A Practical Framework for Environmental Antibiotic Resistance Monitoring in Freshwater Ecosystems
Abstract
1. Why Environmental AR Monitoring Is Important
2. How to Monitor?
2.1. Methodologies for AR Monitoring
2.2. Criteria for the Selection of Methods
Study System * | Methods Compared ** | Main Findings ** | References |
---|---|---|---|
WASTEWATER Influent samples collected daily over 18 consecutive days and used to create a composite sample | qPCR SM-Seq RNA-seq 16S rRNA-seq |
| [35] |
WASTEWATER Post screen influent, treated effluent (drop chamber after final clarifiers), tertiary maturation pond effluent, (final pond prior to discharge), pond base sediment | qPCR SM-Seq |
| [36] |
RIVER WATER River water samples upstream and downstream of 3 reclamation plants, swimming/kayak sites, and beaches near coastal pour | CBM qPCR SM-Seq |
| [37] |
WASTEWATER Four wastewater samples from hospital, industrial, urban, and rural areas | HT-qPCR SM-Seq |
| [38] |
WASTEWATER Wastewater influent from 47 WWTPs | HT-qPCR SM-Seq |
| [39] |
MULTIPLE WATER SOURCES Water samples collected from groundwater, surface water, drinking water treatment plants before pre-treatment, and tanker filling stations | qPCR HT-qPCR |
| [40,41,42,43,44] |
RIVER WATER AND WASTEWATER Water and wastewater samples from hospital effluent, two WWTP treatment stages, and river receiving discharge point | qPCR SM-Seq |
| [45] |
MULTIPLE WATER SOURCES Wastewater, recycled water, and surface water samples collected over six months from six utilities, in five US states | CBM qPCR |
| [46] |
RIVER WATER Urban watershed before and after a rainfall event | CBM qPCR SM-Seq |
| [47] |
WASTEWATER Grab samples were collected at each stage of treatment | qPCR SM-Seq |
| [48] |
FRESHWATER RESERVOIR Subtropical stratified freshwater reservoir | HT-qPCR SM-Seq |
| [49] |
2.3. Challenges in Resistome Profiling via Metagenomics
- The detected ARG diversity does not capture the whole diversity: In many environmental samples, ARG relative abundance is often much lower than that of other functional genes [15], requiring deep sequencing to capture the whole resistome diversity [50]. Without adequate sequencing depth, crucial ARGs may be underrepresented, leading to incomplete or misleading conclusions. Likewise, expanding reference databases to include both clinical and environmental genome data, along with the integration of predictive models, is essential. Current databases are biased toward model organisms, pathogens, and easily cultivable bacteria [51]. Also, in the context of freshwater ecosystems, obtaining a sufficient amount of DNA from a given sample, in order to allow a full characterization of the microbiome and resistome, can be a demanding task, due to the common relatively low bacterial densities per unit of water, which often necessitate large sample volumes (e.g., >1 L) to perform metagenomic analyses effectively [27].
- Absence does not mean susceptible: Failure to detect an ARG does not necessarily imply that such gene is not there or that the host bacterium is susceptible to the antibiotic in question. In addition to detection limits (sensitivity) and difficulties, AR may (i) involve mechanisms beyond those identifiable through gene sequencing data; and (ii) not depend on the presence of specific ARGs. Furthermore, certain bacteria harbour silent ARGs, whose presence is not associated with a corresponding resistant phenotype, but that, under suitable conditions, can revert their expression patterns and result in AR [52].
- Presence does not imply functionality: DNA-based methods, when used alone, do not reveal whether putative target genes are functional or actively expressed in the environment [53]. While genomic content indicates the functional potential of a microbial community, it fails to directly measure actual functional activity. This limitation can be addressed by integrating complementary approaches, such as metatranscriptomics, metaproteomics, and metabolomics, which enable the analysis of gene expression, protein production, and metabolic activity, respectively [54]. Likewise, DNA can persist in the environment for a relatively long time after cell death, but molecular techniques cannot differentiate between living and dead organisms, and then sequencing results may not accurately represent the active microbial populations [51]. However, detecting the presence of ARGs is always important, as extracellular DNA can be taken up via transformation and then expressed by the host bacteria [5,55].
2.4. Standardisation of Protocols
2.5. Importance of Metadata Collection and Raw Data Sharing
3. What to Monitor?
3.1. Selection of AR Targets
Proposed Candidate Genes | Selection Criteria | Study Context | References |
---|---|---|---|
intI1, sul1, sul2, blaCTX-M, blaTEM, blaNDM-1, blaVIM, blaKPC, vanA, qnrS, aac(6′)-Ib-cr, mecA, ermB, ermF, tetM, aph |
|
| [72] |
intI1, sul1, tetW, blaTEM, blaKPC, vanA, mcr-1 |
|
| [79] |
intI1, sul1, tetA, blaCTX-M, vanA |
|
| [56] |
intI1, sul1, tetA or tetG, vanA, blaCTX-M, blaTEM, qnrS, sul3, tetH, aadA2, floR, ereA, mexF |
|
| [11] |
intI1, sul1, ermB, oqxA, mexE (from a total of 56 indicator ARGs grouped into four correlated modules) |
|
| [74] |
3.2. Established vs. Latent Genes
3.3. Gene Abundances
3.4. Microbial Community Dynamics as Drivers of AR
3.5. Source-Tracking and Faecal Contamination Indicators
3.6. Contaminants as Drivers of Resistance
- Most studies have focused on a limited number of selected contaminants present in aquatic environments. Targeted analytical methodologies provide reliable information about the presence and concentration of those compounds, even at trace levels. However, since analytes must be selected in advance, compounds not included in the contaminant target list remain undetected. In contrast, non-target and suspect screening methodologies allow for the simultaneous detection of a broad spectrum of compounds without requiring chemical standards until the confirmation stage [134,135]. Nevertheless, information on the structures and identities is only tentative and accurate quantification cannot be performed.
