A Comparative Study of Ceftazidime–Avibactam and Meropenem-Based Regimens in the Treatment of Carbapenem-Resistant Gram-Negative Bacterial Infections in Intensive Care Units
Abstract
1. Introduction
2. Results
2.1. Study Population
2.2. Mortality Analysis
3. Discussion
4. Materials and Methods
4.1. Data Collection and Definitions
4.1.1. Inclusion Criteria
- (1)
- Age ≥ 18 years
- (2)
- Isolation of CRGNB from appropriate clinical samples
- (3)
- Receipt of treatment with either CAZ/AVI or alternative antibiotic regimens (meropenem plus polymyxin or meropenem plus amikacin)
- (4)
- Diagnosis of infection confirmed by clinical and laboratory findings
4.1.2. Exclusion Criteria
- (1)
- Patients with colonization who did not meet the diagnostic criteria for infection
- (2)
- Patients who initiated treatment at an external center and for whom complete clinical data were unavailable.
4.2. Microbiological Analysis
4.3. Treatment Approaches
4.4. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Tamma, P.D.; Aitken, S.L.; Bonomo, R.A.; Mathers, A.J.; van Duin, D.; Clancy, C.J. Infectious Diseases Society of America Guidance on the Treatment of Extended-Spectrum β-lactamase Producing Enterobacterales (ESBL-E), Carbapenem-Resistant Enterobacterales (CRE), and Pseudomonas aeruginosa with Difficult-to-Treat Resistance (DTR-P. aeruginosa). Clin. Infect. Dis. 2021, 72, e169–e183. [Google Scholar]
- Kuloglu, T.O.; Unuvar, G.K.; Cevahir, F.; Kilic, A.U.; Alp, E. Risk factors and mortality rates of carbapenem-resistant gram-negative bacterial infections in intensive care units. J. Intensive Med. 2024, 4, 347–354. [Google Scholar] [CrossRef]
- Yu, C.W.; Tsai, M.; Liao, C.; Yang, C. Ceftazidime-Avibactam for the Treatment of Carbapenem-Resistant Klebsiella Pneumoniae Infection: A Retrospective, Single Center Study. Infect. Drug Resist. 2024, 17, 5363–5374. [Google Scholar] [CrossRef]
- Corbella, L.; Boán, J.; San-Juan, R.; Fernández-Ruiz, M.; Carretero, O.; Lora, D.; Hernández-Jiménez, P.; Ruiz-Ruigómez, M.; Rodríguez-Goncer, I.; Silva, J.T.; et al. Effectiveness of ceftazidime-avibactam for the treatment of infections due to Pseudomonas aeruginosa. Int. J. Antimicrob. Agents 2022, 59, 106517. [Google Scholar] [CrossRef]
- Dumlu, R.; Şahin, M. Ceftazidime-Avibactam Versus Polymyxin-Based Combination Therapies: A Study on 30-Day Mortality in Carbapenem-Resistant Enterobacterales Bloodstream Infections in an OXA-48-Endemic Region. Antibiotics 2024, 13, 990. [Google Scholar] [CrossRef]
- Chen, J.; Hu, Q.; Zhou, P.; Deng, S. Ceftazidime-avibactam versus polymyxins in treating patients with carbapenem-resistant Enterobacteriaceae infections: A systematic review and meta-analysis. Infection 2024, 52, 19–28. [Google Scholar] [CrossRef]
- Tamma, P.D.; Heil, E.L.; Justo, J.A.; Mathers, A.J.; Satlin, M.J.; Bonomo, R.A. Infectious Diseases Society of America 2024 Guidance on the Treatment of Antimicrobial-Resistant Gram-Negative Infections. Clin. Infect. Dis. 2024; online ahead of print. [Google Scholar]
