“Dusting Off the Cobwebs”: Rethinking How We Use New Antibiotics
Abstract
1. Introduction
2. The Current Landscape of Antimicrobial Resistance
2.1. Burden of Disease from ESBL and CRE
2.2. How Bacterial Genes Are Transferred
2.3. How MDR Pathogens Colonize the Gut and Are Then Transmitted Human to Human
2.4. Agriculture/Water and MDR Pathogens
2.5. Paradigm Shift in Approach: Infection Control and AMS in the Acute Care Environment
3. Is It Time to Remove the “New Antibiotic Trophy” from the Shelf?
4. How to Prevent “Antibiotic Trophy Shelving” with Newer Antibiotics
5. A Case for the Use of Newer Antimicrobial Agents
5.1. The Case for Eravacycline
5.2. The Case for Ceftolozane–Tazobactam
5.3. The Case for Sulbactam–Durlobactam
5.4. The Case for Meropenem–Vaborbactam
6. Limitations of Using Newer Antimicrobial Agents
7. Revitalizing Older Antibiotics for Niche Infections
8. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Salam, M.A.; Al-Amin, M.Y.; Salam, M.T.; Pawar, J.S.; Akhter, N.; Rabaan, A.A.; Alqumber, M.A.A. Antimicrobial Resistance: A Growing Serious Threat for Global Public Health. Healthcare 2023, 11, 1946. [Google Scholar] [CrossRef] [PubMed]
- Walsh, T.R.; Gales, A.C.; Laxminarayan, R.; Dodd, P.C. Antimicrobial Resistance: Addressing a Global Threat to Humanity. PLOS Med. 2023, 20, e1004264. [Google Scholar] [CrossRef] [PubMed]
- Naghavi, M.; Vollset, S.E.; Ikuta, K.S.; Swetschinski, L.R.; Gray, A.P.; Wool, E.E.; Aguilar, G.R.; Mestrovic, T.; Smith, G.; Han, C.; et al. Global burden of bacterial antimicrobial resistance 1990–2021: A systematic analysis with forecasts to 2050. Lancet 2024, 404, 1199–1226. [Google Scholar] [CrossRef] [PubMed]
- Baruah, J.; Shantikumar Singh, L.; Salvia, T.; Sarma, J. Antimicrobial resistance a continued global threat to public health—A perspective and mitigation strategies. J. Lab. Physicians 2024, 16, 429–440. [Google Scholar] [CrossRef]
- Ahmed, S.K.; Hussein, S.; Qurbani, K.; Ibrahim, R.H.; Fareeq, A.; Mahmood, K.A.; Mohamed, M.G. Antimicrobial resistance: Impacts, challenges, and future prospects. J. Med. Surg. Public Health 2024, 2, 100081. [Google Scholar] [CrossRef]
- Aljeldah, M.M. Antimicrobial Resistance and Its Spread Is a Global Threat. Antibiotics 2022, 11, 1082. [Google Scholar] [CrossRef]
- Dadgostar, P. Antimicrobial Resistance: Implications and Costs. Infect. Drug Resist. 2019, 12, 3903–3910. [Google Scholar] [CrossRef]
- Baltas, I.; Rawson, T.M.; Houston, H.; Grandjean, L.; Pollara, G. Antimicrobial resistance–attributable mortality: A patient-level analysis. JAC-Antimicrob. Resist. 2024, 6, dlae202. [Google Scholar] [CrossRef]
- Mayito, J.; Dhikusooka, F.; Kibombo, D.; Busuge, A.; Andema, A.; Yayi, A.; Obbo, S.; Walwema, R.; Kakooza, F. Antibiotic Resistance related Mortality, Length of Hospital Stay, and Disability-Adjusted Life Years at select Tertiary Hospitals in Uganda: A retrospective study. medRxiv 2024. [Google Scholar] [CrossRef]
- Daneman, N.; Fridman, D.; Johnstone, J.; Langford, B.J.; Lee, S.M.; MacFadden, D.M.; Mponponsuo, K.; Patel, S.N.; Schwartz, K.L.; Brown, K.A. Antimicrobial resistance and mortality following E. coli bacteremia. eClinicalMedicine 2023, 56, 101781. [Google Scholar] [CrossRef]
- Lakbar, I.; Medam, S.; Ronflé, R.; Cassir, N.; Delamarre, L.; Hammad, E.; Lopez, A.; Lepape, A.; Machut, A.; Boucekine, M.; et al. Association between mortality and highly antimicrobial-resistant bacteria in intensive care unit-acquired pneumonia. Sci. Rep. 2021, 11, 16497. [Google Scholar] [CrossRef] [PubMed]
- Bankar, N.J.; Ugemuge, S.; Ambad, R.S.; Hawale, D.V.; Timilsina, D.R. Implementation of Antimicrobial Stewardship in the Healthcare Setting. Cureus 2022, 14, e26664. [Google Scholar] [CrossRef] [PubMed]
- Barlam, T.F. The state of antibiotic stewardship programs in 2021: The perspective of an experienced steward. Antimicrob. Steward. Healthc. Epidemiol. 2021, 1, e20. [Google Scholar] [CrossRef] [PubMed]
- Barlam, T.F.; Cosgrove, S.E.; Abbo, L.M.; MacDougall, C.; Schuetz, A.N.; Septimus, E.J.; Srinivasan, A.; Dellit, T.H.; Falck-Ytter, Y.T.; Fishman, N.O.; et al. Implementing an Antibiotic Stewardship Program: Guidelines by the Infectious Diseases Society of America and the Society for Healthcare Epidemiology of America. Clin. Infect. Dis. 2016, 62, e51–e77. [Google Scholar] [CrossRef]
- Luciano, A.; Kabbani, S.; Neuhauser, M.M.; McCray, T.T.; Robinson, L.; Rowe, T.; Gouin, K.A. Implementation of core elements of antibiotic stewardship in long-term care facilities—National Healthcare Safety Network, 2019–2022. Antimicrob. Steward. Healthc. Epidemiol. 2025, 5, e86. [Google Scholar] [CrossRef]
- Hwang, S.; Kwon, K.T. Core Elements for Successful Implementation of Antimicrobial Stewardship Programs. Infect. Chemother. 2021, 53, 421–435. [Google Scholar] [CrossRef]
- Pierce, J.; Apisarnthanarak, A.; Schellack, N.; Cornistein, W.; Al Maani, A.; Adnan, S.; Stevens, M.P. Global Antimicrobial Stewardship with a Focus on Low- and Middle-Income Countries: A position statement for the international society for infectious diseases. Int. J. Infect. Dis. 2020, 96, 621–629. [Google Scholar] [CrossRef]
- Ferreira, J.P.; Battaglia, D.; García, A.D.; Tempelman, K.; Bullon, C.; Motriuc, N.; Caudell, M.; Cahill, S.; Song, J.; LeJeune, J. Achieving Antimicrobial Stewardship on the Global Scale: Challenges and Opportunities. Microorganisms 2022, 10, 1599. [Google Scholar] [CrossRef]
- Langford, B.J.; Thomas, S.; Brown, K.; Daneman, N.; Schwartz, K.L.; Leung, V. Resourcing for hospital antibiotic stewardship programs is associated with higher participation in antimicrobial use tracking: A cross-sectional study. Antimicrob. Steward. Healthc. Epidemiol. 2025, 5, e80. [Google Scholar] [CrossRef]
- Kakkar, A.K.; Shafiq, N.; Singh, G.; Ray, P.; Gautam, V.; Agarwal, R.; Muralidharan, J.; Arora, P. Antimicrobial Stewardship Programs in Resource Constrained Environments: Understanding and Addressing the Need of the Systems. Front. Public Health 2020, 8, 140. [Google Scholar] [CrossRef]
- Davido, B.; Salomon, J.; Lawrence, C.; Duran, C.; Batista, R.; de Truchis, P.; Dinh, A. Impact of Fecal Microbiota Transplantation for Decolonization of Multidrug-Resistant Organisms May Vary According to Donor Microbiota. Clin. Infect. Dis. 2018, 66, 1316–1317. [Google Scholar] [CrossRef]
- Bilsen, M.P.; Lambregts, M.M.C.; van Prehn, J.; Kuijper, E.J. Faecal microbiota replacement to eradicate antimicrobial resistant bacteria in the intestinal tract—A systematic review. Curr. Opin. Gastroenterol. 2022, 38, 15–25. [Google Scholar] [CrossRef] [PubMed]
- Dharmaratne, P.; Rahman, N.; Leung, A.; Ip, M. Is there a role of faecal microbiota transplantation in reducing antibiotic resistance burden in gut? A systematic review and Meta-analysis. Ann. Med. 2021, 53, 662–681. [Google Scholar] [CrossRef] [PubMed]
- Chen, S.; Xiao, Y.; Tan, C.; Zhou, J.; Liu, T.; Zhang, S.; Hu, Y.; Liu, Y.; Zheng, M.; Chen, L.; et al. Rapid and actionable nasal-swab screening supports antimicrobial stewardship in patients with pneumonia: A prospective study. Antimicrob. Resist. Infect. Control 2025, 14, 94. [Google Scholar] [CrossRef] [PubMed]
- DeKerlegand, A.; Johnston, E.; Mellor, B.; Schrack, M.R.; O’Neal, C. Implementation of MRSA Nasal Swabs as an Antimicrobial Stewardship Intervention to Decrease Anti-MRSA Therapy in COVID-19 Infection. Antibiotics 2023, 12, 253. [Google Scholar] [CrossRef]
- Smith, M.; Herwaldt, L. Nasal decolonization: What antimicrobials and antiseptics are most effective before surgery and in the ICU. Am. J. Infect. Control. 2023, 51, A64–A71. [Google Scholar] [CrossRef]
- Huang, S.S.; Singh, R.; McKinnell, J.A.; Park, S.; Gombosev, A.; Eells, S.J.; Gillen, D.L.; Kim, D.; Rashid, S.; Macias-Gil, R.; et al. Decolonization to Reduce Postdischarge Infection Risk Among MRSA Carriers. N. Engl. J. Med. 2019, 380, 638–650. [Google Scholar] [CrossRef]
- Westgeest, A.C.; Hanssen, J.L.J.; de Boer, M.G.J.; Schippers, E.F.; Lambregts, M.M.C. Eradication of community-onset Methicillin-resistant Staphylococcus aureus carriage: A narrative review. Clin. Microbiol. Infect. 2025, 31, 173–181. [Google Scholar] [CrossRef]
- Saleem, Z.; Sheikh, S.; Godman, B.; Haseeb, A.; Afzal, S.; Qamar, M.U.; Imam, M.T.; Abuhussain, S.S.A.; Sharland, M. Increasing the use of the WHO AWaRe system in antibiotic surveillance and stewardship programmes in low- and middle-income countries. JAC-Antimicrob. Resist. 2025, 7, dlaf031. [Google Scholar] [CrossRef]
- Gulumbe, B.H.; Danlami, M.B.; Abdulrahim, A. Closing the antimicrobial stewardship gap—A call for LMICs to embrace the global antimicrobial stewardship accreditation scheme. Antimicrob. Resist. Infect. Control. 2024, 13, 19. [Google Scholar] [CrossRef]
- Ventola, C.L. The antibiotic resistance crisis: Part 2: Management strategies and new agents. Pharm. Ther. 2015, 40, 344–352. [Google Scholar]
- Willemsen, A.; Reid, S.; Assefa, Y. A review of national action plans on antimicrobial resistance: Strengths and weaknesses. Antimicrob. Resist. Infect. Control 2022, 11, 90. [Google Scholar] [CrossRef]
- Wasan, H.; Reeta, K.H.; Gupta, Y.K. Strategies to improve antibiotic access and a way forward for lower middle-income countries. J. Antimicrob. Chemother. 2024, 79, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Morency-Potvin, P.; Schwartz, D.N.; Weinstein, R.A. Antimicrobial Stewardship: How the Microbiology Laboratory Can Right the Ship. Clin. Microbiol. Rev. 2017, 30, 381–407. [Google Scholar] [CrossRef] [PubMed]
