Increased Antimicrobial Consumption, Isolation Rate, and Resistance Profiles of Multi-Drug Resistant Klebsiella pneumoniae, Pseudomonas aeruginosa, and Acinetobacter baumannii During the COVID-19 Pandemic in a Tertiary Healthcare Institution
Abstract
1. Introduction
- 1.
- To investigate whether the COVID-19 pandemic has influenced the antibiotic consumption;
- 2.
- To investigate the influence of the COVID-19 pandemic on the prevalence of the total number and MDR isolates of KPN, ABA, and PAE;
- 3.
- To test whether there was a change in antimicrobial resistance before and during the COVID-19 pandemic;
- 4.
- To investigate whether the number of patients on MV has influenced the occurrence of MDR pathogens and antibiotic consumption.
2. Results
2.1. Characteristics of Patients, Prescribed Antimicrobial Therapy, and Bacterial Isolates
2.2. Distribution of Total Number and MDR Isolates of KPN, ABA, and PAE by Years and Months
2.3. Profiles of Antibiotic Resistance in KPN, PAE, and ABA Isolates
- (A)
- KPN
- (B)
- PAE
- (C)
- ABA
2.4. Antibiotic Consumption in the Hospital During the Study Periods
2.5. Correlation Between Number of Patients on MV and the Occurrence of MDR
3. Discussion
Strengths and Limitations
4. Materials and Methods
4.1. Study Setting
4.2. COVID-19 Pandemic in Serbia
4.3. COVID-19 Pandemic in the University Hospital Center “Dr Dragisa Misovic–Dedinje”
- Pre-pandemic (1 April 2019–31 March 2020—period I);
- COVID-19 pandemic (1 April 2020–31 March 2021—period II);
- COVID-19 pandemic, second year (1 April 2021–31 March 2022—period III).
4.4. Antibiotic Susceptibility Testing
4.5. Antibiotic Consumption
4.6. Ethics
4.7. Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- World Map of Cumulative Confirmed COVID-19 Deaths per Million People; Our World in Data: Oxford, UK, 2025.
- Mahoney, A.R.; Safaee, M.M.; Wuest, W.M.; Furst, A.L. The silent pandemic: Emergent antibiotic resistances following the global response to SARS-CoV-2. iScience 2021, 24, 102304. [Google Scholar] [CrossRef]
- Denissen, J.; Reyneke, B.; Waso-Reyneke, M.; Havenga, B.; Barnard, T.; Khan, S.; Khan, W. Prevalence of ESKAPE pathogens in the environment: Antibiotic resistance status, community-acquired infection and risk to human health. Int. J. Hyg. Environ. Health 2022, 244, 114006. [Google Scholar] [CrossRef]
- Tang, K.W.K.; Millar, B.C.; Moore, J.E. Antimicrobial Resistance (AMR). Br. J. Biomed. Sci. 2023, 80, 11387. [Google Scholar] [CrossRef]
- Gonzalez-Zorn, B. Antibiotic use in the COVID-19 crisis in Spain. Clin. Microbiol. Infect. 2021, 27, 646–647. [Google Scholar] [CrossRef] [PubMed]
- Milovanović, J.; Jotić, A.; Radin, Z.; Ćirković, I. Rational use of antibiotics during the COVID-19 pandemic. Serbian J. Med. Chamb. 2021, 2, 399–408. [Google Scholar] [CrossRef]
- Rynda-Apple, A.; Robinson, K.M.; Alcorn, J.F. Influenza and Bacterial Superinfection: Illuminating the Immunologic Mechanisms of Disease. Infect. Immun. 2015, 83, 3764–3770. [Google Scholar] [CrossRef]
- Simonsen, L.; Spreeuwenberg, P.; Lustig, R.; Taylor, R.J.; Fleming, D.M.; Kroneman, M.; Van Kerkhove, M.D.; Mounts, A.W.; Paget, W.J. GLaMOR Collaborating Teams. Global mortality estimates for the 2009 Influenza Pandemic from the GLaMOR project: A modeling study. PLoS Med. 2013, 10, e1001558. [Google Scholar] [CrossRef] [PubMed]