- Huang, R.C.; Chen, L.Y.; Wang, Y.C.; Chiu, C.H. Effectiveness comparison between ceftazidime-avibactam and carbapenem-based regimens in nosocomial carbapenem-resistant Klebsiella pneumoniae bloodstream infections. J. Microbiol. Immunol. Infect. 2025; in press. [Google Scholar] [CrossRef] [PubMed]
- Todi, S.; Sathe, P.; V, R.; Swaminathan, S.; Talwar, D.; Prayag, P.; Rao, P.V.; Sabnis, K.; Kamat, S.; Mane, A.; et al. Real-World Evidence on Use of Ceftazidime-Avibactam in the Management of Gram-Negative Infections: A Retrospective Analysis. Cureus 2024, 16, e70234. [Google Scholar] [CrossRef] [PubMed]
- Li, D.; Fei, F.; Yu, H.; Huang, X.; Long, S.; Zhou, H.; Zhang, J. Ceftazidime-Avibactam Therapy Versus Ceftazidime-Avibactam-Based Combination Therapy in Patients With Carbapenem-Resistant Gram-Negative Pathogens: A Meta-Analysis. Front. Pharmacol. 2021, 12, 707499. [Google Scholar] [CrossRef]
- Doi, Y. Treatment Options for Carbapenem-resistant gram-negative Bacterial Infections. Clin. Infect. Dis. 2019, 69 (Suppl. 7), S565–S575. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Huang, H.B.; Peng, J.M.; Weng, L.; Du, B. Efficacy and Safety of Ceftazidime-Avibactam for the Treatment of Carbapenem-Resistant Enterobacterales Bloodstream Infection: A Systematic Review and Meta-Analysis. Microbiol. Spectr. 2022, 10, e0260321. [Google Scholar] [CrossRef]
- Cetinkol, Y.; Yildirim, A.; Calgin, M. Evaluation of ceftazidime-avibactam efficacy in gram-negative bacteria. Med. Sci. 2022, 11, 1040–1043. [Google Scholar] [CrossRef]
- Koca, Ö.; Tığlı, G.A.; Özen, H.N.; Çekin, Y.; Seyman, D. Evaluation of ceftazidime-avibactam susceptibility in carbapenem resistant Klebsiella pneumoniae and Pseudomonas aeruginosa isolates. J. Med. Palliat. Care 2023, 4, 625–629. [Google Scholar] [CrossRef]
- Paschke, P.; Miczek, I.; Sambura, M.; Rosołowska-Żak, S.; Pałuchowska, J.; Szymkowicz, A. Effectiveness of Ceftazidime/Avibactam treatment for infections caused by Klebsiella pneumoniae Carbapenemase (KPC), a 30-day mortality perspective. Comparison of results with control groups treated with other antibiotics. J. Educ. Health Sport 2024, 71, 49182. [Google Scholar] [CrossRef]
- Xiao, S.; Fu, Q.; Miao, Y.; Zhao, M.; Lu, S.; Xu, J.; Zhao, W. Clinical efficacy and drug resistance of ceftazidime-avibactam in the treatment of Carbapenem-resistant gram-negative bacilli infection. Front. Microbiol. 2023, 14, 1198926. [Google Scholar] [CrossRef]
- Önal, U.; Tüzemen, Ü.; Küçükdemirci Kaya, P.; İşçimen, R.; Kelebek Girgin, N.; Özakın, C.; Kahveci, F.; Akalın, H. A comparative study of ceftazidime/avibactam-based and fosfomycin plus meropenem-based regimens for managing infections caused by carbapenem-resistant Klebsiella pneumoniae in critically ill patients. J. Chemother. 2025, 37, 1–9. [Google Scholar] [CrossRef]