- Moody, J.; Cosgrove, S.E.; Olmsted, R.; Septimus, E.; Aureden, K.; Oriola, S.; Patel, G.W.; Trivedi, K.K. Antimicrobial Stewardship: A Collaborative Partnership between Infection Preventionists and Healthcare Epidemiologists. Infect. Control. Hosp. Epidemiol. 2012, 33, 328–330. [Google Scholar] [CrossRef] [PubMed]
- Oliveira, M.; Antunes, W.; Mota, S.; Madureira-Carvalho, Á.; Dinis-Oliveira, R.J.; Dias da Silva, D. An Overview of the Recent Advances in Antimicrobial Resistance. Microorganisms 2024, 12, 1920. [Google Scholar] [CrossRef]
- Ventola, C.L. The antibiotic resistance crisis: Part 1: Causes and threats. Pharm. Ther. 2015, 40, 277–283. [Google Scholar]
- Sharma, S.; Chauhan, A.; Ranjan, A.; Mathkor, D.M.; Haque, S.; Ramniwas, S.; Tuli, H.S.; Jindal, T.; Yadav, V. Emerging challenges in antimicrobial resistance: Implications for pathogenic microorganisms, novel antibiotics, and their impact on sustainability. Front. Microbiol. 2024, 15, 1403168. [Google Scholar] [CrossRef]
- Strich, J.R.; Mishuk, A.; Diao, G.; Lawandi, A.; Li, W.; Demirkale, C.Y.; Babiker, A.; Mancera, A.; Swihart, B.J.; Walker, M.; et al. Assessing Clinician Utilization of Next-Generation Antibiotics Against Resistant Gram-Negative Infections in U.S. Hospitals: A Retrospective Cohort Study. Ann. Intern. Med. 2024, 177, 559–572. [Google Scholar] [CrossRef]
- Devi, N.S.; Mythili, R.; Cherian, T.; Dineshkumar, R.; Sivaraman, G.; Jayakumar, R.; Prathaban, M.; Duraimurugan, M.; Chandrasekar, V.; Peijnenburg, W.J. Overview of antimicrobial resistance and mechanisms: The relative status of the past and current. Microbe 2024, 3, 100083. [Google Scholar] [CrossRef]
- Brüssow, H. The antibiotic resistance crisis and the development of new antibiotics. Microb. Biotechnol. 2024, 17, e14510. [Google Scholar] [CrossRef] [PubMed]
- Blomquist, K.C.; Nix, D.E. A Critical Evaluation of Newer β-Lactam Antibiotics for Treatment of Pseudomonas aeruginosa Infections. Ann. Pharmacother. 2021, 55, 1010–1024. [Google Scholar] [CrossRef] [PubMed]
- Dequin, P.-F.; Aubron, C.; Faure, H.; Garot, D.; Guillot, M.; Hamzaoui, O.; Lemiale, V.; Maizel, J.; Mootien, J.Y.; Osman, D.; et al. The place of new antibiotics for Gram-negative bacterial infections in intensive care: Report of a consensus conference. Ann. Intensive Care 2023, 13, 59. [Google Scholar] [CrossRef] [PubMed]
- Ezure, Y.; Rico, V.; Paterson, D.L.; Hall, L.; Harris, P.N.A.; Soriano, A.; A Roberts, J.; Bassetti, M.; Roberts, M.J.; Righi, E.; et al. Efficacy and Safety of Carbapenems vs. New Antibiotics for Treatment of Adult Patients with Complicated Urinary Tract Infections: A Systematic Review and Meta-analysis. Open Forum Infect. Dis. 2020, 9, ofaa480. [Google Scholar] [CrossRef]
- Terreni, M.; Taccani, M.; Pregnolato, M. New Antibiotics for Multidrug-Resistant Bacterial Strains: Latest Research Developments and Future Perspectives. Molecules 2021, 26, 2671. [Google Scholar] [CrossRef]
- Patel, T.S.; Sati, H.; Lessa, F.C.; Patel, P.K.; Srinivasan, A.; Hicks, L.A.; Neuhauser, M.M.; Tong, D.; van der Heijden, M.; Alves, S.C.; et al. Defining access without excess: Expanding appropriate use of antibiotics targeting multidrug-resistant organisms. Lancet Microbe 2024, 5, e93–e98. [Google Scholar] [CrossRef]
- Al-Tawfiq, J.A.; Sah, R.; Mehta, R.; Apostolopoulos, V.; Temsah, M.H.; Eljaaly, K. New antibiotics targeting Gram-negative bacilli. Infez. Med. 2025, 33, 4–14. [Google Scholar]
- Tamma, P.D.; Heil, E.L.; Justo, J.A.; Mathers, A.J.; Satlin, M.J.; Bonomo, R.A. Infectious Diseases Society of America 2024 Guidance on the Treatment of Antimicrobial-Resistant Gram-Negative Infections. Clin. Infect. Dis. 2024. [Google Scholar] [CrossRef]
- Pogue, J.M.; Kaye, K.S.; Cohen, D.A.; Marchaim, D. Appropriate antimicrobial therapy in the era of multidrug-resistant human pathogens. Clin. Microbiol. Infect. 2015, 21, 302–312. [Google Scholar] [CrossRef]
- Morata, L.; Cobos-Trigueros, N.; Martínez, J.A.; Soriano, Á.; Almela, M.; Marco, F.; Sterzik, H.; Núñez, R.; Hernández, C.; Mensa, J. Influence of Multidrug Resistance and Appropriate Empirical Therapy on the 30-Day Mortality Rate of Pseudomonas aeruginosa Bacteremia. Antimicrob. Agents Chemother. 2012, 56, 4833–4837. [Google Scholar] [CrossRef]
- Ohnuma, T.; Chihara, S.; Costin, B.; Treggiari, M.M.; Bartz, R.R.; Raghunathan, K.; Krishnamoorthy, V. Association of Appropriate Empirical Antimicrobial Therapy with In-Hospital Mortality in Patients with Bloodstream Infections in the US. JAMA Netw. Open 2023, 6, e2249353. [Google Scholar] [CrossRef]
- Yang, W.; Zhen, X.; Sun, X.; Khatiwada, S.U.; Yang, D.; Chen, Y.; Dong, P.; Al-Taie, A.; Gordon, J.; Dong, H. Estimating the value of new antibiotic treatment strategies in Zhejiang province, China: Cost-effectiveness analysis based on a validated dynamic model. BMJ Open 2024, 14, e086039. [Google Scholar] [CrossRef] [PubMed]
- Van Helden, S.R.; Schulz, L.T.; Wimmer, M.; Cancelliere, V.L.; Rose, W.E. Finding value in novel antibiotics: How can infectious diseases adopt incremental cost-effectiveness to improve new antibiotic utilization? Diagn. Microbiol. Infect. Dis. 2024, 109, 116245. [Google Scholar] [CrossRef] [PubMed]
- Bianchini, M.L.; Jeffres, M.N.; Campbell, J.D. Cost-Effectiveness Analysis of New Beta-Lactam Beta-Lactamase Inhibitor Antibiotics Versus Colistin for the Treatment of Carbapenem-Resistant Infections. Hosp. Pharm. 2022, 57, 93–100. [Google Scholar] [CrossRef]
- Cohn, J.; Mendelson, M.; Kanj, S.S.; Shafiq, N.; Boszczowski, I.; Laxminarayan, R. Accelerating antibiotic access and stewardship: A new model to safeguard public health. Lancet Infect. Dis. 2024, 24, e584–e590. [Google Scholar] [CrossRef] [PubMed]
- Vickers, R.J.; Bassetti, M.; Clancy, C.J.; Garey, K.W.; Greenberg, D.E.; Nguyen, M.-H.; Roblin, D.; Tillotson, G.S.; Wilcox, M.H. Combating Resistance While Maintaining Innovation: The Future of Antimicrobial Stewardship. Future Microbiol. 2019, 14, 1331–1341. [Google Scholar] [CrossRef]
- Reynolds, D.; Burnham, J.P.; Guillamet, C.V.; McCabe, M.; Yuenger, V.; Betthauser, K.; Micek, S.T.; Kollef, M.H. The threat of multidrug-resistant/extensively drug-resistant Gram-negative respiratory infections: Another pandemic. Eur. Respir. Rev. 2022, 31, 220068. [Google Scholar] [CrossRef]
- Manyi-Loh, C.; Mamphweli, S.; Meyer, E.; Okoh, A. Antibiotic Use in Agriculture and Its Consequential Resistance in Environmental Sources: Potential Public Health Implications. Molecules 2018, 23, 795. [Google Scholar] [CrossRef]
- Karwowska, E. Antibiotic Resistance in the Farming Environment. Appl. Sci. 2024, 14, 5776. [Google Scholar] [CrossRef]
- Chang, Q.; Wang, W.; Regev-Yochay, G.; Lipsitch, M.; Hanage, W.P. Antibiotics in agriculture and the risk to human health: How worried should we be? Evol. Appl. 2015, 8, 240–247. [Google Scholar] [CrossRef]
- Cho, S.; Hiott, L.M.; Read, Q.D.; Damashek, J.; Westrich, J.; Edwards, M.; Seim, R.F.; Glinski, D.A.; McDonald, J.M.B.; Ottesen, E.A.; et al. Distribution of Antibiotic Resistance in a Mixed-Use Watershed and the Impact of Wastewater Treatment Plants on Antibiotic Resistance in Surface Water. Antibiotics 2023, 12, 1586. [Google Scholar] [CrossRef]
- He, Y.; Yuan, Q.; Mathieu, J.; Stadler, L.; Senehi, N.; Sun, R.; Alvarez, P.J.J. Antibiotic resistance genes from livestock waste: Occurrence, dissemination, and treatment. npj Clean Water 2020, 3, 4. [Google Scholar] [CrossRef]
- Williams-Nguyen, J.; Sallach, J.B.; Bartelt-Hunt, S.; Boxall, A.B.; Durso, L.M.; McLain, J.E.; Singer, R.S.; Snow, D.D.; Zilles, J.L. Antibiotics and Antibiotic Resistance in Agroecosystems: State of the Science. J. Environ. Qual. 2016, 45, 394–406. [Google Scholar] [CrossRef] [PubMed]
- Bürgmann, H.; Frigon, D.; Gaze, W.H.; Manaia, C.M.; Pruden, A.; Singer, A.C.; Smets, B.F.; Zhang, T. Water and sanitation: An essential battlefront in the war on antimicrobial resistance. FEMS Microbiol. Ecol. 2018, 94, fiy101. [Google Scholar] [CrossRef] [PubMed]
- Larsson, D.G.J.; Flach, C.-F. Antibiotic resistance in the environment. Nat. Rev. Microbiol. 2022, 20, 257–269. [Google Scholar] [CrossRef]
- Dhole, S.; Mahakalkar, C.; Kshirsagar, S.; Bhargava, A. Antibiotic Prophylaxis in Surgery: Current Insights and Future Directions for Surgical Site Infection Prevention. Cureus 2023, 15, e47858. [Google Scholar] [CrossRef]
- Windpessl, M.; Kostopoulou, M.; Conway, R.; Berke, I.; Bruchfeld, A.; Soler, M.J.; Sester, M.; Kronbichler, A. Preventing infections in immunocompromised patients with kidney diseases: Vaccines and antimicrobial prophylaxis. Nephrol. Dial. Transplant. 2023, 38, ii40–ii49. [Google Scholar] [CrossRef]
- Tsai, H.; Bartash, R.; Burack, D.; Swaminathan, N.; So, M. Bring it on again: Antimicrobial stewardship in transplant infectious diseases: Updates and new challenges. Antimicrob. Steward. Healthc. Epidemiol. 2024, 4, e3. [Google Scholar] [CrossRef]
- Kumar, S.; Sharma, A.K.; Yadav, M.; Sehrawat, N.; Jaiswal, D.K. Multidrug-Resistant Gram-Negative Bacteria in Surgical Site Infections: Antimicrobial Resistance and Preventive Measures. Infect. Microbes Dis. 2025, 7, 35–42. [Google Scholar] [CrossRef]