- Abu-Rub, L.I.; Abdelrahman, H.A.; Johar, A.A.; Alhussain, H.A.; Hadi, H.A.; Eltai, N.O. Antibiotics Prescribing in Intensive Care Settings during the COVID-19 Era: A Systematic Review. Antibiotics 2021, 10, 935. [Google Scholar] [CrossRef]
- Zhou, F.; Yu, T.; Du, R.; Fan, G.; Liu, Y.; Liu, Z.; Xiang, J.; Wang, Y.; Song, B.; Gu, X.; et al. Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: A retrospective cohort study. Lancet 2020, 395, 1054–1062. [Google Scholar] [CrossRef]
- Van Laethem, J.; Wuyts, S.; Van Laere, S.; Koulalis, J.; Colman, M.; Moretti, M.; Seyler, L.; De Waele, E.; Pierard, D.; Lacor, P.; et al. Antibiotic prescriptions in the context of suspected bacterial respiratory tract superinfections in the COVID-19 era: A retrospective quantitative analysis of antibiotic consumption and identification of antibiotic prescription drivers. Intern. Emerg. Med. 2022, 17, 141–151. [Google Scholar] [CrossRef]
- Tomas, A.; Pavlović, N.; Stilinović, N.; Horvat, O.; Paut-Kusturica, M.; Dugandžija, T.; Tomić, Z.; Sabo, A. Increase and Change in the Pattern of Antibiotic Use in Serbia (2010–2019). Antibiotics 2021, 10, 397. [Google Scholar] [CrossRef]
- Zivanovic, V.; Gojkovic-Bukarica, L.; Scepanovic, R.; Vitorovic, T.; Novakovic, R.; Milanov, N.; Bukumiric, Z.; Carevic, B.; Trajkovic, J.; Rajkovic, J.; et al. Differences in antimicrobial consumption, prescribing and isolation rate of multidrug resistant Klebsiella pneumoniae, Pseudomonas aeruginosa and Acinetobacter baumannii on surgical and medical wards. PLoS ONE 2017, 12, e0175689. [Google Scholar] [CrossRef]
- Sočan, M.; Mrzel, M.; Prosenc, K.; Korva, M.; Avšič-Županc, T.; Poljak, M.; Lunar, M.M.; Zupanič, T. Comparing COVID-19 severity in patients hospitalized for community-associated Delta, BA.1 and BA.4/5 variant infection. Front. Public Health 2024, 12, 1294261. [Google Scholar] [CrossRef] [PubMed]
- Karageorgou, V.; Papaioannou, A.I.; Kallieri, M.; Blizou, M.; Lampadakis, S.; Sfika, M.; Krouskos, A.; Papavasileiou, V.; Strakosha, F.; Vandorou, K.T.; et al. Patients Hospitalized for COVID-19 in the Periods of Delta and Omicron Variant Dominance in Greece: Determinants of Severity and Mortality. J. Clin. Med. 2023, 12, 5904. [Google Scholar] [CrossRef] [PubMed]
- Twohig, K.A.; Nyberg, T.; Zaidi, A.; Thelwall, S.; Sinnathamby, M.A.; Aliabadi, S.; Seaman, S.R.; Harris, R.J.; Hope, R.; Lopez-Bernal, J.; et al. Hospital admission and emergency care attendance risk for SARS-CoV-2 delta (B.1.617.2) compared with alpha (B.1.1.7) variants of concern: A cohort study. Lancet Infect. Dis. 2022, 22, 35–42. [Google Scholar] [CrossRef]
- European Centre for Disease Prevention and Control. Antimicrobial Resistance in the EU/EEA (EARS-Net)—Annual Epidemiological Report 2020; ECDC: Stockholm, Sweden, 2022. [Google Scholar]
- European Centre for Disease Prevention and Control. Antimicrobial Resistance in the EU/EEA (EARS-Net)—Annual Epidemiological Report 2021; ECDC: Stockholm, Sweden, 2022. [Google Scholar]
- Centers for Disease Control and Prevention. HAI Pathogens and Antimicrobial Resistance Report, 2018–2021; CDC, U.S. Department of Health and Human Services: Atlanta, GA, USA, 2023.
