; Coppée, J.-Y.; Mazodier, P. Identified members of the Streptomyces lividans AdpA regulon involved in differentiation and secondary metabolism. BMC Microbiol. 2014, 14, 81. [Google Scholar] [CrossRef] [PubMed]
- Ohnishi, Y.; Ishikawa, J.; Hara, H.; Suzuki, H.; Ikenoya, M.; Ikeda, H.; Yamashita, A.; Hattori, M.; Horinouchi, S. Genome Sequence of the Streptomycin-Producing Microorganism Streptomyces griseus IFO 13350. J. Bacteriol. 2008, 190, 4050. [Google Scholar] [CrossRef] [PubMed]
- Wolański, M.; Jakimowicz, D.; Zakrzewska-Czerwińska, J. Fifty years after the replicon hypothesis: Cell-specific master regulators as new players in chromosome replication control. J. Bacteriol. 2014, 196, 2901–2911. [Google Scholar] [CrossRef]
- Rabyk, M.; Yushchuk, O.; Rokytskyy, I.; Anisimova, M.; Ostash, B. Genomic Insights into Evolution of AdpA Family Master Regulators of Morphological Differentiation and Secondary Metabolism in Streptomyces. J. Mol. Evol. 2018, 86, 204–215. [Google Scholar] [CrossRef]
- Gomez-Escribano, J.P.; Holmes, N.A.; Schlimpert, S.; Bibb, M.J.; Chandra, G.; Wilkinson, B.; Buttner, M.J.; Bibb, M.J. Streptomyces venezuelae NRRL B-65442: Genome sequence of a model strain used to study morphological differentiation in filamentous actinobacteria. J. Ind. Microbiol. Biotechnol. 2021, 48, 35. [Google Scholar] [CrossRef]
- Wolański, M.; Donczew, R.; Kois-Ostrowska, A.; Masiewicz, P.; Jakimowicz, D.; Zakrzewska-Czerwińska, J. The level of AdpA directly affects expression of developmental genes in Streptomyces coelicolor. J. Bacteriol. 2011, 193, 6358–6365. [Google Scholar] [CrossRef]
- Wang, M.; Li, C.J.; Zhang, Z.; Li, P.P.; Yang, L.L.; Zhi, X.Y. The Evolution of Morphological Development Is Congruent with the Species Phylogeny in the Genus Streptomyces. Front. Microbiol. 2023, 14, 1102250. [Google Scholar] [CrossRef]
- StrepDB. Available online: https://strepdb.streptomyces.org.uk/ (accessed on 21 August 2025).
- Claessen, D.; Wösten, H.A.B.; Van Keulen, G.; Faber, O.G.; Alves, A.M.C.R.; Meijer, W.G.; Dijkhuizen, L. Two novel homologous proteins of Streptomyces coelicolor and Streptomyces lividans are involved in the formation of the rodlet layer and mediate attachment to a hydrophobic surface. Mol. Microbiol. 2002, 44, 1483–1492. [Google Scholar] [CrossRef] [PubMed]
- Claessen, D.; Stokroos, L.; Deelstra, H.J.; Penninga, N.A.; Bormann, C.; Salas, J.A.; Dijkhuizen, L.; Wösten, H.A.B. The formation of the rodlet layer of streptomycetes is the result of the interplay between rodlins and chaplins. Mol. Microbiol. 2004, 53, 433–443. [Google Scholar] [CrossRef] [PubMed]
- Elliot, M.A.; Karoonuthaisiri, N.; Huang, J.; Bibb, M.J.; Cohen, S.N.; Kao, C.M.; Buttner, M.J. The chaplins: A family of hydrophobic cell-surface proteins involved in aerial mycelium formation in Streptomyces coelicolor. Genes Dev. 2003, 17, 1727–1740. [Google Scholar] [CrossRef] [PubMed]