- Gandra, S.; Tseng, K.K.; Arora, A.; Bhowmik, B.; Robinson, M.L.; Panigrahi, B.; Laxminarayan, R.; Klein, E.Y. The Mortality Burden of Multidrug-resistant Pathogens in India: A Retrospective, Observational Study. Clin. Infect. Dis. 2019, 69, 563–570. [Google Scholar] [CrossRef]
- Poudel, A.N.; Zhu, S.; Cooper, N.; Little, P.; Tarrant, C.; Hickman, M.; Yao, G.; Karunasagar, I. The economic burden of antibiotic resistance: A systematic review and meta-analysis. PLoS ONE 2023, 18, e0285170. [Google Scholar] [CrossRef]
- Shrestha, P.; Cooper, B.S.; Coast, J.; Oppong, R.; Thuy, N.D.T.; Phodha, T.; Celhay, O.; Guerin, P.J.; Wertheim, H.; Lubell, Y. Enumerating the economic cost of antimicrobial resistance per antibiotic consumed to inform the evaluation of interventions affecting their use. Antimicrob. Resist. Infect. Control. 2018, 7, 98. [Google Scholar] [CrossRef] [PubMed]
- Podolsky, S.H. The evolving response to antibiotic resistance (1945–2018). Palgrave Commun. 2018, 4, 124. [Google Scholar] [CrossRef]
- Hasan, M.R.; Vincent, Y.M.; Leto, D.; Almohri, H. Trends in the Rates of Extended-Spectrum-β-Lactamase-Producing Enterobacterales Isolated from Urine Cultures during the COVID-19 Pandemic in Ontario, Canada. Microbiol. Spectr. 2023, 11, e0312422. [Google Scholar] [CrossRef] [PubMed]
- Bezabih, Y.M.; Bezabih, A.; Dion, M.; Batard, E.; Teka, S.; Obole, A.; Dessalegn, N.; Enyew, A.; Roujeinikova, A.; Alamneh, E.; et al. Comparison of the global prevalence and trend of human intestinal carriage of ESBL-producing Escherichia coli between healthcare and community settings: A systematic review and meta-analysis. JAC Antimicrob. Resist. 2022, 4, dlac048. [Google Scholar] [CrossRef]
- Doi, Y.; Iovleva, A.; Bonomo, R.A. The ecology of extended-spectrum β-lactamases (ESBLs) in the developed world. J. Travel Med. 2017, 24 (Suppl. S1), S44–S51. [Google Scholar] [CrossRef]
- Aronin, S.I.; Dunne, M.W.; Yu, K.C.; Watts, J.A.; Gupta, V. Increased rates of extended-spectrum beta-lactamase isolates in patients hospitalized with culture-positive urinary Enterobacterales in the United States: 2011–2020. Diagn. Microbiol. Infect. Dis. 2022, 103, 115717. [Google Scholar] [CrossRef]
- Raphael, E.; Glymour, M.M.; Chambers, H.F. Trends in prevalence of extended-spectrum beta-lactamase-producing Escherichia coli isolated from patients with community- and healthcare-associated bacteriuria: Results from 2014 to 2020 in an urban safety-net healthcare system. Antimicrob. Resist. Infect. Control. 2021, 10, 118. [Google Scholar] [CrossRef]
- Willems, R.P.J.; van Dijk, K.; Vehreschild, M.J.G.T.; Biehl, L.M.; Ket, J.C.F.; Remmelzwaal, S.; E Vandenbroucke-Grauls, C.M.J. Incidence of infection with multidrug-resistant Gram-negative bacteria and vancomycin-resistant enterococci in carriers: A systematic review and meta-regression analysis. Lancet Infect. Dis. 2023, 23, 719–731. [Google Scholar] [CrossRef]
- Otaigbe, I.I.; Elikwu, C.J. Drivers of inappropriate antibiotic use in low- and middle-income countries. JAC Antimicrob. Resist. 2023, 5, dlad062. [Google Scholar] [CrossRef]
- Llor, C.; Bjerrum, L. Antimicrobial resistance: Risk associated with antibiotic overuse and initiatives to reduce the problem. Ther. Adv. Drug Saf. 2014, 5, 229–241. [Google Scholar] [CrossRef] [PubMed]
- Ehsan, H. Antibiotic Resistance in Developing Countries: Emerging Threats and Policy Responses. Public Health Chall. 2025, 4, e70034. [Google Scholar] [CrossRef]
- Dortet, L.; Poirel, L.; Nordmann, P. Rapid detection of ESBL-producing Enterobacteriaceae in blood cultures. Emerg. Infect. Dis. 2015, 21, 504–507. [Google Scholar] [CrossRef] [PubMed]
- Li, W.; Li, J.; Xu, H.; Gao, H.; Liu, D. Rapid and visual identification of β-lactamase subtypes for precision antibiotic therapy. Nat. Commun. 2024, 15, 719. [Google Scholar] [CrossRef]
- Chang, K.-M.; Haghamad, A.; Saunders-Hao, P.; Shaffer, A.; Mirsaidi, N.; Zimilover, A.; Epstein, M.; Jain, S.; Streva, V.; Juretschko, S.; et al. The clinical impact of early detection of ESBL-producing Enterobacterales with PCR-based blood culture assays. Am. J. Infect. Control. 2024, 52, 73–80. [Google Scholar] [CrossRef]
- Boattini, M.; Bianco, G.; Comini, S.; Iannaccone, M.; Casale, R.; Cavallo, R.; Nordmann, P.; Costa, C. Direct detection of extended-spectrum-β-lactamase-producers in Enterobacterales from blood cultures: A comparative analysis. Eur. J. Clin. Microbiol. Infect. Dis. 2022, 41, 407–413. [Google Scholar] [CrossRef]
- Wunderink, R.G.; Srinivasan, A.; Barie, P.S.; Chastre, J.; Cruz, C.S.D.; Douglas, I.S.; Ecklund, M.; Evans, S.R.; Gerlach, A.T.; Hicks, L.A.; et al. Antibiotic Stewardship in the Intensive Care Unit. An Official American Thoracic Society Workshop Report in Collaboration with the AACN, CHEST, CDC, and SCCM. Ann. Am. Thorac. Soc. 2020, 17, 531–540. [Google Scholar] [CrossRef]
- Codjoe, F.S.; Donkor, E.S. Carbapenem Resistance: A Review. Med. Sci. 2017, 6, 1. [Google Scholar] [CrossRef]
- Baghdadi, J.D.; Goodman, K.E.; Magder, L.S.; Claeys, K.C.; Sutherland, M.E.; Harris, A.D. Association Between Delayed Broad-Spectrum Gram-Negative Antibiotics and Clinical Outcomes: How Much Does Getting It Right with Empiric Antibiotics Matter? Clin. Infect. Dis. 2025, 80, 949–958. [Google Scholar] [CrossRef]
- Chan, X.; O’Connor, C.; Martyn, E.; Clegg, A.; Choy, B.; Soares, A.; Shulman, R.; Stone, N.; De, S.; Bitmead, J.; et al. Reducing broad-spectrum antibiotic use in intensive care unit between first and second waves of COVID-19 did not adversely affect mortality. J. Hosp. Infect. 2022, 124, 37–46. [Google Scholar] [CrossRef]
- da Fonseca Pestana Ribeiro, J.M.; Park, M. Less empiric broad-spectrum antibiotics is more in the ICU. Intensive Care Med. 2020, 46, 783–786. [Google Scholar] [CrossRef]
- Kollef, M.H.; Shorr, A.F.; Bassetti, M.; Timsit, J.-F.; Micek, S.T.; Michelson, A.P.; Garnacho-Montero, J. Timing of antibiotic therapy in the ICU. Crit. Care 2021, 25, 360. [Google Scholar] [CrossRef]
- Ippolito, M.; Cortegiani, A. Empirical decision-making for antimicrobial therapy in critically ill patients. BJA Educ. 2023, 23, 480–487. [Google Scholar] [CrossRef] [PubMed]
- Brink, A.J.; Richards, G. Best practice: Antibiotic decision-making in ICUs. Curr. Opin. Crit. Care 2020, 26, 478–488. [Google Scholar] [CrossRef] [PubMed]
- Muteeb, G.; Kazi, R.N.A.; Aatif, M.; Azhar, A.; Oirdi, M.E.; Farhan, M. Antimicrobial resistance: Linking molecular mechanisms to public health impact. SLAS Discov. 2025, 33, 100232. [Google Scholar] [CrossRef] [PubMed]
- Andersson, D.I.; Hughes, D. Selection and Transmission of Antibiotic-Resistant Bacteria. Microbiol. Spectr. 2017, 5, 10-1128. [Google Scholar] [CrossRef]
- Reygaert, W.C. An overview of the antimicrobial resistance mechanisms of bacteria. AIMS Microbiol. 2018, 4, 482–501. [Google Scholar] [CrossRef]
- Algammal, A.; Hetta, H.F.; Mabrok, M.; Behzadi, P. Editorial: Emerging multidrug-resistant bacterial pathogens “superbugs”: A rising public health threat. Front. Microbiol. 2023, 14, 1135614. [Google Scholar] [CrossRef]
- Wang, X.; Zhang, H.; Yu, S.; Li, D.; Gillings, M.R.; Ren, H.; Mao, D.; Guo, J.; Luo, Y. Inter-plasmid transfer of antibiotic resistance genes accelerates antibiotic resistance in bacterial pathogens. ISME J. 2024, 18, wrad032. [Google Scholar] [CrossRef]
- van Hoek, A.H.; Mevius, D.; Guerra, B.; Mullany, P.; Roberts, A.P.; Aarts, H.J. Acquired Antibiotic Resistance Genes: An Overview. Front. Microbiol. 2011, 2, 203. [Google Scholar] [CrossRef]
- Sun, D.; Jeannot, K.; Xiao, Y.; Knapp, C.W. Editorial: Horizontal Gene Transfer Mediated Bacterial Antibiotic Resistance. Front. Microbiol. 2019, 10, 1933. [Google Scholar] [CrossRef] [PubMed]
- Soni, J.; Sinha, S.; Pandey, R. Understanding bacterial pathogenicity: A closer look at the journey of harmful microbes. Front. Microbiol. 2024, 15, 1370818. [Google Scholar] [CrossRef] [PubMed]
- Casadevall, A.; Pirofski, L.A. Host-Pathogen Interactions: Basic Concepts of Microbial Commensalism, Colonization, Infection, and Disease. Infect. Immun. 2000, 68, 6511–6518. [Google Scholar] [CrossRef]
- Pallecchi, L.; Malossi, M.; Mantella, A.; Gotuzzo, E.; Trigoso, C.; Bartoloni, A.; Paradisi, F.; Kronvall, G.; Rossolini, G.M. Detection of CTX-M-type beta-lactamase genes in fecal Escherichia coli isolates from healthy children in Bolivia and Peru. Antimicrob. Agents Chemother. 2004, 48, 4556–4561. [Google Scholar] [CrossRef]
- Yadav, A.; Shinde, P.B.; Mohan, H.; Dhar, M.S.; Ponnusamy, K.; Marwal, R.; Radhakrishnan, V.; Goyal, S.; Kedia, S.; Ahuja, V.; et al. Gut colonization with antibiotic-resistant Escherichia coli pathobionts leads to disease severity in ulcerative colitis. Int. J. Antimicrob. Agents 2024, 64, 107289. [Google Scholar] [CrossRef]
- Mota, R.; Pinto, M.; Palmeira, J.; Gonçalves, D.; Ferreira, H. Multidrug-resistant bacteria as intestinal colonizers and evolution of intestinal colonization in healthy university students in Portugal. Access Microbiol. 2021, 3, acmi000182. [Google Scholar] [CrossRef]
- Ducarmon, Q.R.; Zwittink, R.D.; Willems, R.P.J.; Verhoeven, A.; Nooij, S.; van der Klis, F.R.M.; Franz, E.; Kool, J.; Giera, M.; E Vandenbroucke-Grauls, C.M.J.; et al. Gut colonisation by extended-spectrum β-lactamase-producing Escherichia coli and its association with the gut microbiome and metabolome in Dutch adults: A matched case-control study. Lancet Microbe 2022, 3, e443–e451. [Google Scholar] [CrossRef]