- Ćirković, I.; Marković-Denić, L.; Bajčetić, M.; Dragovac, G.; Đorđević, Z.; Mioljević, V.; Urošević, D.; Nikolić, V.; Despotović, A.; Krtinić, G.; et al. Microbiology of Healthcare-Associated Infections: Results of a Fourth National Point Prevalence Survey in Serbia. Antibiotics 2022, 11, 1161. [Google Scholar] [CrossRef]
- Yahya, R.O. Problems Associated with Co-Infection by Multidrug-Resistant Klebsiella pneumoniae in COVID-19 Patients: A Review. Healthcare 2022, 10, 2412. [Google Scholar] [CrossRef]
- Raoofi, S.; PashazadehKan, F.; Rafiei, S.; Hosseinipalangi, Z.; NooraniMejareh, Z.; Khani, S.; Abdollahi, B.; SeyghalaniTalab, F.; Sanaei, M.; Zarabi, F.; et al. Global prevalence of nosocomial infection: A systematic review and meta-analysis. PLoS ONE 2023, 18, e0274248. [Google Scholar] [CrossRef] [PubMed]
- Despotović, A.; Milić, N.; Cirković, A.; Milošević, B.; Jovanović, S.; Mioljević, V.; Obradović, V.; Kovačević, G.; Stevanović, G. Incremental costs of hospital-acquired infections in COVID-19 patients in an adult intensive care unit of a tertiary hospital from a low-resource setting. Antimicrob. Resist. Infect. Control 2023, 12, 39. [Google Scholar] [CrossRef]
- Meybodi, M.M.E.; Foroushani, A.R.; Zolfaghari, M.; Abdollahi, A.; Alipour, A.; Mohammadnejad, E.; Mehrjardi, E.Z.; Seifi, A. Antimicrobial resistance pattern in healthcare-associated infections: Investigation of in-hospital risk factors. Iran. J. Microbiol. 2021, 13, 178–182. [Google Scholar]
- European Centre for Disease Prevention and Control. Antimicrobial Resistance in the EU/EEA (EARS-Net)—Annual Epidemiological Report 2019; ECDC: Stockholm, Sweden, 2020. [Google Scholar]
- Bentivegna, E.; Luciani, M.; Arcari, L.; Santino, I.; Simmaco, M.; Martelletti, P. Reduction of Multidrug-Resistant (MDR) Bacterial Infections during the COVID-19 Pandemic: A Retrospective Study. Int. J. Environ. Res. Public Health 2021, 18, 1003. [Google Scholar] [CrossRef]
- Xu, L.; Sun, X.; Ma, X. Systematic review and meta-analysis of mortality of patients infected with carbapenem-resistant Klebsiella pneumoniae. Ann. Clin. Microbiol. Antimicrob. 2017, 16, 18. [Google Scholar] [CrossRef]
- Luchian, N.; Olaru, I.; Pleșea-Condratovici, A.; DuceacCovrig, M.; Mătăsaru, M.; Dabija, M.G.; Elkan, E.M.; Dabija, V.A.; Eva, L.; Duceac, L.D. Clinical and Epidemiological Aspects on Healthcare-Associated Infections with Acinetobacter spp. in a Neurosurgery Hospital in North-East Romania. Medicina 2025, 61, 990. [Google Scholar] [CrossRef] [PubMed]
- Alotaibi, T.; Abuhaimed, A.; Alshahrani, M.; Albdelhady, A.; Almubarak, Y.; Almasari, O. Prevalence of multidrug-resistant Acinetobacter baumannii in a critical care setting: A tertiary teaching hospital experience. SAGE Open Med. 2021, 9, 20503121211001144. [Google Scholar] [CrossRef] [PubMed]
- Bostanghadiri, N.; Narimisa, N.; Mirshekar, M.; Dadgar-Zankbar, L.; Taki, E.; Navidifar, T.; Darban-Sarokhalil, D. Prevalence of colistin resistance in clinical isolates of Acinetobacter baumannii: A systematic review and meta-analysis. Antimicrob. Resist. Infect. Control 2024, 13, 24. [Google Scholar] [CrossRef]
- Sokolović, D.; Drakul, D.; Vujić-Aleksić, V.; Joksimović, B.; Marić, S.; Nežić, L. Antibiotic consumption and antimicrobial resistance in the SARS-CoV-2 pandemic: A single-center experience. Front. Pharmacol. 2023, 14, 1067973. [Google Scholar] [CrossRef]