- Transformation products and metabolites are frequently excluded from these analyses, despite their potential biological activity and contribution to AR selective pressures [136]. Transformation products arise from abiotic chemical or physical changes, while metabolites are generated through biological processes. Moreover, many compounds are excreted as conjugates, i.e., chemically bound to other molecules. Regardless of their origin, these novel chemical entities are of particular concern, as they may occur at higher concentrations than their parent compounds and may themselves exhibit pharmacological activity [136,137]. In some cases, they are also more persistent or toxic than the original substances. Interestingly, some studies have reported back-transformation processes that can convert such derivatives back to their parent chemicals under certain conditions [138]. In any case, their identification and quantification remain challenging due to the lack of analytical standards and incomplete reference databases [137]. Non-target analysis approaches hold promise for expanding the list of substances to be analysed.In the specific case of WWTPs, this consideration is especially relevant as some treatment processes also generate by-products [136,139]. Moreover, during biological treatment processes, certain conjugates may be metabolized and broken down, releasing the parent compound. This can result in higher concentrations in treated effluents, compared to influents, leading to apparent negative removal efficiencies [140].
- The complex mixture of contaminants in aquatic environments often results in synergistic, additive, or antagonistic interactions that can modulate AR selective pressures in unpredictable ways. Therefore, evaluating contaminants individually may overlook combined effects that can be critical drivers of AR emergence and evolution. The wide variety of strategies available to study this “cocktail effect” complicates efforts to overcome this issue in standardised regulatory frameworks [141].
4. Where to Monitor?
4.1. Spatial Distribution of AR
4.2. Sampling Design
4.3. Sample Matrix Selection and Relevance of Understudied Habitats
Location | Freshwater System | Sampling Campaigns | Sample Collection * | Methodological Approaches * | References |
---|---|---|---|---|---|
Austria | Three tributaries (Traisen- Gölsen, Ybbs, Kamp) and short stretch of Danube River, upstream and downstream municipal WWTPs | Five occasions in October 2020, January 2021, April 2021, July 2021, October 2021 | Rock or wood branches scrubs | qPCR analysis; 9 genes: sul1, tetM, qnrS, blaTEM, blaKPC, blaCTX-M-1, blaCTX-M-9, blaOXA-48, intI1 | [194] |
Spain | Onyar River affected by a secondary treated wastewater effluent | Year-long period during autumn, spring, and summer | Scrubs from randomly selected streambed cobbles | qPCR analysis; 7 genes: sul1, tetM, qnrS, blaTEM, blaOXA-58-58, blaCTX-M-32, intI1 | [195] |
China | Heihui River, encompassing densely populated urban areas, farmland, industrial and mining zones, forests | One sampling campaign (May 2022) | Scrubs from rocks at a depth of 15–30 cm along the riverbank | Shotgun metagenomic sequencing; Novaseq 6000 platform, paired-end (2 × 250 bp) strategy | [196] |
United States | Scioto River watershed including Scioto River, Olentangy River, and Big Darby Creek | Between October 2017 and August 2018 in 4 visits (autumn, winter, spring, summer) | Rock scrubs | Oxford Nanopore Technology’s, long-read MinION | [197] |
United States | Raritan River, sites with varying influences by wastewater effluent, urban activities, agricultural activities, and tides | Not reported | Rock and leaves scrubs (8 × 16.5 cm2) | qPCR analysis; 2 genes: sul1, vanZ, and 16S rRNA gene | [198] |
Brazil | Guaporé River watershed, including Capingui River, Marau River, Lajeado-Carazinho River, and Lajeado River | Beginning of summer (December 2014) and winter (June 2015) | Scrubs from rocks that remained submerged in all seasons | qPCR analysis; 3 genes: sul1, qnrA, erm and 16S rRNA gene | [199] |
Germany | Holtemme river; upstream and downstream a WWTP | Dry period in summer 2022, five sampling days | Scrubs from water-facing side of riverbed stones | qPCR analysis; 3 genes: sul1, sul2, intI1 and 16S rRNA gene | [200] |
Switzerland | Sampling sites encompassing WWTPs and upstream and downstream sampling sites in receiving rivers | Between July and October 2017 | Rock scrubs | Shotgun metagenomic sequencing; HiSeq 4000 System (Illumina), paired-end (2 × 150 bp) strategy | [155] |
Various regions globally (4 countries) | Rivers, lakes, streams, caves, and other environments (see Supplementary Information in publication) | See Supplementary Information in publication | See Supplementary Information in publication | See Supplementary Information in publication | [201] |
China | Lung Fu Mountain stream and Sam Dip Tam | One sampling campaign (April 2018) | Scrubs from benthic rocks of identical size in similar flow conditions | Metagenomic approaches: BGISEQ-500 platform | |