- Le Guern, R.; Stabler, S.; Gosset, P.; Pichavant, M.; Grandjean, T.; Faure, E.; Karaca, Y.; Faure, K.; Kipnis, E.; Dessein, R. Colonization resistance against multi-drug-resistant bacteria: A narrative review. J. Hosp. Infect. 2021, 118, 48–58. [Google Scholar] [CrossRef]
- López Romo, A.; Quirós, R. Appropriate use of antibiotics: An unmet need. Ther. Adv. Urol. 2019, 11, 1756287219832174. [Google Scholar] [CrossRef]
- Manning, M.L.; Septimus, E.J.; Ashley, E.S.D.; Cosgrove, S.E.; Fakih, M.G.; Schweon, S.J.; Myers, F.E.; Moody, J.A. Antimicrobial stewardship and infection prevention—Leveraging the synergy: A position paper update. Am. J. Infect. Control. 2018, 46, 364–368. [Google Scholar] [CrossRef]
- Schinas, G.; Polyzou, E.; Spernovasilis, N.; Gogos, C.; Dimopoulos, G.; Akinosoglou, K. Preventing Multidrug-Resistant Bacterial Transmission in the Intensive Care Unit with a Comprehensive Approach: A Policymaking Manual. Antibiotics 2023, 12, 1255. [Google Scholar] [CrossRef]
- Ji, B.; Ye, W. Prevention and control of hospital-acquired infections with multidrug-resistant organism: A review. Medicine 2024, 103, e37018. [Google Scholar] [CrossRef] [PubMed]
- de Brito, F.A.E.; de Freitas, A.P.P.; Nascimento, M.S. Multidrug-Resistant Biofilms (MDR): Main Mechanisms of Tolerance and Resistance in the Food Supply Chain. Pathogens 2022, 11, 1416. [Google Scholar] [CrossRef] [PubMed]
- Kline, K.A.; Fälker, S.; Dahlberg, S.; Normark, S.; Henriques-Normark, B. Bacterial adhesins in host-microbe interactions. Cell Host Microbe 2009, 5, 580–592. [Google Scholar] [CrossRef] [PubMed]
- Worley, M.J. Immune evasion and persistence in enteric bacterial pathogens. Gut Microbes 2023, 15, 2163839. [Google Scholar] [CrossRef]
- Murdoch, C.C.; Skaar, E.P. Nutritional immunity: The battle for nutrient metals at the host–pathogen interface. Nat. Rev. Microbiol. 2022, 20, 657–670. [Google Scholar] [CrossRef]
- Hammer, N.D.; Cassat, J.E.; Noto, M.J.; Lojek, L.J.; Chadha, A.D.; Schmitz, J.E.; Creech, C.B.; Skaar, E.P. Inter- and intraspecies metabolite exchange promotes virulence of antibiotic-resistant Staphylococcus aureus. Cell Host Microbe 2014, 16, 531–537. [Google Scholar] [CrossRef]
- Horrocks, V.; King, O.G.; Yip, A.Y.G.; Marques, I.M.; McDonald, J.A.K. Role of the gut microbiota in nutrient competition and protection against intestinal pathogen colonization. Microbiology 2023, 169, 001377. [Google Scholar] [CrossRef]
- Van Nood, E.; Vrieze, A.; Nieuwdorp, M.; Fuentes, S.; Zoetendal, E.G.; De Vos, W.M.; Visser, C.E.; Kuijper, E.J.; Bartelsman, J.F.W.M.; Tijssen, J.G.P.; et al. Duodenal infusion of donor feces for recurrent Clostridium difficile. N. Engl. J. Med. 2013, 368, 407–415. [Google Scholar] [CrossRef]
- Esposito, M.M.; Turku, S.; Lehrfield, L.; Shoman, A. The Impact of Human Activities on Zoonotic Infection Transmissions. Animals 2023, 13, 1646. [Google Scholar] [CrossRef]
- Berendonk, T.U.; Manaia, C.M.; Merlin, C.; Fatta-Kassinos, D.; Cytryn, E.; Walsh, F.; Buergmann, H.; Sørum, H.; Norström, M.; Pons, M.-N.; et al. Tackling antibiotic resistance: The environmental framework. Nat. Rev. Microbiol. 2015, 13, 310–317. [Google Scholar] [CrossRef] [PubMed]
- Perry, J.; Wright, G. The antibiotic resistance “mobilome”: Searching for the link between environment and clinic. Front. Microbiol. 2013, 4, 138. [Google Scholar] [CrossRef] [PubMed]
- Sarkar, A.; McInroy, C.J.; Harty, S.; Raulo, A.; Ibata, N.G.; Valles-Colomer, M.; Johnson, K.V.-A.; Brito, I.L.; Henrich, J.; Archie, E.A.; et al. Microbial transmission in the social microbiome and host health and disease. Cell 2024, 187, 17–43. [Google Scholar] [CrossRef] [PubMed]
- Samreen; Ahmad, I.; Malak, H.A.; Abulreesh, H.H. Environmental antimicrobial resistance and its drivers: A potential threat to public health. J. Glob. Antimicrob. Resist. 2021, 27, 101–111. [Google Scholar] [CrossRef]
- Polianciuc, S.I.; Gurzău, A.E.; Kiss, B.; Ştefan, M.G.; Loghin, F. Antibiotics in the environment: Causes and consequences. Med. Pharm. Rep. 2020, 93, 231–240. [Google Scholar] [CrossRef]
- Forsberg, K.J.; Reyes, A.; Wang, B.; Selleck, E.M.; Sommer, M.O.; Dantas, G. The shared antibiotic resistome of soil bacteria and human pathogens. Science 2012, 337, 1107–1111. [Google Scholar] [CrossRef]
- Smillie, C.S.; Smith, M.B.; Friedman, J.; Cordero, O.X.; David, L.A.; Alm, E.J. Ecology drives a global network of gene exchange connecting the human microbiome. Nature 2011, 480, 241–244. [Google Scholar] [CrossRef]
- Davies, J.; Davies, D. Origins and evolution of antibiotic resistance. Microbiol. Mol. Biol. Rev. 2010, 74, 417–433. [Google Scholar] [CrossRef]
- Marshall, B.M.; Levy, S.B. Food Animals and Antimicrobials: Impacts on Human Health. Clin. Microbiol. Rev. 2011, 24, 718–733. [Google Scholar] [CrossRef]
- Headrick, J.; Ohayon, A.; Elliott, S.; Schultz, J.; Mills, E.; Petersen, E. Biomolecule screen identifies several inhibitors of Salmonella enterica surface colonization. Front. Bioeng. Biotechnol. 2024, 12, 1467511. [Google Scholar] [CrossRef]
- Kraemer, S.A.; Ramachandran, A.; Perron, G.G. Antibiotic Pollution in the Environment: From Microbial Ecology to Public Policy. Microorganisms 2019, 7, 180. [Google Scholar] [CrossRef]
- Rizzo, L.; Manaia, C.; Merlin, C.; Schwartz, T.; Dagot, C.; Ploy, M.C.; Michael, I.; Fatta-Kassinos, D. Urban wastewater treatment plants as hotspots for antibiotic resistant bacteria and genes spread into the environment: A review. Sci. Total Environ. 2013, 447, 345–360. [Google Scholar] [CrossRef]
- Ma, F.; Xu, S.; Tang, Z.; Li, Z.; Zhang, L. Use of antimicrsobials in food animals and impact of transmission of antimicrobial resistance on humans. Biosaf. Health 2021, 3, 32–38. [Google Scholar] [CrossRef]
- Kelbrick, M.; Hesse, E.; O’ Brien, S. Cultivating antimicrobial resistance: How intensive agriculture ploughs the way for antibiotic resistance. Microbiology 2023, 169, 001384. [Google Scholar] [CrossRef] [PubMed]
- Young, G.R.; Sherry, A.; Smith, D.L. Built environment microbiomes transition from outdoor to human-associated communities after construction and commissioning. Sci. Rep. 2023, 13, 15854. [Google Scholar] [CrossRef] [PubMed]
- Mahnert, A.; Moissl-Eichinger, C.; Zojer, M.; Bogumil, D.; Mizrahi, I.; Rattei, T.; Martinez, J.L.; Berg, G. Man-made microbial resistances in built environments. Nat. Commun. 2019, 10, 968. [Google Scholar] [CrossRef]
- Ferraz, M.P. Antimicrobial Resistance: The Impact from and on Society According to One Health Approach. Societies 2024, 14, 187. [Google Scholar] [CrossRef]
- O’Fallon, E.; Schreiber, R.; Kandel, R.; D’Agata, E.M. Multidrug-resistant gram-negative bacteria at a long-term care facility: Assessment of residents, healthcare workers, and inanimate surfaces. Infect. Control Hosp. Epidemiol. 2009, 30, 1172–1179. [Google Scholar] [CrossRef]
- Weiner-Lastinger, L.M.; Abner, S.; Edwards, J.R.; Kallen, A.J.; Karlsson, M.; Magill, S.S.; Pollock, D.; See, I.; Soe, M.M.; Walters, M.S.; et al. Antimicrobial-resistant pathogens associated with adult healthcare-associated infections: Summary of data reported to the National Healthcare Safety Network, 2015–2017. Infect. Control Hosp. Epidemiol. 2020, 41, 1–18. [Google Scholar] [CrossRef]
- Boyce, J.M. Environmental contamination makes an important contribution to hospital infection. J. Hosp. Infect. 2007, 65 (Suppl. S2), 50–54. [Google Scholar] [CrossRef]
- Greig, J.D.; Lee, M.B. Enteric outbreaks in long-term care facilities and recommendations for prevention: A review. Epidemiol. Infect. 2009, 137, 145–155. [Google Scholar] [CrossRef]
- Ali, S.; Alsayeqh, A.F. Review of major meat-borne zoonotic bacterial pathogens. Front. Public Health 2022, 10, 1045599. [Google Scholar] [CrossRef] [PubMed]
- Heredia, N.; García, S. Animals as sources of food-borne pathogens: A review. Anim. Nutr. 2018, 4, 250–255. [Google Scholar] [CrossRef]
- Donskey, C.J. Empowering patients to prevent healthcare-associated infections. Am. J. Infect. Control. 2023, 51, A107–A113. [Google Scholar] [CrossRef]
- Blanco, N.; O’Hara, L.M.; Harris, A.D. Transmission pathways of multidrug-resistant organisms in the hospital setting: A scoping review. Infect. Control Hosp. Epidemiol. 2019, 40, 447–456. [Google Scholar] [CrossRef]
- Kubde, D.; Badge, A.K.; Ugemuge, S.; Shahu, S. Importance of Hospital Infection Control. Cureus 2023, 15, e50931. [Google Scholar] [CrossRef]
- Branch-Elliman, W.; Price, C.S.; Bessesen, M.T.; Perl, T.M. Using the Pillars of Infection Prevention to Build an Effective Program for Reducing the Transmission of Emerging and Reemerging Infections. Curr. Environ. Health Rep. 2015, 2, 226–235. [Google Scholar] [CrossRef] [PubMed]
- Lund, B.M.; O’Brien, S.J. Microbiological safety of food in hospitals and other healthcare settings. J. Hosp. Infect. 2009, 73, 109–120. [Google Scholar] [CrossRef] [PubMed]
- Garcia, R.; Barnes, S.; Boukidjian, R.; Goss, L.K.; Spencer, M.; Septimus, E.J.; Wright, M.-O.; Munro, S.; Reese, S.M.; Fakih, M.G.; et al. Recommendations for change in infection prevention programs and practice. Am. J. Infect. Control 2022, 50, 1281–1295. [Google Scholar] [CrossRef]