- Deng, S.; Chen, J.; Zhou, P.; Hu, Q. Mortality-related risk factors for carbapenem-resistant Enterobacteriaceae infection with focus on antimicrobial regimens optimization: A real-world retrospective study in China. BMC Infect. Dis. 2025, 25, 110. [Google Scholar] [CrossRef]
- Castón, J.J.; Cano, A.; Pérez-Camacho, I.; Aguado, J.M.; Carratalá, J. Impact of ceftazidime/avibactam versus best available therapy on mortality from infections caused by carbapenemase-producing Enterobacterales (CAVICOR study). J. Antimicrob. Chemother. 2022, 77, 1452–1460. [Google Scholar] [CrossRef]
- Vo-Pham-Minh, T.; Duong-Thi-Thanh, V.; Nguyen, T.; Phan-Tran-Xuan, Q.; Phan-Thi, H.; Bui-Anh, T.; Duong-Thien, P.; Duong-Quy, S. The Impact of Risk Factors on Treatment Outcomes of Nosocomial Pneumonia Due to Gram-Negative Bacteria in the Intensive Care Unit. Pulm. Ther. 2021, 7, 563–574. [Google Scholar] [CrossRef]
- Stoian, M.; Andone, A.; Bândilă, S.R.; Onișor, D.; Laszlo, S.Ș.; Lupu, G.; Danielescu, A.; Baba, D.-F.; Văsieșiu, A.M.; Manea, A.; et al. Mechanical Ventilator-Associated Pneumonia in the COVID-19 Pandemic Era: A Critical Challenge in the Intensive Care Units. Antibiotic 2025, 14, 28. [Google Scholar] [CrossRef]
- Papazian, L.; Klompas, M.; Luyt, C.E. Ventilator-associated pneumonia in adults: A narrative review. Intensive Care Med. 2020, 46, 888–906. [Google Scholar] [CrossRef]
- Ashour, F.H.; Maghraby, H.M.; Hassan, A.S. Procalcitonin as a diagnostic and prognostic marker of sepsis in critically Ill patients in intensive care unit. Egypt. J. Hosp. Med. 2017, 68, 1272–1278. [Google Scholar] [CrossRef]
- Bassetti, M.; Kanj, S.S.; Kiratisin, P.; Rodrigues, C.; Van Duin, D. Early appropriate diagnostics and treatment of MDR gram-negative infections. JAC Antimicrob. Resist. 2022, 4, dlac089. [Google Scholar] [CrossRef]
- Cabrita, J.A.; Pinheiro, I.; Menezes Falcão, L. Rethinking the concept of sepsis and septic shock. Eur. J. Intern. Med. 2018, 54, 1–5. [Google Scholar] [CrossRef]
- Knaus, W.A.; Draper, E.A.; Wagner, D.P.; Zimmerman, J.E. APACHE II: A severity of disease classification system. Crit. Care Med. 1985, 13, 818–829. [Google Scholar] [CrossRef]
- Centres for Disease Control and Prevention (CDC). People Who Are Immunocompromised 2023 [Updated 11.05.2023; Cited 2025 07.04.2025]. Available online: https://archive.cdc.gov/www_cdc_gov/coronavirus/2019-ncov/need-extra-precautions/people-who-are-immunocompromised.html (accessed on 1 August 2025).
- Andrassy, K.M. Comments on ‘KDIGO 2012 Clinical Practice Guideline for the Evaluation and Management of Chronic Kidney Disease’. Kidney Int. 2013, 84, 622–623. [Google Scholar] [CrossRef]
- European Committee on Antimicrobial Susceptibility Testing (EUCAST). Breakpoint Tables for Interpretation of MICs and Zone Diameters. Version 15.0 [Updated 01.01.2025; Cited 2025 07.04.2025]. Available online: https://www.eucast.org/fileadmin/src/media/PDFs/EUCAST_files/Breakpoint_tables/v_15.0_Breakpoint_Tables.pdf (accessed on 1 August 2025).