France | Poitiers WWTP and upstream, and downstream sampling sites in Clain river | One sampling campaign from January to December 2018 (each month) | 5-month river-incubated sterile rocks, pooled as a single bulk sample | qPCR analysis; class 1, 2 and 3 integrons and 66 ARGs, 5 multidrug efflux pumps, 6 MRGs, 3 disinfectant resistance genes, 11 MGEs | [202] |
United States | Scioto River, Olentangy River, and Big Darby Creek; sampling sites: outflow upstream, outflow, outflow downstream, left and right bank | 3–4 times from October 2017 to August 2018 | Rock scrubs, six samples collected at each sample site | ddPCR analysis; 3 genes: blaKPC, blaNDM, blaOXA-48 | [154] |
Germany | Kraichbach River; WWTP upstream and downstream sampling sites | Five sampling campaigns from February to June 2019, once a month | Biofilm samplers: PVC box with four 70 cm × 30 cm glass sheets; submerged for ~1 month | qPCR analysis; 12 genes: blaTEM, ermB, tetM, sul1, blaCMY-2, blaCTX-M, blaCTX-M-32, blaOXA-48, mecA, blaNDM-1, blaKPC-3, mcr-1 | [180] |
United States | Three streams in Cuyahoga River watershed including Tinkers Creek, Yellow Creek and Furnace Run | 4 campaigns: November 2012, April 2013, June 2013, August 2013 | Scrubs from cobble-sized stones | qPCR analysis; 7 genes: tetW, sulI, sulII, pbrT, copA, czcA, czcC | [203] |
China | Bosten Lake and Ebi Lake | Not reported | Algae and wood biofilms | qPCR analysis; 2 MGEs (intI1, ISCR1) and 20 MRGs | [204] |
China | Yangtze Estuary | Sampling campaign in October 2016 | Scrubs from the surface of submerged civil engineered cement structures and rocks | PCR and qPCR analysis; 22 genes: sul1, sul2, sul3, sulA, qnrS, qnrB, aac(6′)-Ib, tetA, tetB, tetC, tetE, tetG, tetL, tetM, tetO, tetQ, tetS, tetT, tetW, tetX, ermB, Chl | [178] |
Spain | Two tributary streams to the Ebro River, including Montsant stream and Matarranya stream; sampling sites upstream, discharge point, and downstream UWWTP | Not reported | Epilithic biofilms: rock scrubs, and epipsammic biofilm: streambed top layer fraction (0–5 cm) | qPCR analysis; 13 genes: blaTEM, blaCTX-M, blaKPC, blaNDM, blaOXA-48, qnrS, sul1, sul2, tetM, tetW, ermB, vanA, intI1 | [205] |
Spain | Two tributary streams to the Ebro River, including Montsant stream and Matarranya stream; sampling site downstream UWWTP | Not reported | Samples collected in triplicate in Eppendorf tubes | qPCR analysis. All known alleles of blaKPC, blaNDM, and blaOXA-48-like genes | [206] |
France | Vienne River watershed and their WWTPs; sampling sites: upstream, downstream (‘0 m’, ‘10 m’, ‘100 m’) | Three consecutive days in July 2011 | Scrubs from 5–10 rocks collected randomly and submerged 50–100 cm all over the year | qPCR analysis; Class 1, 2, and 3 integrons (intI1, intI2, intI3) | [175] |
New Zealand | Four watersheds: Waiau, Aparima, Oreti, Makarewa, land uses including pasture farming, cropping, forestry, native grasslands, indigenous forest, government-managed conservation land, sparsely populated townships | 4-day samplings: July 2010, August–September 2010, October 2010, December 2010, January 2011, March 2011, April 2011, May 2011 | Scrubs from three randomly collected rocks of roughly 10 cm diameter and likely continuously submerged | PCR analysis; 10 genes: aacA-aphD, mecA, ermA, ermB, tetA, tetB, tetK, tetM, vanA, vanB | [207] |
Spain | Tordera River Basin, including Gualba stream, Repiaix stream, Xica stream, Tordera stream and 3 WWTPs, including Gualba, Breda and Arbúcies plants | Not reported | Scrubs form a 50–100 m stream section; cobble surface area estimated via weight/area regression | qPCR analysis; 4 genes: blaCTX-M, qnrS, sulI, ermB | [208] |
Spain | Ter River; sampling sites upstream and downstream Ripoll WWTP | Two sampling events: June and September 2010 | Rock scrubs | PCR analysis; 4 genes: qnrA, qnrB, qnrS and aac(60)-Ib-cr for ciprofloxacin-resistant isolates. qnr-positive isolates investigated for blaCTX-M, blaSHV, and blaTEM | [209] |
New Zealand | Taieri River, land uses including livestock farming, cropping, market gardening, forestry, native grasslands, and sparsely populated townships | Year-long duration | Scrubs from three randomly collected rocks of roughly 10 cm diameter and likely continuously submerged | PCR analysis; 10 genes: vanA, vanB, mecA, ermA, ermB, tetA, tetB, tetK, tetM, aacA-aphD | [210] |
Spain | Ter River; sampling sites upstream, discharge point and downstream Ripoll WWTP | June 2010, end of spring | Rock scrubs, samples collected in duplicate | qPCR analysis; 11 genes: blaTEM, blaCTX-M, blaSHV, qnrA, qnrB, qnrS, tet(O), tet(W) sul(I), sul(II), erm(B) | [165] |
Australia | Mars Creek, small urban watercourse with no hospitals, sewage treatment works, or animal production facilities | Not reported | 6 biofilm samples | PCR analysis; integrons carrying qac gene cassettes | [211] |