- Kelemen, G.H.; Brian, P.; Flärdh, K.; Chamberlin, L.; Chater, K.F.; Buttner, M.J. Developmental Regulation of Transcription of whiE, a Locus Specifying the Polyketide Spore Pigment in Streptomyces coelicolor A3(2). J. Bacteriol. 1998, 180, 2515. [Google Scholar] [CrossRef]
- Molle, V.; Palframan, W.J.; Findlay, K.C.; Buttner, M.J. WhiD and WhiB, homologous proteins required for different stages of sporulation in Streptomyces coelicolor A3(2). J. Bacteriol. 2000, 182, 1286–1295. [Google Scholar] [CrossRef]
- Stewart, M.Y.Y.; Bush, M.J.; Crack, J.C.; Buttner, M.J.; Le Brun, N.E. Interaction of the Streptomyces Wbl protein WhiD with the principal sigma factor σHrdB depends on the WhiD [4Fe-4S] cluster. J. Biol. Chem. 2020, 295, 9752–9765. [Google Scholar] [CrossRef]
- Kato, J.Y.; Hirano, S.; Ohnishi, Y.; Horinouchi, S. The Streptomyces Subtilisin Inhibitor (SSI) Gene in Streptomyces coelicolor A3(2). Biosci. Biotechnol. Biochem. 2005, 69, 1624–1629. [Google Scholar] [CrossRef] [PubMed]
- Kim, I.S.; Lee, K.J. Trypsin-like protease of Streptomyces exfoliatus SMF-13, a potential agent in mycelial differentiation. Microbiology 1996, 142, 1797–1806. [Google Scholar] [CrossRef]
- Kim, D.W.; Hesketh, A.; Kim, E.S.; Song, J.Y.; Lee, D.H.; Kim, I.S.; Chater, K.F.; Lee, K.J. Complex extracellular interactions of proteases and a protease inhibitor influence multicellular development of Streptomyces coelicolor. Mol. Microbiol. 2008, 70, 1180–1193. [Google Scholar] [CrossRef]
- Lu, T.; Wu, X.; Cao, Q.; Xia, Y.; Xun, L.; Liu, H. Sulfane Sulfur Posttranslationally Modifies the Global Regulator AdpA to Influence Actinorhodin Production and Morphological Differentiation of Streptomyces coelicolor. mBio 2022, 13, e0386221. [Google Scholar] [CrossRef] [PubMed]
- Lioy, V.S.; Lorenzi, J.N.; Najah, S.; Poinsignon, T.; Leh, H.; Saulnier, C.; Aigle, B.; Lautru, S.; Thibessard, A.; Lespinet, O.; et al. Dynamics of the compartmentalized Streptomyces chromosome during metabolic differentiation. Nat. Commun. 2021, 12, 5221. [Google Scholar] [CrossRef]
- Szafran, M.J.; Małecki, T.; Strzałka, A.; Pawlikiewicz, K.; Duława, J.; Zarek, A.; Kois-Ostrowska, A.; Findlay, K.C.; Le, T.B.K.; Jakimowicz, D. Spatial rearrangement of the Streptomyces venezuelae linear chromosome during sporogenic development. Nat. Commun. 2021, 12, 5222. [Google Scholar] [CrossRef]
- Machanick, P.; Bailey, T.L. MEME-ChIP: Motif analysis of large DNA datasets. Bioinformatics 2011, 27, 1696–1697. [Google Scholar] [CrossRef]
- Yamazaki, H.; Tomono, A.; Ohnishi, Y.; Horinouchi, S. DNA-binding specificity of AdpA, a transcriptional activator in the A-factor regulatory cascade in Streptomyces griseus. Mol. Microbiol. 2004, 53, 555–572. [Google Scholar] [CrossRef]
- LogoMotif. (n.d.). Available online: https://logomotif.bioinformatics.nl/ (accessed on 20 June 2025).