- Woelfel, S.; Silva, M.S.; Stecher, B. Intestinal colonization resistance in the context of environmental, host, and microbial determinants. Cell Host Microbe 2024, 32, 820–836. [Google Scholar] [CrossRef]
- Huijbers, P.M.C.; Blaak, H.; de Jong, M.C.M.; Graat, E.A.M.; Vandenbroucke-Grauls, C.M.J.E.; de Roda Husman, A.M. Role of the Environment in the Transmission of Antimicrobial Resistance to Humans: A Review. Environ. Sci. Technol. 2015, 49, 11993–12004. [Google Scholar] [CrossRef] [PubMed]
- Rousham, E.K.; Unicomb, L.; Islam, M.A. Human, animal and environmental contributors to antibiotic resistance in low-resource settings: Integrating behavioural, epidemiological and One Health approaches. Proc. Biol. Sci. 2018, 285, 20180332. [Google Scholar] [CrossRef] [PubMed]
- Martinez, J.L. Environmental pollution by antibiotics and by antibiotic resistance determinants. Environ. Pollut. 2009, 157, 2893–2902. [Google Scholar] [CrossRef] [PubMed]
- Jin, M.; Osman, M.; Green, B.A.; Yang, Y.; Ahuja, A.; Lu, Z.; Cazer, C.L. Evidence for the transmission of antimicrobial resistant bacteria between humans and companion animals: A scoping review. One Health 2023, 17, 100593. [Google Scholar] [CrossRef]
- Pandey, S.; Doo, H.; Keum, G.B.; Kim, E.S.; Kwak, J.; Ryu, S.; Choi, Y.; Kang, J.; Kim, S.; Lee, N.R.; et al. Antibiotic resistance in livestock, environment and humans: One Health perspective. J. Anim. Sci. Technol. 2024, 66, 266–278. [Google Scholar] [CrossRef]
- Tang, P.; Croxen, M.A.; Hasan, M.R.; Hsiao, W.W.L.; Hoang, L.M. Infection control in the new age of genomic epidemiology. Am. J. Infect. Control. 2017, 45, 170–179. [Google Scholar] [CrossRef]
- Kwok, A.J.; Mentzer, A.; Knight, J.C. Host genetics and infectious disease: New tools, insights and translational opportunities. Nat. Rev. Genet. 2021, 22, 137–153. [Google Scholar] [CrossRef]
- Moura de Sousa, J.; Lourenço, M.; Gordo, I. Horizontal gene transfer among host-associated microbes. Cell Host Microbe 2023, 31, 513–527. [Google Scholar] [CrossRef]
- Pulingam, T.; Parumasivam, T.; Gazzali, A.M.; Sulaiman, A.M.; Chee, J.Y.; Lakshmanan, M.; Chin, C.F.; Sudesh, K. Antimicrobial resistance: Prevalence, economic burden, mechanisms of resistance and strategies to overcome. Eur. J. Pharm. Sci. 2022, 170, 106103. [Google Scholar] [CrossRef]
- Zhang, G.; Le Souëf, P. The influence of modern living conditions on the human microbiome and potential therapeutic opportunities for allergy prevention. World Allergy Organ. J. 2024, 17, 100857. [Google Scholar] [CrossRef]
- Dillard, B.A.; Chung, A.K.; Gunderson, A.R.; Campbell-Staton, S.C.; Moeller, A.H. Humanization of wildlife gut microbiota in urban environments. eLife 2022, 11, e76381. [Google Scholar] [CrossRef]
- Venkatakrishnan, A.; Holzknecht, Z.E.; Holzknecht, R.; Bowles, D.E.; Kotzé, S.H.; Modliszewski, J.L.; Parker, W. Evolution of bacteria in the human gut in response to changing environments: An invisible player in the game of health. Comput. Struct. Biotechnol. J. 2021, 19, 752–758. [Google Scholar] [CrossRef] [PubMed]
- Bosch, T.C.G.; Wigley, M.; Colomina, B.; Bohannan, B.; Meggers, F.; Amato, K.R.; Azad, M.B.; Blaser, M.J.; Brown, K.; Dominguez-Bello, M.G.; et al. The potential importance of the built-environment microbiome and its impact on human health. Proc. Natl. Acad. Sci. USA 2024, 121, e2313971121. [Google Scholar] [CrossRef]
- Trinh, P.; Zaneveld, J.R.; Safranek, S.; Rabinowitz, P.M. One Health Relationships Between Human, Animal, and Environmental Microbiomes: A Mini-Review. Front. Public Health 2018, 6, 235. [Google Scholar] [CrossRef] [PubMed]
- León-Buitimea, A.; Garza-Cárdenas, C.R.; Garza-Cervantes, J.A.; Lerma-Escalera, J.A.; Morones-Ramírez, J.R. The Demand for New Antibiotics: Antimicrobial Peptides, Nanoparticles, and Combinatorial Therapies as Future Strategies in Antibacterial Agent Design. Front. Microbiol. 2020, 11, 1669. [Google Scholar] [CrossRef] [PubMed]
- Miethke, M.; Pieroni, M.; Weber, T.; Brönstrup, M.; Hammann, P.; Halby, L.; Arimondo, P.B.; Glaser, P.; Aigle, B.; Bode, H.B.; et al. Towards the sustainable discovery and development of new antibiotics. Nat. Rev. Chem. 2021, 5, 726–749. [Google Scholar] [CrossRef]
- Renwick, M.; Mossialos, E. What are the economic barriers of antibiotic R&D and how can we overcome them? Expert Opin. Drug Discov. 2018, 13, 889–892. [Google Scholar] [CrossRef]
- Piddock, L.J.V.; Alimi, Y.; Anderson, J.; de Felice, D.; Moore, C.E.; Røttingen, J.-A.; Skinner, H.; Beyer, P. Advancing global antibiotic research, development and access. Nat. Med. 2024, 30, 2432–2443. [Google Scholar] [CrossRef]
- Kapinos, K.A.; Peters, R.M., Jr.; Murphy, R.E.; Hohmann, S.F.; Podichetty, A.; Greenberg, R.S. Inpatient Costs of Treating Patients with COVID-19. JAMA Netw. Open 2024, 7, e2350145. [Google Scholar] [CrossRef]
- Scott, A.; Ansari, W.; Khan, F.; Chambers, R.; Benigno, M.; Di Fusco, M.; McGrath, L.; Malhotra, D.; Draica, F.; Nguyen, J.; et al. Substantial health and economic burden of COVID-19 during the year after acute illness among US adults at high risk of severe COVID-19. BMC Med. 2024, 22, 46. [Google Scholar]
- Tängdén, T.; Carrara, E.; Hellou, M.M.; Yahav, D.; Paul, M. Introducing new antibiotics for multidrug-resistant bacteria: Obstacles and the way forward. Clin. Microbiol. Infect. 2025, 31, 354–359. [Google Scholar] [CrossRef]
- Gotham, D.; Moja, L.; van der Heijden, M.; Paulin, S.; Smith, I.; Beyer, P. Reimbursement models to tackle market failures for antimicrobials: Approaches taken in France, Germany, Sweden, the United Kingdom, and the United States. Health Policy 2021, 125, 296–306. [Google Scholar] [CrossRef]
- Puzniak, L.; Gupta, V.; Yu, K.C.; Ye, G.; Outterson, K. The impact of infections on reimbursement in 92 US hospitals, 2015–2018. Am. J. Infect. Control. 2021, 49, 1275–1280. [Google Scholar] [CrossRef] [PubMed]
- Chan, M.S.; Holloway, R.; King, R.; Polya, R.; Sloan, R.; Kowalik, J.C.; Ashfield, T.; Moore, L.S.P.; Porter, T.; Pearson-Stuttard, J. An Insurance Value Modeling Approach That Captures the Wider Value of a Novel Antimicrobial to Health Systems, Patients, and the Population. J. Health Econ. Outcomes Res. 2023, 10, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Vogler, S.; Habimana, K.; Haasis, M.A.; Fischer, S. Pricing, Procurement and Reimbursement Policies for Incentivizing Market Entry of Novel Antibiotics and Diagnostics: Learnings from 10 Countries Globally. Appl. Health Econ. Health Policy 2024, 22, 629–652. [Google Scholar] [CrossRef] [PubMed]
- Howard-Anderson, J.; Boucher, H.W. New Antibiotics for Resistant Infections: What Happens After Approval? Ann. Intern. Med. 2024, 177, 674–675. [Google Scholar] [CrossRef]
- Wagenlehner, F.; Perry, C.R.; Hooton, T.M.; Scangarella-Oman, N.E.; Millns, H.; Powell, M.; Jarvis, E.; Dennison, J.; Sheets, A.; Butler, D.; et al. Oral gepotidacin versus nitrofurantoin in patients with uncomplicated urinary tract infection (EAGLE-2 and EAGLE-3): Two randomised, controlled, double-blind, double-dummy, phase 3, non-inferiority trials. Lancet 2024, 403, 741–755. [Google Scholar] [CrossRef]
- Kaye, K.S.; Belley, A.; Barth, P.; Lahlou, O.; Knechtle, P.; Motta, P.; Velicitat, P. Effect of Cefepime/Enmetazobactam vs. Piperacillin/Tazobactam on Clinical Cure and Microbiological Eradication in Patients with Complicated Urinary Tract Infection or Acute Pyelonephritis: A Randomized Clinical Trial. JAMA 2022, 328, 1304–1314. [Google Scholar] [CrossRef]
- Kumar, A.; Roberts, D.; Wood, K.E.; Light, B.; Parrillo, J.E.; Sharma, S.; Suppes, R.; Feinstein, D.; Zanotti, S.; Taiberg, L.; et al. Duration of hypotension before initiation of effective antimicrobial therapy is the critical determinant of survival in human septic shock. Crit. Care Med. 2006, 34, 1589–1596. [Google Scholar] [CrossRef]
- Martínez, M.L.; Plata-Menchaca, E.P.; Ruiz-Rodríguez, J.C.; Ferrer, R. An approach to antibiotic treatment in patients with sepsis. J. Thorac. Dis. 2020, 12, 1007–1021. [Google Scholar] [CrossRef]
- Riccobene, T.; Ye, G.; Lock, J.; Yu, K.C.; Ai, C.; Gregory, S.; Gupta, V. Outcomes of inadequate empiric therapy and timing of newer antibacterial therapy in hospitalized adults with culture-positive Enterobacterales and Pseudomonas aeruginosa: A multicenter analysis. BMC Infect. Dis. 2024, 24, 810. [Google Scholar] [CrossRef] [PubMed]
- Roberts, J.A.; Abdul-Aziz, M.H.; Davis, J.S.; Dulhunty, J.M.; Cotta, M.O.; Myburgh, J.; Bellomo, R.; Lipman, J. Continuous versus Intermittent β-Lactam Infusion in Severe Sepsis. A Meta-analysis of Individual Patient Data from Randomized Trials. Am. J. Respir. Crit. Care Med. 2016, 194, 681–691. [Google Scholar] [CrossRef] [PubMed]
- Ali, A.; Imran, M.; Sial, S.; Khan, A. Effective antibiotic dosing in the presence of resistant strains. PLoS ONE 2022, 17, e0275762. [Google Scholar] [CrossRef] [PubMed]
- Olofsson, S.K.; Cars, O. Optimizing Drug Exposure to Minimize Selection of Antibiotic Resistance. Clin. Infect. Dis. 2007, 45 (Suppl. S2), S129–S136. [Google Scholar] [CrossRef]
- Onita, T.; Ishihara, N.; Yano, T. PK/PD-Guided Strategies for Appropriate Antibiotic Use in the Era of Antimicrobial Resistance. Antibiotics 2025, 14, 92. [Google Scholar] [CrossRef]