5. When to Monitor?
5.1. Chemical Contamination Temporal Trends
5.2. Resistome and Microbiome Temporal Trends
5.3. Fragmented Evidence and Incomplete Insights
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
3C | Chromosome Conformation Capture |
AR | Antibiotic Resistance |
ARB | Antibiotic-Resistant Bacteria |
ARG | Antibiotic Resistance Gene |
CARD | Comprehensive Antibiotic Resistance Database |
DO | Dissolved Oxygen |
ENA | European Nucleotide Archive |
EpicPCR | Emulsion, Paired Isolation and Concatenation Polymerase Chain Reaction |
FACS | Fluorescence-Activated Cell Sorting |
FAIR | Findable, Accessible, Interoperable, and Reusable |
FIB | Faecal Indicator Bacteria |
FST | Faecal Source Tracking |
HGT | Horizontal Gene Transfer |
MAG | Metagenomic Assembled Genomes |
MGE | Mobile Genetic Element |
MRG | Metal Resistance Gene |
MST | Microbial Source Tracking |
NGS | Next-Generation Sequencing |
PICT | Pollution-Induced Community Tolerance |
qPCR | Real-time Quantitative PCR |
ROS | Reactive Oxygen Species |
SRA | Sequence Read Archive |
WWTP | Wastewater Treatment Plant |
References
- Lebov, J.; Grieger, K.; Womack, D.; Zaccaro, D.; Whitehead, N.; Kowalcyk, B.; MacDonald, P.D.M. A Framework for One Health Research. One Health 2017, 3, 44–50. [Google Scholar] [CrossRef]
- Mackenzie, J.S.; Jeggo, M. The One Health Approach—Why Is It So Important? Trop. Med. Infect. Dis. 2019, 4, 88. [Google Scholar] [CrossRef]
- Alkorta, I.; Garbisu, C. Expanding the Focus of the One Health Concept: Links between the Earth-System Processes of the Planetary Boundaries Framework and Antibiotic Resistance. Rev. Environ. Health 2025, 40, 159–173. [Google Scholar] [CrossRef]
- Bengtsson-Palme, J.; Jonsson, V.; Heß, S. What Is the Role of the Environment in the Emergence of Novel Antibiotic Resistance Genes? A Modeling Approach. Environ. Sci. Technol. 2021, 55, 15734–15743. [Google Scholar] [CrossRef]
- Larsson, D.G.J.; Flach, C.-F. Antibiotic Resistance in the Environment. Nat. Rev. Microbiol. 2022, 20, 257–269. [Google Scholar] [CrossRef]
- Cutrupi, F.; Osinska, A.D.; Rahmatika, I.; Afolayan, J.S.; Vystavna, Y.; Mahjoub, O.; Cifuentes, J.I.; Pezzutto, D.; Muziasari, W. Towards Monitoring the Invisible Threat: A Global Approach for Tackling AMR in Water Resources and Environment. Front. Water 2024, 6, 1362701. [Google Scholar] [CrossRef]
- Lajqi Berisha, N.; Poceva Panovska, A.; Hajrulai-Musliu, Z. Antibiotic Resistance and Aquatic Systems: Importance in Public Health. Water 2024, 16, 2362. [Google Scholar] [CrossRef]
- Dudgeon, D. Multiple Threats Imperil Freshwater Biodiversity in the Anthropocene. Curr. Biol. 2019, 29, R960–R967. [Google Scholar] [CrossRef]
- Reid, A.J.; Carlson, A.K.; Creed, I.F.; Eliason, E.J.; Gell, P.A.; Johnson, P.T.J.; Kidd, K.A.; MacCormack, T.J.; Olden, J.D.; Ormerod, S.J.; et al. Emerging Threats and Persistent Conservation Challenges for Freshwater Biodiversity. Biol. Rev. 2019, 94, 849–873. [Google Scholar] [CrossRef] [PubMed]
- Bengtsson-Palme, J.; Abramova, A.; Berendonk, T.U.; Coelho, L.P.; Forslund, S.K.; Gschwind, R.; Heikinheimo, A.; Jarquín-Díaz, V.H.; Khan, A.A.; Klümper, U.; et al. Towards Monitoring of Antimicrobial Resistance in the Environment: For What Reasons, How to Implement It, and What Are the Data Needs? Environ. Int. 2023, 178, 108089. [Google Scholar] [CrossRef]
- Abramova, A.; Berendonk, T.U.; Bengtsson-Palme, J. A Global Baseline for QPCR-Determined Antimicrobial Resistance Gene Prevalence across Environments. Environ. Int. 2023, 178, 108084. [Google Scholar] [CrossRef]
- Rizzo, L.; Manaia, C.; Merlin, C.; Schwartz, T.; Dagot, C.; Ploy, M.C.; Michael, I.; Fatta-Kassinos, D. Urban Wastewater Treatment Plants as Hotspots for Antibiotic Resistant Bacteria and Genes Spread into the Environment: A Review. Sci. Total Environ. 2013, 447, 345–360. [Google Scholar] [CrossRef]
- Kaeberlein, T.; Lewis, K.; Epstein, S.S. Isolating “Uncultivable” Microorganisms in Pure Culture in a Simulated Natural Environment. Science 2002, 296, 1127–1129. [Google Scholar] [CrossRef] [PubMed]
- Hofer, U. The Majority Is Uncultured. Nat. Rev. Microbiol. 2018, 16, 716–717. [Google Scholar] [CrossRef] [PubMed]