Variables | CAZ/AVI (n = 74) | Alternative Antibiotic Regimens (n = 61) | Total (n = 135) | p Value |
---|---|---|---|---|
Age, years ± SD | 62.4 ± 15.3 | 60.4 ± 16.6 | 61.5 ± 15.9 | 0.704 |
Gender (male) | 44 (59.5%) | 34 (55.7%) | 78 (57.8%) | 0.663 |
Underlying disease | ||||
Hypertension | 33 (44.6%) | 27 (44.3%) | 60 (44.4%) | 0.969 |
Diabetes mellitus | 27 (36.5%) | 20 (32.8%) | 47 (34.8%) | 0.789 |
Cerebrovascular disease, dementia | 25 (33.8%) | 19 (31.1%) | 44 (32.6%) | 0.888 |
COPD | 23 (31.1%) | 16 (26.2%) | 39 (28.9%) | 0.669 |
Cardiovascular disease | 22 (29.7%) | 13 (21.3%) | 35 (25.9%) | 0.361 |
Chronic kidney disease | 19 (25.7%) | 12 (19.7%) | 31 (23.0%) | 0.535 |
Malignancy | 15 (20.3%) | 14 (23.0%) | 29 (21.5%) | 0.867 |
Immunosuppression | 13 (17.6%) | 15 (24.6%) | 28 (20.7%) | 0.431 |
Severity of illness | ||||
CCI ± SD | 6.8 ± 3.7 | 5.7 ± 3.0 | 6.3 ± 3.4 | 0.131 |
APACHE II score ± SD | 21.4 ± 6.8 | 19.4 ± 6.9 | 20.5 ± 6.9 | 0.088 |
SOFA score ± SD | 8.2 ± 4.1 | 7.2 ± 3.3 | 7.7 ± 3.8 | 0.129 |
Type of infection | ||||
Pneumonia | 43 (58.1%) | 32 (52.5%) | 75 (55.6%) | 0.511 |
Bloodstream (including CRBSI) | 10 (13.5%) | 15 (24.6%) | 25 (18.5%) | 0.154 |
Urinary tract | 7 (9.5%) | 10 (16.4%) | 17 (12.6%) | 0.343 |
Intraabdominal | 10 (13.5%) | 2 (3.3%) | 12 (8.9%) | 0.076 |
Other | 4 (5.4%) | 2 (3.3%) | 6 (4.4%) | 0.689 |
Baseline pathogen | ||||
Klebsiella pneumoniae | 54 (73.0%) | 39 (63.9%) | 93 (68.9%) | 0.346 |
Pseudomonas aeruginosa | 20 (27.0%) | 22 (36.1%) | 42 (31.1%) | 0.346 |
Polymicrobial infection | 22 (29.7%) | 26 (42.6%) | 48 (35.6%) | 0.169 |
White blood cell count (/µL) ± SD | 11,624 ± 5617 | 12,316 ± 4702 | 11,991 ± 5140 | 0.335 |
C-reactive protein (mg/L) ± SD | 172.8 ± 73.0 | 172.1 ± 75.1 | 172.5 ± 73.7 | 0.954 |
Procalcitonin (ng/mL) ± SD | 17.2 ± 28.5 | 13.6 ± 22.8 | 15.6 ± 26.1 | 0.363 |
Time to antibiotic initiation from index culture (days) ± SD | 3.0 ± 0.8 | 2.9 ± 0.9 | 2.9 ± 0.8 | 0.361 |
Duration of antibiotic therapy (days) ± SD | 11.3 ± 3.4 | 12.1 ± 3.2 | 11.6 ± 3.3 | 0.105 |
Variables | CAZ/AVI (n = 74) | Alternative Antibiotic Regimens (n = 61) | Total (n = 135) | p Values |
---|---|---|---|---|
14-day mortality | 20 (27.0%) | 19 (31.1%) | 39 (28.9%) | 0.738 |
30-day mortality | 31 (41.9%) | 29 (47.5%) | 60 (44.4%) | 0.511 |
90-day mortality | 46 (62.2%) | 40 (65.6%) | 86 (63.7%) | 0.818 |
14-day mortality in the pneumoniae subgroup | 15 (33.3%) | 13 (40.6%) | 28 (37.3%) | 0.789 |