- WHO. WHO Bacterial Priority Pathogens List, 2024: Bacterial Pathogens of Public Health Importance to Guide Research, Development and Strategies to Prevent and Control Antimicrobial Resistance; World Health Organization: Geneva, Switzerland, 2024. [Google Scholar]
- Mesquita, G.P.; Costa, M.C.C.; Silva, M.A.; Araújo, L.G.; Vila Nova, B.G.; Castro, É.J.M.; Castelo Branco, L.C.M.; Silva, R.C.S.D.; Marques, S.G.; Abreu, A.G. Antimicrobial resistance of Pseudomonas aeruginosa isolated from patients with pneumonia during the COVID-19 pandemic and pre-pandemic periods in Northeast Brazil. Braz. J. Med. Biol. Res. 2023, 56, e12726. [Google Scholar] [CrossRef]
- Serretiello, E.; Manente, R.; Dell’Annunziata, F.; Folliero, V.; Iervolino, D.; Casolaro, V.; Perrella, A.; Santoro, E.; Galdiero, M.; Capunzo, M.; et al. Antimicrobial Resistance in Pseudomonas aeruginosa before and during the COVID-19 Pandemic. Microorganisms 2023, 11, 1918. [Google Scholar] [CrossRef]
- Araya, S.; Gebreyohannes, Z.; Tadlo, G.; Gessew, G.T.; Negesso, A.E. Epidemiology and Multidrug Resistance of Pseudomonas aeruginosa and Acinetobacter baumanni Isolated from Clinical Samples in Ethiopia. Infect. Drug Resist. 2023, 16, 2765–2773. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Li, Y.; Zeng, J.; Chang, Y.; Han, S.; Zhao, J.; Fan, Y.; Xiong, Z.; Zou, X.; Wang, C.; et al. Risk Factors for Mortality of Inpatients with Pseudomonas aeruginosa Bacteremia in China: Impact of Resistance Profile in the Mortality. Infect. Drug Resist. 2020, 13, 4115–4123. [Google Scholar] [CrossRef]
- WHO. WHO Reports Widespread Overuse of Antibiotics in Patients Hospitalized with COVID-19; WHO: Geneva, Switzerland, 2024. [Google Scholar]
- Nandi, A.; Pecetta, S.; Bloom, D.E. Global antibiotic use during the COVID-19 pandemic: Analysis of pharmaceutical sales data from 71 countries, 2020–2022. eClinicalMedicine 2023, 57, 101848. [Google Scholar] [CrossRef]
- Sullivan, C.; Fisher, C.R.; Grabowsky, L.; Sertkaya, A.; Berlind, A.; Mallick, S. Combating Antimicrobial Resistance During the COVID19 Pandemic: Perceived Risks and Protective Practices; Office of the Assistant Secretary for Planning and Evaluation, U.S. Department of Health and Human Services: Washington, DC, USA, 2025.
- Despotović, A.; Barać, A.; Cucanić, T.; Cucanić, K.; Stevanović, G. Antibiotic (Mis)Use in COVID-19 Patients before and after Admission to a Tertiary Hospital in Serbia. Antibiotics 2022, 11, 847. [Google Scholar] [CrossRef] [PubMed]
- Prijić, A.; Gazibara, T.; Prijić, S.; Mandić-Rajčević, S.; Maksimović, N. Factors Associated with the Antibiotic Treatment of Children Hospitalized for COVID-19 during the Lockdown in Serbia. Int. J. Environ. Res. Public Health 2022, 19, 15590. [Google Scholar] [CrossRef] [PubMed]
- Filimonovic, J.; Ristić, Z.S.; Gazibara, T.; Saponjic, V.; Dotlic, J.; Jovanovic, V.; Arsovic, A.; Vukajlovic, I.; Joksimovic, B.; Sokolovic, D.; et al. Trends and patterns of antibiotics use in Serbia from 2006 to 2021: Pre-COVID-19 period versus COVID-19 pandemic. Am. J. Infect. Control 2024, 52, 293–304. [Google Scholar] [CrossRef]
- European Centre for Disease Prevention and Control. Antimicrobial Consumption in the EU/EEA (ESAC-Net)—Annual Epidemiological Report 2021; ECDC: Stockholm, Sweden, 2022. [Google Scholar]