- Karkman, A.; Do, T.T.; Walsh, F.; Virta, M.P.J. Antibiotic-Resistance Genes in Waste Water. Trends Microbiol. 2018, 26, 220–228. [Google Scholar] [CrossRef]
- Djordjevic, S.P.; Jarocki, V.M.; Seemann, T.; Cummins, M.L.; Watt, A.E.; Drigo, B.; Wyrsch, E.R.; Reid, C.J.; Donner, E.; Howden, B.P. Genomic Surveillance for Antimicrobial Resistance—A One Health Perspective. Nat. Rev. Genet. 2023, 25, 142–157. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, A.Q.; Vu, H.P.; Nguyen, L.N.; Wang, Q.; Djordjevic, S.P.; Donner, E.; Yin, H.; Nghiem, L.D. Monitoring Antibiotic Resistance Genes in Wastewater Treatment: Current Strategies and Future Challenges. Sci. Total Environ. 2021, 783, 146964. [Google Scholar] [CrossRef]
- Kneis, D.; Berendonk, T.U.; Forslund, S.K.; Hess, S. Antibiotic Resistance Genes in River Biofilms: A Metagenomic Approach toward the Identification of Sources and Candidate Hosts. Environ. Sci. Technol. 2022, 56, 14913–14922. [Google Scholar] [CrossRef]
- Burch, T.R.; Newton, R.J.; Kimbell, L.K.; LaMartina, E.L.; O’Malley, K.; Thomson, S.M.; Marshall, C.W.; McNamara, P.J. Targeting Current and Future Threats: Recent Methodological Trends in Environmental Antimicrobial Resistance Research and Their Relationships to Risk Assessment. Environ. Sci. Water Res. Technol. 2022, 8, 1787–1802. [Google Scholar] [CrossRef]
- Luby, E.; Ibekwe, A.M.; Zilles, J.; Pruden, A. Molecular Methods for Assessment of Antibiotic Resistance in Agricultural Ecosystems: Prospects and Challenges. J. Environ. Qual. 2016, 45, 441–453. [Google Scholar] [CrossRef]
- Garner, E.; Davis, B.C.; Milligan, E.; Blair, M.F.; Keenum, I.; Maile-Moskowitz, A.; Pan, J.; Gnegy, M.; Liguori, K.; Gupta, S.; et al. Next Generation Sequencing Approaches to Evaluate Water and Wastewater Quality. Water Res. 2021, 194, 116907. [Google Scholar] [CrossRef]
- Waseem, H.; Jameel, S.; Ali, J.; Saleem Ur Rehman, H.; Tauseef, I.; Farooq, U.; Jamal, A.; Ali, M.I. Contributions and Challenges of High Throughput QPCR for Determining Antimicrobial Resistance in the Environment: A Critical Review. Molecules 2019, 24, 163. [Google Scholar] [CrossRef] [PubMed]
- Pillay, S.; Calderón-Franco, D.; Urhan, A.; Abeel, T. Metagenomic-Based Surveillance Systems for Antibiotic Resistance in Non-Clinical Settings. Front. Microbiol. 2022, 13, 1066995. [Google Scholar] [CrossRef]
- Purushothaman, S.; Meola, M.; Egli, A. Combination of Whole Genome Sequencing and Metagenomics for Microbiological Diagnostics. Int. J. Mol. Sci. 2022, 23, 9834. [Google Scholar] [CrossRef] [PubMed]
- Bengtsson-Palme, J.; Hammarén, R.; Pal, C.; Östman, M.; Björlenius, B.; Flach, C.-F.; Fick, J.; Kristiansson, E.; Tysklind, M.; Larsson, D.G.J. Elucidating Selection Processes for Antibiotic Resistance in Sewage Treatment Plants Using Metagenomics. Sci. Total Environ. 2016, 572, 697–712. [Google Scholar] [CrossRef]
- Rice, E.W.; Wang, P.; Smith, A.L.; Stadler, L.B. Determining Hosts of Antibiotic Resistance Genes: A Review of Methodological Advances. Environ. Sci. Technol. Lett. 2020, 7, 282–291. [Google Scholar] [CrossRef]
- Franklin, A.M.; Brinkman, N.E.; Jahne, M.A.; Keely, S.P. Twenty-First Century Molecular Methods for Analyzing Antimicrobial Resistance in Surface Waters to Support One Health Assessments. J. Microbiol. Methods 2021, 184, 106174. [Google Scholar] [CrossRef]
- Miłobedzka, A.; Ferreira, C.; Vaz-Moreira, I.; Calderón-Franco, D.; Gorecki, A.; Purkrtova, S.; Bartacek, J.; Dziewit, L.; Singleton, C.M.; Nielsen, P.H.; et al. Monitoring Antibiotic Resistance Genes in Wastewater Environments: The Challenges of Filling a Gap in the One-Health Cycle. J. Hazard. Mater. 2022, 424, 127407. [Google Scholar] [CrossRef]
- Alfahl, Z.; Chueiri, A.; Carolan, S.; Darcy, G.; Hussain, N.; Cahill, N.; O’Connor, L. Antimicrobial Resistance Detection Methods in Water Environments: A Scoping Review. Sustain. Microbiol. 2024, 1, qvae034. [Google Scholar] [CrossRef]
- Calero-Cáceres, W.; de Almeida Kumlien, A.C.M.; Balcázar, J.L. Advances and Challenges in Assessing Antimicrobial Resistance in Environmental Settings. Curr. Opin. Environ. Sci. Health 2024, 41, 100571. [Google Scholar] [CrossRef]