- Alikhani, M.S.; Nazari, M.; Hatamkhani, S. Enhancing antibiotic therapy through comprehensive pharmacokinetic/pharmacodynamic principles. Front. Cell. Infect. Microbiol. 2025, 15, 1521091. [Google Scholar] [CrossRef]
- Schmid, A.; Wolfensberger, A.; Nemeth, J.; Schreiber, P.W.; Sax, H.; Kuster, S.P. Monotherapy versus combination therapy for multidrug-resistant Gram-negative infections: Systematic Review and Meta-Analysis. Sci. Rep. 2019, 9, 15290. [Google Scholar] [CrossRef]
- Tan, S.Y.; Khan, R.A.; Khalid, K.E.; Chong, C.W.; Bakhtiar, A. Correlation between antibiotic consumption and the occurrence of multidrug-resistant organisms in a Malaysian tertiary hospital: A 3-year observational study. Sci. Rep. 2022, 12, 3106. [Google Scholar] [CrossRef]
- Morales-Durán, N.; León-Buitimea, A.; Morones-Ramírez, J.R. Unraveling resistance mechanisms in combination therapy: A comprehensive review of recent advances and future directions. Heliyon 2024, 10, e27984. [Google Scholar] [CrossRef]
- Markley, J.D.; Bernard, S.; Delacruz, O. Combination Antibiotic Therapy for the Definitive Management of Select Multidrug-Resistant Gram-Negative Rod Infections. Curr. Treat. Options Infect. Dis. 2015, 7, 273–290. [Google Scholar] [CrossRef]
- Barbier, F.; Dupuis, C.; Buetti, N.; Schwebel, C.; Azoulay, É.; Argaud, L.; Cohen, Y.; Ha, V.H.T.; Gainnier, M.; Siami, S.; et al. Single-drug versus combination antimicrobial therapy in critically ill patients with hospital-acquired pneumonia and ventilator-associated pneumonia due to Gram-negative pathogens: A multicenter retrospective cohort study. Crit. Care 2024, 28, 10. [Google Scholar] [CrossRef]
- Tamma, P.D.; Turnbull, A.E.; Harris, A.D.; Milstone, A.M.; Hsu, A.J.; Cosgrove, S.E. Less Is More: Combination Antibiotic Therapy for the Treatment of Gram-Negative Bacteremia in Pediatric Patients. JAMA Pediatr. 2013, 167, 903–910. [Google Scholar] [CrossRef] [PubMed]
- Karruli, A.; Migliaccio, A.; Pournaras, S.; Durante-Mangoni, E.; Zarrilli, R. Cefiderocol and Sulbactam-Durlobactam Against Carbapenem-Resistant Acinetobacter baumannii. Antibiotics 2023, 12, 1729. [Google Scholar] [CrossRef] [PubMed]
- Choi, H.Y.; Chang, J.E. Targeted Therapy for Cancers: From Ongoing Clinical Trials to FDA-Approved Drugs. Int. J. Mol. Sci. 2023, 24, 13618. [Google Scholar] [CrossRef] [PubMed]
- Lublóy, Á. Factors affecting the uptake of new medicines: A systematic literature review. BMC Health Serv. Res. 2014, 14, 469. [Google Scholar] [CrossRef]
- Tacconelli, E.; Carrara, E.; Savoldi, A.; Harbarth, S.; Mendelson, M.; Monnet, D.L.; Pulcini, C.; Kahlmeter, G.; Kluytmans, J.; Carmeli, Y.; et al. Discovery, research, and development of new antibiotics: The WHO priority list of antibiotic-resistant bacteria and tuberculosis. Lancet Infect. Dis. 2018, 18, 318–327. [Google Scholar] [CrossRef]
- Outterson, K.; Orubu, E.S.F.; Rex, J.; Årdal, C.; Zaman, M.H. Patient Access in 14 High-Income Countries to New Antibacterials Approved by the US Food and Drug Administration, European Medicines Agency, Japanese Pharmaceuticals and Medical Devices Agency, or Health Canada, 2010–2020. Clin. Infect. Dis. 2021, 74, 1183–1190. [Google Scholar] [CrossRef]
- Klug, D.M.; Idiris, F.I.M.; Blaskovich, M.A.T.; von Delft, F.; Dowson, C.G.; Kirchhelle, C.; Roberts, A.P.; Singer, A.C.; Todd, M.H. There is no market for new antibiotics: This allows an open approach to research and development. Wellcome Open Res. 2021, 6, 146. [Google Scholar] [CrossRef]
- Blaskovich, M.A.T.; Cooper, M.A. Antibiotics re-booted—Time to kick back against drug resistance. npj Antimicrob. Resist. 2025, 3, 47. [Google Scholar] [CrossRef]
- Gargate, N.; Laws, M.; Rahman, K.M. Current economic and regulatory challenges in developing antibiotics for Gram-negative bacteria. npj Antimicrob. Resist. 2025, 3, 50. [Google Scholar] [CrossRef]
- Ho, C.S.; Wong, C.T.H.; Aung, T.T.; Lakshminarayanan, R.; Mehta, J.S.; Rauz, S.; McNally, A.; Kintses, B.; Peacock, S.J.; de la Fuente-Nunez, C.; et al. Antimicrobial resistance: A concise update. Lancet Microbe 2025, 6, 100947. [Google Scholar] [CrossRef] [PubMed]
- Torre-Cisneros, J.; Almirante, B.; Martos, C.D.L.F.; Rascado, P.; Lletí, M.S.; Sánchez-García, M.; Soriano, A.; Soriano-Cuesta, M.C.; Calvo, A.J.G.; Karas, A.; et al. Effectiveness and safety of cefiderocol treatment in patients with Gram-negative bacterial infections in Spain in the early access programme: Results of the PERSEUS study. Eur. J. Clin. Microbiol. Infect. Dis. 2025, 44, 1375–1390. [Google Scholar] [CrossRef] [PubMed]
- Kaye, K.S.; Shorr, A.F.; Wunderink, R.G.; Du, B.; Poirier, G.E.; Rana, K.; Miller, A.; Lewis, D.; O’Donnell, J.; Chen, L.; et al. Efficacy and safety of sulbactam-durlobactam versus colistin for the treatment of patients with serious infections caused by Acinetobacter baumannii-calcoaceticus complex: A multicentre, randomised, active-controlled, phase 3, non-inferiority clinical trial (ATTACK). Lancet Infect. Dis. 2023, 23, 1072–1084. [Google Scholar] [PubMed]
- Babidhan, R.; Lewis, A.; Atkins, C.; Jozefczyk, N.J.; Nemecek, B.D.; Montepara, C.A.; Gionfriddo, M.R.; Zimmerman, D.E.; Covvey, J.R.; Guarascio, A.J. Safety and efficacy of cefiderocol for off-label treatment indications: A systematic review. Pharmacotherapy 2022, 42, 549–566. [Google Scholar] [CrossRef]
- Fwoloshi, S.; Chola, U.; Nakazwe, R.; Tatila, T.; Mateele, T.; Kabaso, M.; Muzyamba, T.; Mutwale, I.; Jones, A.S.C.; Islam, J.; et al. Why local antibiotic resistance data matters—Informing empiric prescribing through local data collation, app design and engagement in Zambia. J. Infect. Public Health 2023, 16, 69–77. [Google Scholar] [CrossRef]
- Bamber, R.; Sullivan, B.; Gorman, L.; Lee, W.W.Y.; Avison, M.B.; Dowsey, A.W.; Williams, P.B. A Bayesian Model Based on Local Phenotypic Resistance Data to Inform Empiric Antibiotic Escalation Decisions. Infect. Dis. Ther. 2024, 13, 1963–1981. [Google Scholar] [CrossRef]
- Worldwide Antimicrobial Resistance National/International Network Group (WARNING) Collaborators; Sartelli, M.; Barie, P.S.; Coccolini, F.; Abbas, M.; Abbo, L.M.; Abdukhalilova, G.K.; Abraham, Y.; Abubakar, S.; Abu-Zidan, F.M.; et al. Ten golden rules for optimal antibiotic use in hospital settings: The WARNING call to action. World J. Emerg. Surg. 2023, 18, 50. [Google Scholar] [CrossRef]
- Lee, C.R.; Cho, I.H.; Jeong, B.C.; Lee, S.H. Strategies to minimize antibiotic resistance. Int. J. Environ. Res. Public Health 2013, 10, 4274–4305. [Google Scholar] [CrossRef]
- Gohil, S.K.; Septimus, E.; Kleinman, K.; Varma, N.; Avery, T.R.; Heim, L.; Rahm, R.; Cooper, W.S.; Cooper, M.; McLean, L.E.; et al. Stewardship Prompts to Improve Antibiotic Selection for Pneumonia: The INSPIRE Randomized Clinical Trial. JAMA 2024, 331, 2007–2017. [Google Scholar] [CrossRef]
- Watkins, R.R.; Bonomo, R.A. Sulbactam-durlobactam: A Step Forward in Treating Carbapenem-Resistant Acinetobacter baumannii (CRAB) Infections. Clin. Infect. Dis. 2023, 76, S163–S165. [Google Scholar] [CrossRef]
- Bassetti, M.; Giacobbe, D.R.; Vena, A.; Poulakou, G.; Rossolini, G.M.; Soriano, A.; Nicolau, D.P. Meropenem–Vaborbactam for Treatment of Carbapenem-Resistant Enterobacterales: A Narrative Review of Clinical Practice Evidence. Infect. Dis. Ther. 2025, 14, 973–989. [Google Scholar] [CrossRef]
- Bouza, E. The role of new carbapenem combinations in the treatment of multidrug-resistant Gram-negative infections. J. Antimicrob. Chemother. 2021, 76 (Suppl. S4), iv38–iv45. [Google Scholar] [CrossRef]
- Hayden, D.A.; White, B.P.; Bennett, K.K. Review of Ceftazidime-Avibactam, Meropenem-Vaborbactam, and Imipenem/Cilastatin-Relebactam to Target Klebsiella pneumoniae Carbapenemase-Producing Enterobacterales. J. Pharm. Technol. 2020, 36, 202–210. [Google Scholar] [CrossRef] [PubMed]
- Wunderink, R.G.; Giamarellos-Bourboulis, E.J.; Rahav, G.; Mathers, A.J.; Bassetti, M.; Vazquez, J.; Cornely, O.A.; Solomkin, J.; Bhowmick, T.; Bishara, J.; et al. Effect and Safety of Meropenem-Vaborbactam versus Best-Available Therapy in Patients with Carbapenem-Resistant Enterobacteriaceae Infections: The TANGO II Randomized Clinical Trial. Infect. Dis. Ther. 2018, 7, 439–455. [Google Scholar] [CrossRef]
- Torres, A.; Wible, M.; Tawadrous, M.; Irani, P.; Stone, G.G.; Quintana, A.; Debabov, D.; Burroughs, M.; A Bradford, P.; Kollef, M. Efficacy and safety of ceftazidime/avibactam in patients with infections caused by β-lactamase-producing Gram-negative pathogens: A pooled analysis from the Phase 3 clinical trial programme. J. Antimicrob. Chemother. 2023, 78, 2672–2682. [Google Scholar] [CrossRef] [PubMed]
- Carmeli, Y.; Armstrong, J.; Laud, P.J.; Newell, P.; Stone, G.; Wardman, A.; Gasink, L.B. Ceftazidime-avibactam or best available therapy in patients with ceftazidime-resistant Enterobacteriaceae and Pseudomonas aeruginosa complicated urinary tract infections or complicated intra-abdominal infections (REPRISE): A randomised, pathogen-directed, phase 3 study. Lancet Infect. Dis. 2016, 16, 661–673. [Google Scholar] [PubMed]
- Torres, A.; Zhong, N.; Pachl, J.; Timsit, J.-F.; Kollef, M.; Chen, Z.; Song, J.; Taylor, D.; Laud, P.J.; Stone, G.G.; et al. Ceftazidime-avibactam versus meropenem in nosocomial pneumonia, including ventilator-associated pneumonia (REPROVE): A randomised, double-blind, phase 3 non-inferiority trial. Lancet Infect. Dis. 2018, 18, 285–295. [Google Scholar] [CrossRef]