- Yao, M.D.; Ohtsuka, J.; Nagata, K.; Miyazono, K.I.; Zhi, Y.; Ohnishi, Y.; Tanokura, M. Complex structure of the DNA-binding domain of AdpA, the global transcription factor in Streptomyces griseus, and a target duplex DNA reveals the structural basis of its tolerant DNA sequence specificity. J. Biol. Chem. 2013, 288, 31019–31029. [Google Scholar] [CrossRef] [PubMed]
- Browning, D.F.; Busby, S.J.W. The regulation of bacterial transcription initiation. Nat. Rev. Microbiol. 2004, 2, 57–65. [Google Scholar] [CrossRef] [PubMed]
- Lozada-Chávez, I.; Angarica, V.E.; Collado-Vides, J.; Contreras-Moreira, B. The Role of DNA-binding Specificity in the Evolution of Bacterial Regulatory Networks. J. Mol. Biol. 2008, 379, 627–643. [Google Scholar] [CrossRef] [PubMed]
- Madan Babu, M.; Teichmann, S.A.; Aravind, L. Evolutionary Dynamics of Prokaryotic Transcriptional Regulatory Networks. J. Mol. Biol. 2006, 358, 614–633. [Google Scholar] [CrossRef]
- Huang, H.; Shao, X.; Xie, Y.; Wang, T.; Zhang, Y.; Wang, X.; Deng, X. An integrated genomic regulatory network of virulence-related transcriptional factors in Pseudomonas aeruginosa. Nat. Commun. 2019, 10, 2931. [Google Scholar] [CrossRef]
- Bush, M.J.; Chandra, G.; Bibb, M.J.; Findlay, K.C.; Buttner, M.J. Genome-wide chromatin immunoprecipitation sequencing analysis shows that WhiB is a transcription factor that cocontrols its regulon with WhiA to initiate developmental cell division in Streptomyces. mBio 2016, 7, e00523-16. [Google Scholar] [CrossRef]
- Lilic, M.; Holmes, N.A.; Bush, M.J.; Marti, A.K.; Widdick, D.A.; Findlay, K.C.; Choi, Y.J.; Froom, R.; Koh, S.; Buttner, M.J.; et al. Structural basis of dual activation of cell division by the actinobacterial transcription factors WhiA and WhiB. Proc. Natl. Acad. Sci. USA 2023, 120, e2220785120. [Google Scholar] [CrossRef]
- Augustijn, H.E.; Karapliafis, D.; Joosten, K.M.M.; Rigali, S.; van Wezel, G.P.; Medema, M.H. LogoMotif: A Comprehensive Database of Transcription Factor Binding Site Profiles in Actinobacteria. J. Mol. Biol. 2024, 436, 168558. [Google Scholar] [CrossRef]
- Sekurova, O.N.; Zehl, M.; Predl, M.; Hunyadi, P.; Rattei, T.; Zotchev, S.B. Targeted Metabolomics and High-Throughput RNA Sequencing-Based Transcriptomics Reveal Massive Changes in the Streptomyces venezuelae NRRL B-65442 Metabolism Caused by Ethanol Shock. Microbiol. Spectr. 2022, 10, e03672-22. [Google Scholar] [CrossRef]
- Al-Bassam, M.M.; Bibb, M.J.; Bush, M.J.; Chandra, G.; Buttner, M.J. Response Regulator Heterodimer Formation Controls a Key Stage in Streptomyces Development. PLoS Genet. 2014, 10, e1004554. [Google Scholar] [CrossRef] [PubMed]
- Tian, J.; Li, Y.; Zhang, C.; Su, J.; Lu, W. Characterization of a pleiotropic regulator MtrA in Streptomyces avermitilis controlling avermectin production and morphological differentiation. Microb. Cell Factories 2024, 23, 103. [Google Scholar] [CrossRef] [PubMed]
- Brekasis, D.; Paget, M.S.B. A novel sensor of NADH/NAD+ redox poise in Streptomyces coelicolor A3(2). EMBO J. 2003, 22, 4856–4865. [Google Scholar] [CrossRef] [PubMed]
- Hou, B.; Wang, R.; Zou, J.; Zhang, F.; Wu, H.; Ye, J.; Zhang, H. A putative redox-sensing regulator Rex regulates lincomycin biosynthesis in Streptomyces lincolnensis. J. Basic Microbiol. 2021, 61, 772–781. [Google Scholar] [CrossRef]
- Liu, X.; Cheng, Y.; Lyu, M.; Wen, Y.; Song, Y.; Chen, Z.; Li, J. Redox-sensing regulator Rex regulates aerobic metabolism, morphological differentiation, and avermectin production in Streptomyces avermitilis. Sci. Rep. 2017, 7, 44567. [Google Scholar] [CrossRef]