- Elbehiry, A.; Marzouk, E.; Abalkhail, A.; Abdelsalam, M.H.; Mostafa, M.E.A.; Alasiri, M.; Ibrahem, M.; Ellethy, A.T.; Almuzaini, A.; Aljarallah, S.N.; et al. Detection of Antimicrobial Resistance via State-of-the-Art Technologies versus Conventional Methods. Front. Microbiol. 2025, 16, 1549044. [Google Scholar] [CrossRef] [PubMed]
- Navgire, G.S.; Goel, N.; Sawhney, G.; Sharma, M.; Kaushik, P.; Mohanta, Y.K.; Mohanta, T.K.; Al-Harrasi, A. Analysis and Interpretation of Metagenomics Data: An Approach. Biol. Proced. Online 2022, 24, 18. [Google Scholar] [CrossRef]
- Davis, B.C.; Brown, C.; Gupta, S.; Calarco, J.; Liguori, K.; Milligan, E.; Harwood, V.J.; Pruden, A.; Keenum, I. Recommendations for the Use of Metagenomics for Routine Monitoring of Antibiotic Resistance in Wastewater and Impacted Aquatic Environments. Crit. Rev. Env. Sci. Tech. 2023, 53, 1731–1756. [Google Scholar] [CrossRef]
- Liguori, K.; Keenum, I.; Davis, B.C.; Calarco, J.; Milligan, E.; Harwood, V.J.; Pruden, A. Antimicrobial Resistance Monitoring of Water Environments: A Framework for Standardized Methods and Quality Control. Environ. Sci. Technol. 2022, 56, 9149–9160. [Google Scholar] [CrossRef]
- Drane, K.; Huerlimann, R.; Jones, R.; Whelan, A.; Sheehan, M.; Ariel, E.; Kinobe, R. Concordance in Molecular Methods for Detection of Antimicrobial Resistance: A Cross Sectional Study of the Influent to a Wastewater Plant. J. Microbiol. Methods 2025, 228, 107069. [Google Scholar] [CrossRef]
- Taylor, W.; Bohm, K.; Dyet, K.; Weaver, L.; Pattis, I. Comparative Analysis of QPCR and Metagenomics for Detecting Antimicrobial Resistance in Wastewater: A Case Study. BMC Res. Notes 2025, 18, 5. [Google Scholar] [CrossRef]
- Callejas, I.A.; Kong, Y.; Osborn, K.; Hung, W.-C.; Cira, M.; Cason, T.; Sloane, A.; Shenkiryk, A.; Masikip, A.; Singh, A.; et al. The Influence of Urbanization and Water Reclamation Plants on Fecal Indicator Bacteria and Antibiotic Resistance in the Los Angeles River Watershed: A Case Study with Complementary Monitoring Methods. Sci. Total Environ. 2024, 957, 177577. [Google Scholar] [CrossRef]
- Elbait, G.D.; Daou, M.; Abuoudah, M.; Elmekawy, A.; Hasan, S.W.; Everett, D.B.; Alsafar, H.; Henschel, A.; Yousef, A.F. Comparison of QPCR and Metagenomic Sequencing Methods for Quantifying Antibiotic Resistance Genes in Wastewater. PLoS ONE 2024, 19, e0298325. [Google Scholar] [CrossRef] [PubMed]
- Knight, M.E.; Webster, G.; Perry, W.B.; Baldwin, A.; Rushton, L.; Pass, D.A.; Cross, G.; Durance, I.; Muziasari, W.; Kille, P.; et al. National-Scale Antimicrobial Resistance Surveillance in Wastewater: A Comparative Analysis of HT QPCR and Metagenomic Approaches. Water Res. 2024, 262, 121989. [Google Scholar] [CrossRef]
- Malla, B.; Ghaju Shrestha, R.; Tandukar, S.; Bhandari, D.; Inoue, D.; Sei, K.; Tanaka, Y.; Sherchand, J.B.; Haramoto, E. Validation of Host-specific Bacteroidales Quantitative PCR Assays and Their Application to Microbial Source Tracking of Drinking Water Sources in the Kathmandu Valley, Nepal. J. Appl. Microbiol. 2018, 125, 609–619. [Google Scholar] [CrossRef] [PubMed]
- Malla, B.; Ghaju Shrestha, R.; Tandukar, S.; Bhandari, D.; Inoue, D.; Sei, K.; Tanaka, Y.; Sherchand, J.B.; Haramoto, E. Identification of Human and Animal Fecal Contamination in Drinking Water Sources in the Kathmandu Valley, Nepal, Using Host-Associated Bacteroidales Quantitative PCR Assays. Water 2018, 10, 1796. [Google Scholar] [CrossRef]
- Malla, B.; Ghaju Shrestha, R.; Tandukar, S.; Bhandari, D.; Thakali, O.; Sherchand, J.B.; Haramoto, E. Detection of Pathogenic Viruses, Pathogen Indicators, and Fecal-Source Markers within Tanker Water and Their Sources in the Kathmandu Valley, Nepal. Pathogens 2019, 8, 81. [Google Scholar] [CrossRef]
- Malla, B.; Makise, K.; Nakaya, K.; Mochizuki, T.; Yamada, T.; Haramoto, E. Evaluation of Human- and Animal-Specific Viral Markers and Application of CrAssphage, Pepper Mild Mottle Virus, and Tobacco Mosaic Virus as Potential Fecal Pollution Markers to River Water in Japan. Food Environ. Virol. 2019, 11, 446–452. [Google Scholar] [CrossRef] [PubMed]