- Wu, J.Y.; Srinivas, P.; Pogue, J.M. Cefiderocol: A Novel Agent for the Management of Multidrug-Resistant Gram-Negative Organisms. Infect. Dis. Ther. 2020, 9, 17–40. [Google Scholar] [CrossRef]
- Sato, T.; Yamawaki, K. Cefiderocol: Discovery, Chemistry, and In Vivo Profiles of a Novel Siderophore Cephalosporin. Clin. Infect. Dis. 2019, 69 (Suppl. S7), S538–S543. [Google Scholar] [CrossRef]
- Amoah, J.; Klein, E.Y.; Chiotos, K.; Cosgrove, S.E.; Tamma, P.D. Administration of a β-Lactam Prior to Vancomycin as the First Dose of Antibiotic Therapy Improves Survival in Patients with Bloodstream Infections. Clin. Infect. Dis. 2022, 75, 98–104. [Google Scholar] [CrossRef]
- Liu, V.X.; Fielding-Singh, V.; Greene, J.D.; Baker, J.M.; Iwashyna, T.J.; Bhattacharya, J.; Escobar, G.J. The Timing of Early Antibiotics and Hospital Mortality in Sepsis. Am. J. Respir. Crit. Care Med. 2017, 196, 856–863. [Google Scholar] [CrossRef]
- Leung, L.Y.; Huang, H.-L.; Hung, K.K.; Leung, C.Y.; Lam, C.C.; Lo, R.S.; Yeung, C.Y.; Tsoi, P.J.; Lai, M.; Brabrand, M.; et al. Door-to-antibiotic time and mortality in patients with sepsis: Systematic review and meta-analysis. Eur. J. Intern. Med. 2024, 129, 48–61. [Google Scholar] [CrossRef]
- Weinberger, J.; Rhee, C.; Klompas, M. A Critical Analysis of the Literature on Time-to-Antibiotics in Suspected Sepsis. J. Infect. Dis. 2020, 222 (Suppl. S2), S110–S118. [Google Scholar] [CrossRef]
- Bassetti, M.; Kanj, S.S.; Kiratisin, P.; Rodrigues, C.; Van Duin, D.; Villegas, M.V.; Yu, Y. Early appropriate diagnostics and treatment of MDR Gram-negative infections. JAC Antimicrob. Resist. 2022, 4, dlac089. [Google Scholar] [CrossRef]
- Bassetti, M.; Monti, G.; Henriksen, A.S.; Longshaw, C. Predicting early appropriate therapy for patients infected by carbapenem-resistant Gram-negative pathogens in intensive care units in Italy. Antimicrob. Resist. Infect. Control 2024, 13, 91. [Google Scholar] [CrossRef]
- Bassetti, M.; Rello, J.; Blasi, F.; Goossens, H.; Sotgiu, G.; Tavoschi, L.; Zasowski, E.J.; Arber, M.R.; McCool, R.; Patterson, J.V.; et al. Systematic review of the impact of appropriate versus inappropriate initial antibiotic therapy on outcomes of patients with severe bacterial infections. Int. J. Antimicrob. Agents 2020, 56, 106184. [Google Scholar] [CrossRef]
- Disselkamp, M.; Coz Yataco, A.O.; Simpson, S.Q. POINT: Should Broad-Spectrum Antibiotics Be Routinely Administered to All Patients with Sepsis as Soon as Possible? Yes. CHEST 2019, 156, 645–647. [Google Scholar] [CrossRef]
- Vazquez Guillamet, C.; Kollef, M.H. Acinetobacter Pneumonia: Improving Outcomes with Early Identification and Appropriate Therapy. Clin. Infect. Dis. 2018, 67, 1455–1462. [Google Scholar] [CrossRef]
- Roger, C. Understanding antimicrobial pharmacokinetics in critically ill patients to optimize antimicrobial therapy: A narrative review. J. Intensive Med. 2024, 4, 287–298. [Google Scholar] [CrossRef]
- Van Herendael, B.; Jeurissen, A.; Tulkens, P.M.; Vlieghe, E.; Verbrugghe, W.; Jorens, P.G.; Ieven, M. Continuous infusion of antibiotics in the critically ill: The new holy grail for beta-lactams and vancomycin? Ann. Intensive Care 2012, 2, 22. [Google Scholar] [CrossRef]
- Maguigan, K.L.; Al-Shaer, M.H.; Peloquin, C.A. Beta-Lactams Dosing in Critically Ill Patients with Gram-Negative Bacterial Infections: A PK/PD Approach. Antibiotics 2021, 10, 1154. [Google Scholar] [CrossRef]
- Khadse, S.N.; Ugemuge, S.; Singh, C. Impact of Antimicrobial Stewardship on Reducing Antimicrobial Resistance. Cureus 2023, 15, e49935. [Google Scholar] [CrossRef]
- Weng, T.-P.; Lo, C.-L.; Lin, W.-L.; Lee, J.-C.; Li, M.-C.; Ko, W.-C.; Lee, N.-Y. Integration of antimicrobial stewardship intervention with rapid organism identification improve outcomes in adult patients with bloodstream infections. J. Microbiol. Immunol. Infect. 2023, 56, 57–63. [Google Scholar] [CrossRef]
- File, T.M., Jr.; Srinivasan, A.; Bartlett, J.G. Antimicrobial stewardship: Importance for patient and public health. Clin. Infect. Dis. 2014, 59 (Suppl. S3), S93–S96. [Google Scholar] [CrossRef]
- Zirpe, K.; Kapse, U.S.; Gurav, S.K.; Deshmukh, A.M.; Suryawanshi, P.B.; Wankhede, P.P.; Bhoyar, A.P.; Tiwari, A.M.; Desai, D.; Suryawanshi, R.; et al. Impact of an Antimicrobial Stewardship Program on Broad Spectrum Antibiotics Consumption in the Intensive Care Setting. Indian J. Crit. Care Med. 2023, 27, 737–742. [Google Scholar] [CrossRef]
- Mokrani, D.; Chommeloux, J.; Pineton de Chambrun, M.; Hékimian, G.; Luyt, C.-E. Antibiotic stewardship in the ICU: Time to shift into overdrive. Ann. Intensive Care 2023, 13, 39. [Google Scholar] [CrossRef]
- Peri, A.M.; Chatfield, M.D.; Ling, W.; Furuya-Kanamori, L.; Harris, P.N.A.; Paterson, D.L. Rapid Diagnostic Tests and Antimicrobial Stewardship Programs for the Management of Bloodstream Infection: What Is Their Relative Contribution to Improving Clinical Outcomes? A Systematic Review and Network Meta-Analysis. Clin. Infect. Dis. 2024, 79, 502–515. [Google Scholar] [CrossRef] [PubMed]
- Beganovic, M.; McCreary, E.K.; Mahoney, M.V.; Dionne, B.; Green, D.A.; Timbrook, T.T. Interplay Between Rapid Diagnostic Tests and Antimicrobial Stewardship Programs Among Patients with Bloodstream and Other Severe Infections. J. Appl. Lab. Med. 2019, 3, 601–616. [Google Scholar] [CrossRef]
- Zhanel, G.G.; Cheung, D.; Adam, H.; Zelenitsky, S.; Golden, A.; Schweizer, F.; Gorityala, B.; Lagacé-Wiens, P.R.S.; Walkty, A.; Gin, A.S.; et al. Review of Eravacycline, a Novel Fluorocycline Antibacterial Agent. Drugs 2016, 76, 567–588. [Google Scholar] [CrossRef]
- Heaney, M.; Mahoney, M.V.; Gallagher, J.C. Eravacycline: The Tetracyclines Strike Back. Ann. Pharmacother. 2019, 53, 1124–1135. [Google Scholar] [CrossRef]
- Scott, L.J. Eravacycline: A Review in Complicated Intra-Abdominal Infections. Drugs 2019, 79, 315–324. [Google Scholar] [CrossRef]
- Solomkin, J.; Evans, D.; Slepavicius, A.; Lee, P.; Marsh, A.; Tsai, L.; Sutcliffe, J.A.; Horn, P. Assessing the Efficacy and Safety of Eravacycline vs. Ertapenem in Complicated Intra-abdominal Infections in the Investigating Gram-Negative Infections Treated with Eravacycline (IGNITE 1) Trial: A Randomized Clinical Trial. JAMA Surg. 2017, 152, 224–232. [Google Scholar] [CrossRef] [PubMed]
- Solomkin, J.S.; Gardovskis, J.; Lawrence, K.; Montravers, P.; Sway, A.; Evans, D.; Tsai, L. IGNITE4: Results of a Phase 3, Randomized, Multicenter, Prospective Trial of Eravacycline vs. Meropenem in the Treatment of Complicated Intraabdominal Infections. Clin. Infect. Dis. 2019, 69, 921–929. [Google Scholar] [CrossRef]
- McCarthy, M.W. Clinical Pharmacokinetics and Pharmacodynamics of Eravacycline. Clin. Pharmacokinet. 2019, 58, 1149–1153. [Google Scholar] [CrossRef]
- Cluck, D.; Lewis, P.; Stayer, B.; Spivey, J.; Moorman, J. Ceftolozane–tazobactam: A new-generation cephalosporin. Am. J. Health-Syst. Pharm. 2015, 72, 2135–2146. [Google Scholar] [CrossRef]
- Sucher, A.J.; Chahine, E.B.; Cogan, P.; Fete, M. Ceftolozane/Tazobactam:A New Cephalosporin and β-Lactamase Inhibitor Combination. Ann. Pharmacother. 2015, 49, 1046–1056. [Google Scholar] [CrossRef]
- Scott, L.J. Ceftolozane/Tazobactam: A Review in Complicated Intra-Abdominal and Urinary Tract Infections. Drugs 2016, 76, 231–242. [Google Scholar] [CrossRef]
- Kollef, M.H.; Nováček, M.; Kivistik, Ü.; Réa-Neto, Á.; Shime, N.; Martin-Loeches, I.; Timsit, J.-F.; Wunderink, R.G.; Bruno, C.J.; Huntington, J.A.; et al. Ceftolozane-tazobactam versus meropenem for treatment of nosocomial pneumonia (ASPECT-NP): A randomised, controlled, double-blind, phase 3, non-inferiority trial. Lancet Infect. Dis. 2019, 19, 1299–1311. [Google Scholar] [CrossRef]
- Shields, R.K.; Abbo, L.M.; Ackley, R.; Aitken, S.L.; Albrecht, B.; Babiker, A.; Burgoon, R.; Cifuentes, R.; Claeys, K.C.; Curry, B.N.; et al. Effectiveness of ceftazidime-avibactam versus ceftolozane-tazobactam for multidrug-resistant Pseudomonas aeruginosa infections in the USA (CACTUS): A multicentre, retrospective, observational study. Lancet Infect. Dis. 2025, 25, 574–584. [Google Scholar] [CrossRef]
- Wagenlehner, F.M.; Umeh, O.; Steenbergen, J.; Yuan, G.; Darouiche, R.O. Ceftolozane-tazobactam compared with levofloxacin in the treatment of complicated urinary-tract infections, including pyelonephritis: A randomised, double-blind, phase 3 trial (ASPECT-cUTI). Lancet 2015, 385, 1949–1956. [Google Scholar] [CrossRef]
- Solomkin, J.; Hershberger, E.; Miller, B.; Popejoy, M.; Friedland, I.; Steenbergen, J.; Yoon, M.; Collins, S.; Yuan, G.; Barie, P.S.; et al. Ceftolozane/Tazobactam Plus Metronidazole for Complicated Intra-abdominal Infections in an Era of Multidrug Resistance: Results From a Randomized, Double-Blind, Phase 3 Trial (ASPECT-cIAI). Clin. Infect. Dis. 2015, 60, 1462–1471. [Google Scholar] [CrossRef]
- Anand, A.; Verma, A.; Kaur, S.; Kathayat, P.; Manoj, R.M.; Aakanksha, A.; Turzin, J.K.; Satapathy, P.; Khatib, M.N.; Gaidhane, S.; et al. An overview of sulbactam-durlobactam approval and implications in advancing therapeutics for hospital-acquired and ventilator-associated pneumonia by acinetobacter baumannii-calcoaceticus complex: A narrative review. Health Sci. Rep. 2024, 7, e70066. [Google Scholar] [CrossRef]