- Fowler-Goldsworthy, K.; Gust, B.; Mouz, S.; Chandra, G.; Findlay, K.C.; Chater, K.F. The actinobacteria-specific gene wblA controls major developmental transitions in Streptomyces coelicolor A3(2). Microbiology 2011, 157, 1312–1328. [Google Scholar] [CrossRef]
- Huang, X.; Ma, T.; Tian, J.; Shen, L.; Zuo, H.; Hu, C.; Liao, G. wblA, a pleiotropic regulatory gene modulating morphogenesis and daptomycin production in Streptomyces roseosporus. J. Appl. Microbiol. 2017, 123, 669–677. [Google Scholar] [CrossRef] [PubMed]
- Bush, M.J.; Bibb, M.J.; Chandra, G.; Findlay, K.C.; Buttner, M.J. Genes required for aerial growth, cell division, and chromosome segregation are targets of whia before sporulation in Streptomyces venezuelae. mBio 2013, 4, e00684-13. [Google Scholar] [CrossRef] [PubMed]
- Deng, L.; Zhao, Z.; Liu, L.; Zhong, Z.; Xie, W.; Zhou, F.; Xu, W.; Zhang, Y.; Deng, Z.; Sun, Y. Dissection of 3D chromosome organization in Streptomyces coelicolor A3(2) leads to biosynthetic gene cluster overexpression. Proc. Natl. Acad. Sci. USA 2023, 120, e2222045120. [Google Scholar] [CrossRef]
- Gongerowska-Jac, M.; Szafran, M.J.; Mikołajczyk, J.; Szymczak, J.; Bartyńska, M.; Gierlikowska, A.; Biały, S.; Elliot, M.A.; Jakimowicz, D. Global Chromosome Topology and the Two-Component Systems in Concerted Manner Regulate Transcription in Streptomyces. mSystems 2021, 6, e01142-21. [Google Scholar] [CrossRef]
- Summers, E.L.; Meindl, K.; Usón, I.; Mitra, A.K.; Radjainia, M.; Colangeli, R.; Alland, D.; Arcus, V.L. The Structure of the Oligomerization Domain of Lsr2 from Mycobacterium tuberculosis Reveals a Mechanism for Chromosome Organization and Protection. PLoS ONE 2012, 7, e38542. [Google Scholar] [CrossRef]
- Zhang, X.; Andres, S.N.; Elliot, M.A. Interplay between Nucleoid-Associated Proteins and Transcription Factors in Controlling Specialized Metabolism in Streptomyces. mBio 2021, 12, 1077–1098. [Google Scholar] [CrossRef]
- Bibb, M.J.; Fernández-Martínez, L.T.; Borsetto, C.; Gomez-Escribano, J.P.; Bibb, M.J.; Al-Bassam, M.M.; Chandra, G. New Insights into Chloramphenicol Biosynthesis in Streptomyces venezuelae ATCC 10712. Antimicrob. Agents Chemother. 2014, 58, 7441–7450. [Google Scholar] [CrossRef]
- Barona-Gómez, F.; Wong, U.; Giannakopulos, A.E.; Derrick, P.J.; Challis, G.L. Identification of a cluster of genes that directs desferrioxamine biosynthesis in Streptomyces coelicolor M145. J. Am. Chem. Soc. 2004, 126, 16282–16283. [Google Scholar] [CrossRef]
- Shepherdson, E.M.F.; Elliot, M.A. Cryptic specialized metabolites drive Streptomyces exploration and provide a competitive advantage during growth with other microbes. Proc. Natl. Acad. Sci. USA 2022, 119, e2211052119. [Google Scholar] [CrossRef]
- Yagüe, P.; Rodríguez-García, A.; López-García, M.T.; Rioseras, B.; Martín, J.F.; Sánchez, J.; Manteca, A. Transcriptomic analysis of liquid non-sporulating Streptomyces coelicolor cultures demonstrates the existence of a complex differentiation comparable to that occurring in solid sporulating cultures. PLoS ONE 2014, 9, e86296. [Google Scholar] [CrossRef]
- Al-Khodir, F.A.I.; Refat, M.S. Synthesis, spectroscopic, thermal and anticancer studies of metal-antibiotic chelations: Ca(II), Fe(III), Pd(II) and Au(III) chloramphenicol complexes. J. Mol. Struct. 2016, 1119, 157–166. [Google Scholar] [CrossRef]
- Kordjazi, T.; Mariniello, L.; Giosafatto, C.V.L.; Porta, R.; Restaino, O.F. Streptomycetes as Microbial Cell Factories for the Biotechnological Production of Melanin. Int. J. Mol. Sci. 2024, 25, 3013. [Google Scholar] [CrossRef]
- Hołówka, J.; Trojanowski, D.; Gind, K.; Wojtaś, B.; Gielniewski, B.; Jakimowicz, D.; Zakrzewska-Czerwińska, J. HupB is a bacterial nucleoid-associated protein with an indispensable eukaryotic-like tail. mBio 2017, 8, e01272-17. [Google Scholar] [CrossRef] [PubMed]