- Raya, S.; Malla, B.; Thakali, O.; Angga, M.S.; Segawa, T.; Sherchand, J.B.; Haramoto, E. Validation and Application of High-Throughput Quantitative PCR for the Simultaneous Detection of Microbial Source Tracking Markers in Environmental Water. Sci. Total Environ. 2024, 940, 173604. [Google Scholar] [CrossRef] [PubMed]
- Ferreira, C.; Otani, S.; Aarestrup, F.M.; Manaia, C.M. Quantitative PCR versus Metagenomics for Monitoring Antibiotic Resistance Genes: Balancing High Sensitivity and Broad Coverage. FEMS Microbes 2023, 4, xtad008. [Google Scholar] [CrossRef] [PubMed]
- Liguori, K.; Calarco, J.; Maldonado Rivera, G.; Kurowski, A.; Keenum, I.; Davis, B.C.; Harwood, V.J.; Pruden, A. Comparison of Cefotaxime-Resistant Escherichia coli and Sul1 and IntI1 by QPCR for Monitoring of Antibiotic Resistance of Wastewater, Surface Water, and Recycled Water. Antibiotics 2023, 12, 1252. [Google Scholar] [CrossRef]
- Brumfield, K.D.; Cotruvo, J.A.; Shanks, O.C.; Sivaganesan, M.; Hey, J.; Hasan, N.A.; Huq, A.; Colwell, R.R.; Leddy, M.B. Metagenomic Sequencing and Quantitative Real-Time PCR for Fecal Pollution Assessment in an Urban Watershed. Front. Water 2021, 3, 626849. [Google Scholar] [CrossRef]
- Majeed, H.J.; Riquelme, M.V.; Davis, B.C.; Gupta, S.; Angeles, L.; Aga, D.S.; Garner, E.; Pruden, A.; Vikesland, P.J. Evaluation of Metagenomic-Enabled Antibiotic Resistance Surveillance at a Conventional Wastewater Treatment Plant. Front. Microbiol. 2021, 12, 657954. [Google Scholar] [CrossRef]
- Liu, X.; Xiao, P.; Guo, Y.; Liu, L.; Yang, J. The Impacts of Different High-Throughput Profiling Approaches on the Understanding of Bacterial Antibiotic Resistance Genes in a Freshwater Reservoir. Sci. Total Environ. 2019, 693, 133585. [Google Scholar] [CrossRef]
- Bengtsson-Palme, J.; Larsson, D.G.J.; Kristiansson, E. Using Metagenomics to Investigate Human and Environmental Resistomes. J. Antimicrob. Chemother. 2017, 72, 2690–2703. [Google Scholar] [CrossRef]
- Quince, C.; Walker, A.W.; Simpson, J.T.; Loman, N.J.; Segata, N. Shotgun Metagenomics, from Sampling to Analysis. Nat. Biotechnol. 2017, 35, 833–844. [Google Scholar] [CrossRef] [PubMed]
- Deekshit, V.K.; Srikumar, S. ‘To Be, or Not to Be’—The Dilemma of ‘Silent’ Antimicrobial Resistance Genes in Bacteria. J. Appl. Microbiol. 2022, 133, 2902–2914. [Google Scholar] [CrossRef]
- Prosser, J.I. Dispersing Misconceptions and Identifying Opportunities for the Use of “omics” in Soil Microbial Ecology. Nat. Rev. Microbiol. 2015, 13, 439–446. [Google Scholar] [CrossRef] [PubMed]
- Franzosa, E.A.; Hsu, T.; Sirota-Madi, A.; Shafquat, A.; Abu-Ali, G.; Morgan, X.C.; Huttenhower, C. Sequencing and beyond: Integrating Molecular “omics” for Microbial Community Profiling. Nat. Rev. Microbiol. 2015, 13, 360–372. [Google Scholar] [CrossRef] [PubMed]
- Woegerbauer, M.; Bellanger, X.; Merlin, C. Cell-Free DNA: An Underestimated Source of Antibiotic Resistance Gene Dissemination at the Interface between Human Activities and Downstream Environments in the Context of Wastewater Reuse. Front. Microbiol. 2020, 11, 671. [Google Scholar] [CrossRef] [PubMed]
- Keenum, I.; Liguori, K.; Calarco, J.; Davis, B.C.; Milligan, E.; Harwood, V.J.; Pruden, A. A Framework for Standardized QPCR-Targets and Protocols for Quantifying Antibiotic Resistance in Surface Water, Recycled Water and Wastewater. Crit. Rev. Environ. Sci. Technol. 2022, 52, 4395–4419. [Google Scholar] [CrossRef]
- Behera, B.K.; Dehury, B.; Rout, A.K.; Patra, B.; Mantri, N.; Chakraborty, H.J.; Sarkar, D.J.; Kaushik, N.K.; Bansal, V.; Singh, I.; et al. Metagenomics Study in Aquatic Resource Management: Recent Trends, Applied Methodologies and Future Needs. Gene Rep. 2021, 25, 101372. [Google Scholar] [CrossRef]
- Liu, Y.-X.; Qin, Y.; Chen, T.; Lu, M.; Qian, X.; Guo, X.; Bai, Y. A Practical Guide to Amplicon and Metagenomic Analysis of Microbiome Data. Protein Cell 2021, 12, 315–330. [Google Scholar] [CrossRef]
- Peng, Z.; Mao, Y.; Zhang, N.; Zhang, L.; Wang, Z.; Han, M. Utilizing Metagenomic Data and Bioinformatic Tools for Elucidating Antibiotic Resistance Genes in Environment. Front. Environ. Sci. 2021, 9, 757365. [Google Scholar] [CrossRef]