30-day mortality in the pneumoniae subgroup | 23 (51.1%) | 18 (56.3%) | 41 (54.7%) | 0.998 |
90-day mortality in the pneumoniae subgroup | 32 (74.4%) | 24 (75.0%) | 56 (74.7%) | 1.000 |
14-day mortality in BSI subgroup | 1 (10.0%) | 4 (26.7%) | 5 (20.0%) | 0.615 |
30-day mortality in BSI subgroup | 5 (50.0%) | 6 (40.0%) | 11 (44.0%) | 0.697 |
90-day mortality in BSI subgroup | 8 (80.0%) | 9 (60.0%) | 17 (68.0%) | 0.402 |
Clinical success | 48 (64.9%) | 40 (65.6%) | 88 (65.2%) | 0.931 |
Total duration of ICU hospitalization (days) | 44.0 ± 29.1 | 41.5 ± 26.4 | 42.9 ± 27.9 | 0.974 |
Variables | 14-Day Mortality (n = 39) | 14-Day Survival (n = 96) | p Value | 30-Day Mortality (n = 60) | 30-Day Survival (n = 75) | p Value |
---|---|---|---|---|---|---|
Age, years ± SD | 63.5 ± 17.4 | 60.7 ± 15.2 | 0.230 | 64.5 ± 16.1 | 59.1 ± 15.4 | 0.032 |
Gender (male) | 26 (66.7%) | 52 (54.2%) | 0.254 | 37 (61.7%) | 41 (54.7%) | 0.520 |
Underlying disease | ||||||
Hypertension | 20 (51.3%) | 40 (41.7%) | 0.408 | 29 (48.3%) | 31 (41.3%) | 0.416 |
Diabetes mellitus | 20 (51.3%) | 27 (28.1%) | 0.018 | 26 (43.3%) | 21 (28.0%) | 0.094 |
COPD | 16 (41.0%) | 23 (24.0%) | 0.076 | 21 (35.0%) | 18 (24.0%) | 0.226 |
Chronic kidney disease | 10 (25.6%) | 21 (21.9%) | 0.806 | 14 (23.3%) | 17 (22.7%) | 1.000 |
Immunosuppressive condition | 10 (25.6%) | 18 (18.8%) | 0.509 | 14 (23.3%) | 14 (18.7%) | 0.652 |
Cardiovascular disease | 13 (33.3%) | 22 (22.9%) | 0.301 | 19 (31.7%) | 16 (21.3%) | 0.245 |
Cerebrovascular disease, dementia | 12 (30.8%) | 32 (33.3%) | 0.932 | 22 (36.7%) | 22 (29.3%) | 0.472 |
Malignancy | 10 (25.6%) | 19 (19.8%) | 0.604 | 15 (25.0%) | 14 (18.7%) | 0.497 |
Severity of illness | ||||||
CCI ± SD | 7.8 ± 3.6 | 5.7 ± 3.2 | 0.001 | 7.3 ± 3.4 | 5.5 ± 3.2 | 0.003 |
APACHE II score ± SD | 24.7 ± 6.2 | 18.8 ± 6.4 | <0.001 | 23.4 ± 6.0 | 18.3 ± 6.7 | <0.001 |
SOFA score ± SD | 10.4 ± 3.4 | 6.7 ± 3.4 | <0.001 | 9.3 ± 3.6 | 6.5 ± 3.5 | <0.001 |
Type of infection | ||||||
Pneumonia | 28 (71.8%) | 47 (49.0%) | 0.026 | 41 (68.3%) | 34 (45.3%) | 0.012 |
Bloodstream infection (including CRBSI) | 5 (12.8%) | 20 (20.8%) | 0.400 | 11 (18.3%) | 14 (18.7%) | 1.000 |
Urinary tract | 3 (7.7%) | 14 (14.6%) | 0.393 | 11 (14.7%) | 6 (10.0%) | 0.582 |
Intraabdominal | - | 12 (12.5%) | 0.019 | 1 (1.7%) | 11 (14.7%) | 0.020 |
Other | 2 (5.1%) | 4 (4.2%) | 1.000 | 2 (3.3%) | 4 (5.3%) | 0.692 |
Baseline pathogen | ||||||