- Andrews, A.; Budd, E.L.; Hendrick, A.; Ashiru-Oredope, D.; Beech, E.; Hopkins, S.; Gerver, S.; Muller-Pebody, B. The Amu Covid-Stakeholder Group. Surveillance of Antibacterial Usage during the COVID-19 Pandemic in England, 2020. Antibiotics 2021, 10, 841. [Google Scholar] [CrossRef] [PubMed]
- Malik, S.S.; Mundra, S. Increasing Consumption of Antibiotics during the COVID-19 Pandemic: Implications for Patient Health and Emerging Anti-Microbial Resistance. Antibiotics 2022, 12, 45. [Google Scholar] [CrossRef] [PubMed]
- Rojas-Garcia, P.; Antoñanzas, F. Analysis of the Prescription of Antibiotics During the Implementation of COVID-19 Personal Protection Measures in a Regional Health System. Clin. Outcomes Res. 2021, 13, 927–936. [Google Scholar] [CrossRef]
- Elsafi, S.H.; Almutairi, S.H.; Alsulaimani, M.A.; AlBahrani, S.; Al-Maqati, T.N.; Alanazi, W.K.; Alanazi, M.N.; Alamri, A.A.; Alkhathami, M.H.; Alshammari, R.A.; et al. The Trend of Antibiotic Consumption After the COVID-19 Pandemic: Approach to Future Outbreaks. Infect. Drug Resist. 2024, 17, 2227–2236. [Google Scholar] [CrossRef]
- Foxlee, N.D.; Lui, A.; Mathias, A.; Townell, N.; Lau, C.L. Antibiotic Consumption in Vanuatu before and during the COVID-19 Pandemic, 2018 to 2021: An Interrupted Time Series Analysis. Trop. Med. Infect. Dis. 2022, 8, 23. [Google Scholar] [CrossRef]
- Massarine, N.C.M.; de Souza, G.H.A.; Nunes, I.B.; Salomé, T.M.; Barbosa, M.D.S.; Faccin, I.; Rossato, L.; Simionatto, S. How Did COVID-19 Impact the Antimicrobial Consumption and Bacterial Resistance Profiles in Brazil? Antibiotics 2023, 12, 1374. [Google Scholar] [CrossRef] [PubMed]
- Fukushige, M.; Ngo, N.H.; Lukmanto, D.; Fukuda, S.; Ohneda, O. Effect of the COVID-19 pandemic on antibiotic consumption: A systematic review comparing 2019 and 2020 data. Front. Public Health 2022, 10, 946077. [Google Scholar] [CrossRef]
- Rusic, D.; Vilovic, M.; Bukic, J.; Leskur, D.; SeseljaPerisin, A.; Kumric, M.; Martinovic, D.; Petric, A.; Modun, D.; Bozic, J. Implications of COVID-19 Pandemic on the Emergence of Antimicrobial Resistance: Adjusting the Response to Future Outbreaks. Life 2021, 11, 220. [Google Scholar] [CrossRef]
- Granata, G.; Schiavone, F.; Pipitone, G.; Taglietti, F.; Petrosillo, N. Antibiotics Use in COVID-19 Patients: A Systematic Literature Review. J. Clin. Med. 2022, 11, 7207. [Google Scholar] [CrossRef]
- Gautret, P.; Lagier, J.C.; Honoré, S.; Hoang, V.T.; Colson, P.; Raoult, D. Hydroxychloroquine and azithromycin as a treatment of COVID-19: Results of an open label non-randomized clinical trial revisited. Int. J. Antimicrob. Agents 2021, 57, 106243. [Google Scholar] [CrossRef]
- COVID-19 Rapid Guideline: Managing COVID-19; National Institute for Health and Care Excellence (NICE): London, UK, 2025; (NICE Clinical Guidelines, No. 191.). Available online: https://www.ncbi.nlm.nih.gov/books/NBK571450/ (accessed on 5 June 2025).
- COVID-19 Rapid Guideline: Managing Symptoms (Including at the End of Life) in the Community; National Institute for Health and Care Excellence (NICE): London, UK, 2020; (NICE Guideline, No. 163.). Available online: https://www.ncbi.nlm.nih.gov/books/NBK566885/ (accessed on 5 June 2025).
- World Health Organization. Clinical Management of COVID-19: Interim Guidance; World Health Organization: Geneva, Switzerland, 2020; Available online: https://iris.who.int/handle/10665/332196 (accessed on 5 June 2025).