- Langmead, B.; Salzberg, S.L. Fast gapped-read alignment with Bowtie 2. Nat. Methods 2012, 9, 357–359. [Google Scholar] [CrossRef]
- Li, H.; Handsaker, B.; Wysoker, A.; Fennell, T.; Ruan, J.; Homer, N.; Marth, G.; Abecasis, G.; Durbin, R. The Sequence Alignment/Map format and SAMtools. Bioinformatics 2009, 25, 2078–2079. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Liu, T.; Meyer, C.A.; Eeckhoute, J.; Johnson, D.S.; Bernstein, B.E.; Nussbaum, C.; Myers, R.M.; Brown, M.; Li, W.; et al. Model-based analysis of ChIP-Seq (MACS). Genome Biol. 2008, 9, R137. [Google Scholar] [CrossRef]
- Bailey, T.L.; Boden, M.; Buske, F.A.; Frith, M.; Grant, C.E.; Clementi, L.; Ren, J.; Li, W.W.; Noble, W.S. MEME Suite: Tools for Motif Discovery and Searching. Nucleic Acids Res. 2009, 37, W202–W208. [Google Scholar] [CrossRef] [PubMed]
- Grant, C.E.; Bailey, T.L.; Noble, W.S. FIMO: Scanning for Occurrences of a given Motif. Bioinformatics 2011, 27, 1017–1018. [Google Scholar] [CrossRef] [PubMed]
- Wolański, M.; Łebkowski, T.; Kois-Ostrowska, A.; Zettler, J.; Apel, A.K.; Jakimowicz, D.; Zakrzewska-Czerwińska, J. Two Transcription Factors, CabA and CabR, Are Independently Involved in Multilevel Regulation of the Biosynthetic Gene Cluster Encoding the Novel Aminocoumarin, Cacibiocin. Appl. Microbiol. Biotechnol. 2016, 100, 3147–3164. [Google Scholar] [CrossRef] [PubMed]
- Aranda, P.S.; Lajoie, D.M.; Jorcyk, C.L. Bleach gel: A simple agarose gel for analyzing RNA quality. Electrophoresis 2012, 33, 366–369. [Google Scholar] [CrossRef]
- Liao, Y.; Smyth, G.K.; Shi, W. The R package Rsubread is easier, faster, cheaper and better for alignment and quantification of RNA sequencing reads. Nucleic Acids Res. 2019, 47, e47. [Google Scholar] [CrossRef]
- Robinson, M.D.; McCarthy, D.J.; Smyth, G.K. edgeR: A Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics 2010, 26, 139–140. [Google Scholar] [CrossRef]
- Chen, Y.; Lun, A.T.L.; Smyth, G.K. From reads to genes to pathways: Differential expression analysis of RNA-Seq experiments using Rsubread and the edgeR quasi-likelihood pipeline. F1000Research 2016, 5, 1438. [Google Scholar] [CrossRef]
- Wickham, H. ggplot2; Springer: Berlin/Heidelberg, Germany, 2016. [Google Scholar] [CrossRef]
- Yu, G. Thirteen years of clusterProfiler. Innovation 2024, 5, 100722. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wolański, M.; Płachetka, M.; Naumouskaya, V.; Strzałka, A.; Tracz, M.; Valietova, D.; Zakrzewska-Czerwińska, J. AdpA, a Global Regulator of Hundreds of Genes, Including Those for Secondary Metabolism, in Streptomyces venezuelae. Antibiotics 2025, 14, 878. https://doi.org/10.3390/antibiotics14090878
Wolański M, Płachetka M, Naumouskaya V, Strzałka A, Tracz M, Valietova D, Zakrzewska-Czerwińska J. AdpA, a Global Regulator of Hundreds of Genes, Including Those for Secondary Metabolism, in Streptomyces venezuelae. Antibiotics. 2025; 14(9):878. https://doi.org/10.3390/antibiotics14090878
Chicago/Turabian StyleWolański, Marcin, Małgorzata Płachetka, Volha Naumouskaya, Agnieszka Strzałka, Michał Tracz, Diana Valietova, and Jolanta Zakrzewska-Czerwińska. 2025. "AdpA, a Global Regulator of Hundreds of Genes, Including Those for Secondary Metabolism, in Streptomyces venezuelae" Antibiotics 14, no. 9: 878. https://doi.org/10.3390/antibiotics14090878
APA StyleWolański, M., Płachetka, M., Naumouskaya, V., Strzałka, A., Tracz, M., Valietova, D., & Zakrzewska-Czerwińska, J. (2025). AdpA, a Global Regulator of Hundreds of Genes, Including Those for Secondary Metabolism, in Streptomyces venezuelae. Antibiotics, 14(9), 878. https://doi.org/10.3390/antibiotics14090878