Klebsiella pneumoniae | 22 (56.4%) | 71 (74.0%) | 0.073 | 36 (60.0%) | 57 (76.0%) | 0.071 |
Pseudomonas aeruginosa | 17 (43.6%) | 25 (26.0%) | 0.073 | 24 (40.0%) | 18 (24.0%) | 0.071 |
Escherichia coli | - | 4 (4.2%) | 0.324 | - | 4 (5.3%) | 0.129 |
Polymicrobial infection | 12 (30.8%) | 36 (37.5%) | 0.588 | 17 (28.3%) | 31 (41.3%) | 0.165 |
White blood cell count (/µL) ± SD | 12,515 ± 5810 | 11,732 ± 4795 | 0.448 | 12,664 ± 5568 | 11,281 ± 4590 | 0.164 |
C-reactive protein (mg/L) ± SD | 187.4 ± 80.8 | 166.4 ± 70.1 | 0.135 | 183.7 ± 77.2 | 163.5 ± 69.9 | 0.114 |
Procalcitonin (ng/mL) ± SD | 29.4 ± 34.9 | 9.7 ± 18.6 | <0.001 | 24.4 ± 33.1 | 8.1 ± 14.7 | <0.001 |
Duration (in days) from culture to antibiotherapy ± SD | 3.2 ± 0.9 | 2.9 ± 0.8 | 0.054 | 3.2 ± 0.9 | 2.7 ± 0.7 | 0.003 |
Variables | B | S.E. | Wald | OR (95% CI) | p Value |
---|---|---|---|---|---|
Age | 0.032 | 0.015 | 4.745 | 1.033 (1.003–1.063) | 0.029 |
SOFA score | 0.152 | 0.059 | 6.664 | 1.164 (1.037–1.306) | 0.010 |
Procalcitonin level | 0.032 | 0.011 | 8.222 | 1.032 (1.010–1.055) | 0.004 |
Duration (in days) from culture to antibiotherapy | 0.751 | 0.259 | 8.385 | 2.120 (1.275–3.526) | 0.004 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Aydın, M.; Aydın, N.N.; Aslan, M.H.; Kahramanoğlu, M. A Comparative Study of Ceftazidime–Avibactam and Meropenem-Based Regimens in the Treatment of Carbapenem-Resistant Gram-Negative Bacterial Infections in Intensive Care Units. Antibiotics 2025, 14, 863. https://doi.org/10.3390/antibiotics14090863
Aydın M, Aydın NN, Aslan MH, Kahramanoğlu M. A Comparative Study of Ceftazidime–Avibactam and Meropenem-Based Regimens in the Treatment of Carbapenem-Resistant Gram-Negative Bacterial Infections in Intensive Care Units. Antibiotics. 2025; 14(9):863. https://doi.org/10.3390/antibiotics14090863
Chicago/Turabian StyleAydın, Murat, Nurten Nur Aydın, Mehtap Hülya Aslan, and Mithat Kahramanoğlu. 2025. "A Comparative Study of Ceftazidime–Avibactam and Meropenem-Based Regimens in the Treatment of Carbapenem-Resistant Gram-Negative Bacterial Infections in Intensive Care Units" Antibiotics 14, no. 9: 863. https://doi.org/10.3390/antibiotics14090863
APA StyleAydın, M., Aydın, N. N., Aslan, M. H., & Kahramanoğlu, M. (2025). A Comparative Study of Ceftazidime–Avibactam and Meropenem-Based Regimens in the Treatment of Carbapenem-Resistant Gram-Negative Bacterial Infections in Intensive Care Units. Antibiotics, 14(9), 863. https://doi.org/10.3390/antibiotics14090863