- Karruli, A.; Boccia, F.; Gagliardi, M.; Patauner, F.; Ursi, M.P.; Sommese, P.; De Rosa, R.; Murino, P.; Ruocco, G.; Corcione, A.; et al. Multidrug-Resistant Infections and Outcome of Critically Ill Patients with Coronavirus Disease 2019: A Single Center Experience. Microb. Drug Resist. 2021, 27, 1167–1175. [Google Scholar] [CrossRef]
- Verma, V.; Valsan, C.; Mishra, P.; Mund, K.; Dutta, S.; Anke, G.; Sasi, H.; Shah, D. Antimicrobial Resistance Profile in ICU Patients Across India: A Multicenter, Retrospective, Observational Study. Cureus 2024, 16, e57489. [Google Scholar] [CrossRef] [PubMed]
- Moise, P.A.; Gonzalez, M.; Alekseeva, I.; Lopez, D.; Akrich, B.; DeRyke, C.A.; Chen, W.T.; Pavia, J.; Palermo, B.; Hackel, M.; et al. Collective assessment of antimicrobial susceptibility among the most common Gram-negative respiratory pathogens driving therapy in the ICU. JAC Antimicrob. Resist. 2021, 3, dlaa129. [Google Scholar] [CrossRef]
- Ripa, M.; Galli, L.; Poli, A.; Oltolini, C.; Spagnuolo, V.; Mastrangelo, A.; Muccini, C.; Monti, G.; De Luca, G.; Landoni, G.; et al. COVID-BioB study group. Secondary infections in patients hospitalized with COVID-19: Incidence and predictive factors. Clin. Microbiol. Infect. 2021, 27, 451–457. [Google Scholar] [CrossRef]
- Temperoni, C.; Caiazzo, L.; Barchiesi, F. High Prevalence of Antibiotic Resistance among Opportunistic Pathogens Isolated from Patients with COVID-19 under Mechanical Ventilation: Results of a Single-Center Study. Antibiotics 2021, 10, 1080. [Google Scholar] [CrossRef] [PubMed]
- Novović, K.; KuzmanovićNedeljković, S.; Poledica, M.; Nikolić, G.; Grujić, B.; Jovčić, B.; Kojić, M.; Filipić, B. Virulence potential of multidrug-resistant Acinetobacter baumannii isolates from COVID-19 patients on mechanical ventilation: The first report from Serbia. Front. Microbiol. 2023, 14, 1094184. [Google Scholar] [CrossRef] [PubMed]
- Araujo, J.M.; de Almeida Junior, J.N.; Magri, M.M.C.; Costa, S.F.; Guimarães, T. Epidemiological Assessment and Risk Factors for Mortality of Bloodstream Infections by Candida sp. and the Impact of the COVID-19 Pandemic Era. J. Fungi 2024, 10, 268. [Google Scholar] [CrossRef]
- Lobo, A.P.; Cardoso-Dos-Santos, A.C.; Rocha, M.S.; Pinheiro, R.S.; Bremm, J.M.; Macário, E.M.; Oliveira, W.K.; França, G.V.A. COVID-19 epidemic in Brazil: Where are we at? Int. J. Infect. Dis. 2020, 97, 382–385. [Google Scholar] [CrossRef] [PubMed]
- Seagle, E.E.; Jackson, B.R.; Lockhart, S.R.; Georgacopoulos, O.; Nunnally, N.S.; Roland, J.; Barter, D.M.; Johnston, H.L.; Czaja, C.A.; Kayalioglu, H.; et al. The Landscape of CandidemiaDuring the Coronavirus Disease 2019 (COVID-19) Pandemic. Clin. Infect. Dis. 2022, 74, 802–811. [Google Scholar] [CrossRef] [PubMed]
- Davies, K.; Lawrence, J.; Berry, C.; Davis, G.; Yu, H.; Cai, B.; Gonzalez, E.; Prantner, I.; Kurcz, A.; Macovei, I.; et al. Risk Factors for Primary Clostridium difficile Infection; Results From the Observational Study of Risk Factors for Clostridium difficile Infection in Hospitalized Patients With Infective Diarrhea (ORCHID). Front. Public Health 2020, 8, 293. [Google Scholar] [CrossRef] [PubMed]