- August, B.; Matlob, A.; Kale-Pradhan, P.B. Sulbactam-Durlobactam in the Treatment of Carbapenem-Resistant Acinetobacter baumannii Infections. Ann. Pharmacother. 2024, 58, 735–741. [Google Scholar] [CrossRef]
- Kabbara, W.K.; Sadek, E.; Mansour, H. Sulbactam–Durlobactam: A Novel Antibiotic Combination for the Treatment of Acinetobacter baumannii—Calcoaceticus Complex (ABC) Hospital-Acquired Bacterial Pneumonia and Ventilator-Associated Bacterial Pneumonia. Can. J. Infect. Dis. Med. Microbiol. 2025, 2025, 2001136. [Google Scholar] [CrossRef]
- Shields, R.K.; Dorazio, A.J.; Tiseo, G.; Squires, K.M.; Leonildi, A.; Giordano, C.; Kline, E.G.; Barnini, S.; Iovleva, A.; Griffith, M.P.; et al. Frequency of cefiderocol heteroresistance among patients treated with cefiderocol for carbapenem-resistant Acinetobacter baumannii infections. JAC Antimicrob. Resist. 2024, 6, dlae146. [Google Scholar] [CrossRef]
- Desmoulin, A.; Sababadichetty, L.; Kamus, L.; Daniel, M.; Feletti, L.; Allou, N.; Potron, A.; Leroy, A.-G.; Jaffar-Bandjee, M.-C.; Belmonte, O.; et al. Adaptive resistance to cefiderocol in carbapenem-resistant Acinetobacter baumannii (CRAB): Microbiological and clinical issues. Heliyon 2024, 10, e30365. [Google Scholar] [CrossRef]
- Huang, E.; Thompson, R.N.; Moon, S.H.; Keck, J.M.; Lowry, M.S.; Melero, J.; Jun, S.-R.; Rosenbaum, E.R.; Dare, R.K.; Poirel, L. Treatment-emergent cefiderocol resistance in carbapenem-resistant Acinetobacter baumannii is associated with insertion sequence ISAba36 in the siderophore receptor pirA. Antimicrob. Agents Chemother. 2024, 68, e0029024. [Google Scholar] [CrossRef]
- Bianco, G.; Boattini, M.; Cricca, M.; Diella, L.; Gatti, M.; Rossi, L.; Bartoletti, M.; Sambri, V.; Signoretto, C.; Fonnesu, R.; et al. Updates on the Activity, Efficacy and Emerging Mechanisms of Resistance to Cefiderocol. Curr. Issues Mol. Biol. 2024, 46, 14132–14153. [Google Scholar] [CrossRef]
- McLeod, S.M.; Moussa, S.H.; Hackel, M.A.; Miller, A.A. In Vitro Activity of Sulbactam-Durlobactam Against Acinetobacter baumannii-calcoaceticus Complex Isolates Collected Globally in 2016 and 2017. Antimicrob. Agents Chemother. 2020, 64, e02534-19. [Google Scholar] [CrossRef]
- Lee, Y.; Kim, J.; Trinh, S. Meropenem-Vaborbactam (Vabomere(™)): Another Option for Carbapenem-Resistant Enterobacteriaceae. Pharm. Ther. 2019, 44, 110–113. [Google Scholar]
- Dhillon, S. Meropenem/Vaborbactam: A Review in Complicated Urinary Tract Infections. Drugs 2018, 78, 1259–1270. [Google Scholar] [CrossRef] [PubMed]
- Campogiani, L.; Vitale, P.; Lodi, A.; Imeneo, A.; Fontana, C.; D’Agostini, C.; Compagno, M.; Coppola, L.; Spalliera, I.; Malagnino, V.; et al. Resistance to Ceftazidime/Avibactam in Klebsiella pneumoniae KPC-Producing Isolates: A Real-Life Observational Study. Antibiotics 2023, 12, 820. [Google Scholar] [CrossRef] [PubMed]
- Shields, R.K.; Chen, L.; Cheng, S.; Chavda, K.D.; Press, E.G.; Snyder, A.; Pandey, R.; Doi, Y.; Kreiswirth, B.N.; Nguyen, M.H.; et al. Emergence of Ceftazidime-Avibactam Resistance Due to Plasmid-Borne bla(KPC-3) Mutations During Treatment of Carbapenem-Resistant Klebsiella pneumoniae Infections. Antimicrob. Agents Chemother. 2017, 61, e02097-16. [Google Scholar] [CrossRef] [PubMed]
- Novelli, A.; Paola, D.G.; Maria, R.G.; Tumbarello, M. Meropenem/vaborbactam: A next generation β-lactam β-lactamase inhibitor combination. Expert Rev. Anti-Infect. Ther. 2020, 18, 643–655. [Google Scholar] [CrossRef]
- Caverly, L.J.; Spilker, T.; Kalikin, L.M.; Stillwell, T.; Young, C.; Huang, D.B.; LiPuma, J.J. In Vitro Activities of β-Lactam-β-Lactamase Inhibitor Antimicrobial Agents Against Cystic Fibrosis Respiratory Pathogens. Antimicrob. Agents Chemother. 2019, 64, e01595-19. [Google Scholar] [CrossRef]
- Franklin, G.A. The driving force in hospital formularies: Economics versus efficacy. Am. J. Surg. 2003, 186, 55–60. [Google Scholar] [CrossRef]
- Walkom, E.; Robertson, J.; Newby, D.; Pillay, T. The role of pharmacoeconomics in formulary decision-making. Formulary 2006, 41, 374–386. [Google Scholar]
- Toth, D.J.A.; Samore, M.H.; Nelson, R.E. Economic Evaluations of New Antibiotics: The High Potential Value of Reducing Healthcare Transmission Through Decolonization. Clin. Infect. Dis. 2021, 72 (Suppl. S1), S34–S41. [Google Scholar] [CrossRef]
- Aggarwal, M.; Patra, A.; Awasthi, I.; George, A.; Gagneja, S.; Gupta, V.; Capalash, N.; Sharma, P. Drug repurposing against antibiotic resistant bacterial pathogens. Eur. J. Med. Chem. 2024, 279, 116833. [Google Scholar] [CrossRef]
- Cassir, N.; Rolain, J.-M.; Brouqui, P. A new strategy to fight antimicrobial resistance: The revival of old antibiotics. Front. Microbiol. 2014, 5, 551. [Google Scholar] [CrossRef]
- Kaye, K.S.; Gales, A.C.; Dubourg, G. Old antibiotics for multidrug-resistant pathogens: From In Vitro activity to clinical outcomes. Int. J. Antimicrob. Agents 2017, 49, 542–548. [Google Scholar] [CrossRef]
- Ilyas, M.; Latif, M.S.; Gul, A.; Babar, M.M.; Rajadas, J. Chapter One—Drug repurposing for bacterial infections. In Progress in Molecular Biology and Translational Science; Singh, V., Ed.; Academic Press: Salt Lake City, UT, USA, 2024; Volume 207, pp. 1–21. [Google Scholar]
- Le, V.V.H.; Rakonjac, J. Nitrofurans: Revival of an “old” drug class in the fight against antibiotic resistance. PLoS Pathog. 2021, 17, e1009663. [Google Scholar] [CrossRef]
- Michalopoulos, A.S.; Livaditis, I.G.; Gougoutas, V. The revival of fosfomycin. Int. J. Infect. Dis. 2011, 15, e732–e739. [Google Scholar] [CrossRef]
- Lashinsky, J.N.; Henig, O.; Pogue, J.M.; Kaye, K.S. Minocycline for the Treatment of Multidrug and Extensively Drug-Resistant A. baumannii: A Review. Infect. Dis. Ther. 2017, 6, 199–211. [Google Scholar] [CrossRef]
- Zohar, I.; Maor, Y.; Shirin, N.; Yahav, D. Current management strategies for multidrug-resistant Gram-negative urinary tract infections, a focus on aminoglycosides monotherapy. CMI Commun. 2024, 1, 105039. [Google Scholar] [CrossRef]
- Tsakris, A.; Koumaki, V.; Dokoumetzidis, A. Minocycline susceptibility breakpoints for Acinetobacter baumannii: Do we need to re-evaluate them? J. Antimicrob. Chemother. 2019, 74, 295–297. [Google Scholar] [CrossRef] [PubMed]
- Garcia-Parejo, Y.; Gonzalez-Rubio, J.; Garcia Guerrero, J.; Gomez-Juarez Sango, A.; Cantero Escribano, J.M.; Najera, A. Risk factors for colonisation by Multidrug-Resistant bacteria in critical care units. Intensive Crit. Care Nurs. 2025, 86, 103760. [Google Scholar] [CrossRef]
- Dominedò, C.; Ceccato, A.; Niederman, M.; Cillóniz, C.; Gabarrús, A.; Martin-Loeches, I.; Ferrer, M.; Antonelli, M.; Torres, A. Predictive Performance of Risk Factors for Multidrug-Resistant Pathogens in Nosocomial Pneumonia. Ann. Am. Thorac. Soc. 2021, 18, 807–814. [Google Scholar] [CrossRef]
- Russo, E.; Di Bari, S.; Agnoletti, V.; The local ICU Infection Control Team; Bagni, M.; Bertaccini, B.; Campagna, D.; Giacomini, A.; Magalotti, E.; Marson, F.; et al. Benefits of patient risk stratification and targeted interventions on multidrug resistant pathogens prevention and control. Discov. Health Syst. 2022, 1, 6. [Google Scholar] [CrossRef]
- Watkins, R.R. Antibiotic stewardship in the era of precision medicine. JAC Antimicrob. Resist. 2022, 4, dlac066. [Google Scholar] [CrossRef]
- Thakral, Y.; Sahay, S.; Mukherjee, A. Microfoundations of Data-Driven Antimicrobial Stewardship Policy (ASP). Antibiotics 2024, 13, 24. [Google Scholar] [CrossRef]
- Wagner, J.L.; Markovich, K.C.; Barber, K.E.; Stover, K.R.; Biehle, L.R. Optimizing rapid diagnostics and diagnostic stewardship in Gram-negative bacteremia. Pharmacotherapy 2021, 41, 676–685. [Google Scholar] [CrossRef]
Drug | Potential Clinical Indications | Clinical Pearls |
---|---|---|
Eravacycline | cIAI (VRE, CRE, ESBL, CRAB) SSTI (VRE, CRE, ESBL, CRAB, and MRSA) |
|
Ceftolozane–tazobactam | HABP/VABP (MDR P. aerug, ESBL Enterobacterales) cIAI (MDR P. aerug, ESBL Enterobacterales) cUTI (MDR P. aerug, ESBL Enterobacterales) Bacteremia (off label) (MDR P. aerug, ESBL Enterobacterales) |
|
Sulbactam–durlobactam | SSTI (CRAB) HABP/VABP (CRAB) |
|
Meropenem–vaborbactam | cUTI (KPC, MDR Burkholderia spp.) HABP/VABP (KPC, MDR Burkholderia spp.) cIAI (KPC, MDR Burkholderia spp.) Bacteremia (off label) (KPC, MDR Burkholderia spp.) |
|
Drug | Indication (Genotypes) | Advantage over SOC |
---|---|---|
Fosfomycin | Cystitis (CRE, ESBL, VRE) |
|
Nitrofurantoin | Cystitis (CRE, ESBL, VRE) |
|
Minocycline | Invasive infections outside the bladder (CRAB) |
|
Gentamicin | Monotherapy for cystitis (ESBL, CRE) |
|
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Keck, J.M.; Schultz, J.; Viteri, A. “Dusting Off the Cobwebs”: Rethinking How We Use New Antibiotics. Antibiotics 2025, 14, 862. https://doi.org/10.3390/antibiotics14090862
Keck JM, Schultz J, Viteri A. “Dusting Off the Cobwebs”: Rethinking How We Use New Antibiotics. Antibiotics. 2025; 14(9):862. https://doi.org/10.3390/antibiotics14090862
Chicago/Turabian StyleKeck, Jacob Myles, Jacob Schultz, and Alina Viteri. 2025. "“Dusting Off the Cobwebs”: Rethinking How We Use New Antibiotics" Antibiotics 14, no. 9: 862. https://doi.org/10.3390/antibiotics14090862
APA StyleKeck, J. M., Schultz, J., & Viteri, A. (2025). “Dusting Off the Cobwebs”: Rethinking How We Use New Antibiotics. Antibiotics, 14(9), 862. https://doi.org/10.3390/antibiotics14090862