- Bachour, S.P.; Dalal, R.; Allegretti, J.R. The impact of the COVID-19 pandemic on Clostridioides difficile infection and utilization of fecal microbiota transplantation. Ther. Adv. Gastroenterol. 2023, 16, 17562848231165581. [Google Scholar] [CrossRef]
Patients/Periods | I N (%) | II N (%) | III N (%) | p Δ II/I | p Δ III/I |
---|---|---|---|---|---|
No. of patients (total) | 18,815 | 8927 | 13,402 | p < 0.001 | p < 0.05 |
No. of patients (ICU) (%) | 4603 (24.5) | 2043 (22.9) | 3095 (23.1) | p < 0.001 | p < 0.001 |
No. of patient on MV (%) | 485 (10.7) | 1424 (72.4) | 1183 (36.4) | p = 0.002 | p > 0.05 |
Average days of hospital stay | 5.8 | 7.6 | 6.1 | p < 0.05 | p > 0.05 |
Average days of hospital stay (ICU) | 35 | 9.5 | 21.5 | p < 0.05 | p > 0.05 |
Indications/Periods | I N (%) | II N (%) | III N (%) | p ΔII/I | p ΔIII/I |
---|---|---|---|---|---|
Respiratory tract infections * | 5190 (45) | 6478 (47.6) | 5149 (31.1) | p > 0.05 | p > 0.05 |
Surgical wound infections | 556 (4.7) | 54 (0.4) | 266 (1.6) | p < 0.05 | p > 0.05 |
Sepsis/bacteremia | 59 (0.5) | 23 (0.2) | 39 (0.2) | p > 0.05 | p > 0.05 |
Urinary tract infections | 4648 (40.1) | 1260 (9.3) | 1914 (11.6) | p < 0.05 | p < 0.05 |
Skin and soft tissue infections | 1050 (9.1) | 586 (4.3) | 965 (5.7) | p < 0.05 | p > 0.05 |
COVID-19, virus identified | 0 (0) | 5137 (37.7) | 8095 (49) | p < 0.001 | p < 0.001 |
C. difficile infections | 67 (0.6) | 69 (0.5) | 120 (0.8) | p > 0.05 | p < 0.05 |
Total | 11,570 (100) | 13,607 (100) | 16,548 (100) | p > 0.05 | p < 0.05 |
Isolates/Periods | I N (%) | II N (%) | III N (%) | p ΔII/I | p ΔIII/I |
---|---|---|---|---|---|
Escherichia coli | 612 (18.2) | 174 (6.2) | 361 (11.6) | p < 0.05 | p > 0.05 |
Klebsiella pneumoniae (KPN) | 321 (9.5) | 267 (9.6) | 369 (11.8) | p > 0.05 | p > 0.05 |
Acinetobacter baumannii (ABA) | 163 (4.8) | 357 (12.9) | 288 (9.2) | p = 0.021 | p > 0.05 |
Pseudomonas aeruginosa (PAE) | 199 (5.9) | 121 (4.4) | 111 (3.6) | p = 0.003 | p = 0.001 |
Staphylococcus aureus | 164 (4.9) | 61 (2.2) | 96 (3.1) | p < 0.05 | p > 0.05 |
Staphylococcus epidermidis | 97 (2.8) | 174 (6.2) | 103 (3.3) | p < 0.05 | p > 0.05 |
Proteus mirabilis | 181 (5.4) | 110 (3.9) | 133 (4.3) | p < 0.05 | p > 0.05 |
Enterococcus faecalis | 294 (8.7) | 160 (5.7) | 142 (4.5) | p > 0.05 | p < 0.05 |
Enterococcus faecium | 77 (2.3) | 130 (4.6) | 115 (3.6) | p < 0.05 | p > 0.05 |
Enterococcus spp. * | 372 (11.1) | 310 (11.2) | 475 (15.2) | p > 0.05 | p > 0.05 |
Enterobacter spp. | 94 (2.8) | 27 (0.9) | 44 (1.4) | p < 0.05 | p < 0.05 |
Streptococcus spp. | 172 (5.1) | 121 (4.3) | 62 (2) | p < 0.05 | p < 0.05 |
Candida spp. ** | 49 (1.4) | 286 (10.3) | 249 (7.9) | p < 0.001 | p < 0.001 |
Others *** | 563 (16.8) | 474 (17.1) | 568 (18.2) | p > 0.05 | p > 0.05 |
No. of total isolates | 3358 (100) | 2772 (100) | 3116 (100) | p > 0.05 | p > 0.05 |
KPN | ABA | PAE | |||||||
---|---|---|---|---|---|---|---|---|---|
Site of Infection | I N (%) | II N (%) | III N (%) | I N (%) | II N (%) | III N (%) | I N (%) | II N (%) | III N (%) |
BSI | 17 (5) | 32 (12) | 42 (11) | 16 (10) | 78 (22) | 66 (23) | 11 (6) | 7 (6) | 10 (9) |
RTI | 12 (4) | 23 (9) | 14 (4) | 18 (11) | 25 (7) | 13 (4) | 19 (9) | 21 (17) | 6 (6) |
UTI | 201 (63) | 59 (22) | 125 (34) | 32 (20) | 17 (5) | 25 (9) | 74 (37) | 18 (15) | 22 (20) |
CLABSI | 2 (1) | 17 (6) | 15 (4) | 3 (2) | 34 (10) | 12 (4) | 4 (2) | 3 (3) | 5 (5) |
CAUTI | 13 (4) | 112 (42) | 94 (25) | 29 (18) | 180 (50) | 128 (44) | 20 (10) | 49 (41) | 16 (14) |
SSTI | 52 (16) | 21 (8) | 55 (15) | 54 (33) | 16 (5) | 37 (13) | 51 (25) | 11 (9) | 38 (34) |
Other infections * | 25 (8) | 3 (1) | 24 (6) | 11 (7) | 6 (2) | 8 (3) | 21 (11) | 11 (9) | 14 (12) |
Total | 321 (100) | 267 (100) | 369 (100) | 163 (100) | 357 (100) | 288 (100) | 199 (100) | 121 (100) | 111 (100) |
Rank | I | II | III |
---|---|---|---|
1. | Ceftriaxone | Ceftriaxone (+56%) | Ceftriaxone (+40%) |
2. | Metronidazole | Levofloxacin (+386%) | Levofloxacin (+200%) |
3. | Amoxicillin–clavulanic acid | Meropenem (+176%) | Metronidazole (+5%) |
4. | Levofloxacin | Vancomycin (+511%) | Meropenem (+168%) |
5. | Meropenem | Azithromycin (+186%) | Amoxicillin–clavulanic acid (−20%) |
6. | Gentamicin | Metronidazole (−42%) | Vancomycin (+200%) |
7. | Azithromycin | Amoxicillin–clavulanic acid (−33%) | Cefixime (+169%) |
8. | Vancomycin | Cefepime (+86%) | Azithromycin (0%) |
9. | Cefepime | Cefixime (+38%) | Cefepime (+66%) |
10. | Cefixime | Gentamicin (−62%) | Gentamicin (−32%) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Savic, P.; Bukarica, L.G.; Stevanovic, P.; Vitorovic, T.; Bukumiric, Z.; Vucicevic, O.; Milanov, N.; Zivanovic, V.; Bukarica, A.; Gostimirovic, M. Increased Antimicrobial Consumption, Isolation Rate, and Resistance Profiles of Multi-Drug Resistant Klebsiella pneumoniae, Pseudomonas aeruginosa, and Acinetobacter baumannii During the COVID-19 Pandemic in a Tertiary Healthcare Institution. Antibiotics 2025, 14, 871. https://doi.org/10.3390/antibiotics14090871
Savic P, Bukarica LG, Stevanovic P, Vitorovic T, Bukumiric Z, Vucicevic O, Milanov N, Zivanovic V, Bukarica A, Gostimirovic M. Increased Antimicrobial Consumption, Isolation Rate, and Resistance Profiles of Multi-Drug Resistant Klebsiella pneumoniae, Pseudomonas aeruginosa, and Acinetobacter baumannii During the COVID-19 Pandemic in a Tertiary Healthcare Institution. Antibiotics. 2025; 14(9):871. https://doi.org/10.3390/antibiotics14090871
Chicago/Turabian StyleSavic, Predrag, Ljiljana Gojkovic Bukarica, Predrag Stevanovic, Teodora Vitorovic, Zoran Bukumiric, Olivera Vucicevic, Nenad Milanov, Vladimir Zivanovic, Ana Bukarica, and Milos Gostimirovic. 2025. "Increased Antimicrobial Consumption, Isolation Rate, and Resistance Profiles of Multi-Drug Resistant Klebsiella pneumoniae, Pseudomonas aeruginosa, and Acinetobacter baumannii During the COVID-19 Pandemic in a Tertiary Healthcare Institution" Antibiotics 14, no. 9: 871. https://doi.org/10.3390/antibiotics14090871
APA StyleSavic, P., Bukarica, L. G., Stevanovic, P., Vitorovic, T., Bukumiric, Z., Vucicevic, O., Milanov, N., Zivanovic, V., Bukarica, A., & Gostimirovic, M. (2025). Increased Antimicrobial Consumption, Isolation Rate, and Resistance Profiles of Multi-Drug Resistant Klebsiella pneumoniae, Pseudomonas aeruginosa, and Acinetobacter baumannii During the COVID-19 Pandemic in a Tertiary Healthcare Institution. Antibiotics, 14(9), 871. https://doi.org/10.3390/antibiotics14090871