- Yin, X.; Chen, X.; Jiang, X.-T.; Yang, Y.; Li, B.; Shum, M.H.-H.; Lam, T.T.Y.; Leung, G.M.; Rose, J.; Sanchez-Cid, C.; et al. Toward a Universal Unit for Quantification of Antibiotic Resistance Genes in Environmental Samples. Environ. Sci. Technol. 2023, 57, 9713–9721. [Google Scholar] [CrossRef]
- Pruden, A.; Vikesland, P.J.; Davis, B.C.; de Roda Husman, A.M. Seizing the Moment: Now Is the Time for Integrated Global Surveillance of Antimicrobial Resistance in Wastewater Environments. Curr. Opin. Microbiol. 2021, 64, 91–99. [Google Scholar] [CrossRef]
- Delgado, J.; Naro, D.; Llorente, S.; Gelpí, J.L.; Royo, R. Metadata to Describe Genomic Information. In Building Continents of Knowledge in Oceans of Data: The Future of Co-Created eHealth; Ugon, A., Karlsson, D., Klein, G.O., Moen, A., Eds.; Studies in Health Technology and Informatics; IOS Press: Amsterdam, The Netherlands, 2018; Volume 247, pp. 621–625. ISBN 978-1-61499-851-8. [Google Scholar]
- Yilmaz, P.; Kottmann, R.; Field, D.; Knight, R.; Cole, J.R.; Amaral-Zettler, L.; Gilbert, J.A.; Karsch-Mizrachi, I.; Johnston, A.; Cochrane, G.; et al. Minimum Information about a Marker Gene Sequence (MIMARKS) and Minimum Information about Any (x) Sequence (MIxS) Specifications. Nat. Biotechnol. 2011, 29, 415–420. [Google Scholar] [CrossRef]
- Bustin, S.A.; Benes, V.; Garson, J.A.; Hellemans, J.; Huggett, J.; Kubista, M.; Mueller, R.; Nolan, T.; Pfaffl, M.W.; Shipley, G.L.; et al. The MIQE Guidelines: Minimum Information for Publication of Quantitative Real-Time PCR Experiments. Clin. Chem. 2009, 55, 611–622. [Google Scholar] [CrossRef] [PubMed]
- Borchardt, M.A.; Boehm, A.B.; Salit, M.; Spencer, S.K.; Wigginton, K.R.; Noble, R.T. The Environmental Microbiology Minimum Information (EMMI) Guidelines: QPCR and DPCR Quality and Reporting for Environmental Microbiology. Environ. Sci. Technol. 2021, 55, 10210–10223. [Google Scholar] [CrossRef]
- Mirzayi, C.; Renson, A.; Furlanello, C.; Sansone, S.A.; Zohra, F.; Elsafoury, S.; Geistlinger, L.; Kasselman, L.J.; Eckenrode, K.; van de Wijgert, J.; et al. Reporting Guidelines for Human Microbiome Research: The STORMS Checklist. Nat. Med. 2021, 27, 1885–1892. [Google Scholar] [CrossRef]
- Franklin, A.M.; Weller, D.L.; Durso, L.M.; Bagley, M.; Davis, B.C.; Frye, J.G.; Grim, C.J.; Ibekwe, A.M.; Jahne, M.A.; Keely, S.P.; et al. A One Health Approach for Monitoring Antimicrobial Resistance: Developing a National Freshwater Pilot Effort. Front. Water 2024, 6, 1359109. [Google Scholar] [CrossRef]
- Kodama, Y.; Shumway, M.; Leinonen, R.; on behalf of the International Nucleotide Sequence Database Collaboration. The Sequence Read Archive: Explosive Growth of Sequencing Data. Nucleic Acids Res. 2012, 40, D54–D56. [Google Scholar] [CrossRef]
- Harrison, P.W.; Ahamed, A.; Aslam, R.; Alako, B.T.F.; Burgin, J.; Buso, N.; Courtot, M.; Fan, J.; Gupta, D.; Haseeb, M.; et al. The European Nucleotide Archive in 2020. Nucleic Acids Res. 2021, 49, D82–D85. [Google Scholar] [CrossRef] [PubMed]
- Wilkinson, M.D.; Dumontier, M.; Aalbersberg, I.J.; Appleton, G.; Axton, M.; Baak, A.; Blomberg, N.; Boiten, J.-W.; da Silva Santos, L.B.; Bourne, P.E.; et al. The FAIR Guiding Principles for Scientific Data Management and Stewardship. Sci. Data 2016, 3, 160018. [Google Scholar] [CrossRef]
- Huijbers, P.M.C.; Flach, C.-F.; Larsson, D.G.J. A Conceptual Framework for the Environmental Surveillance of Antibiotics and Antibiotic Resistance. Environ. Int. 2019, 130, 104880. [Google Scholar] [CrossRef] [PubMed]
- Berendonk, T.U.; Manaia, C.M.; Merlin, C.; Fatta-Kassinos, D.; Cytryn, E.; Walsh, F.; Bürgmann, H.; Sørum, H.; Norström, M.; Pons, M.-N.; et al. Tackling Antibiotic Resistance: The Environmental Framework. Nat. Rev. Microbiol. 2015, 13, 310–317. [Google Scholar] [CrossRef]
- Ashbolt, N.; Pruden, A.; Miller, J.; Riquelme, M.V.; Maile-Moskowitz, A. Antim l Public Health Threat. In Water and Sanitation for the 21st Century: Health and Microbiological Aspects of Excreta and Wastewater Management (Global Water Pathogen Project); Rose, J.B., Jiménez Cisneros, B., Eds.; Part 3: Specific Excreted Pathogens: Environmental and Epidemiology Aspects—Section 2: Bacteria; UNESCO—International Hydrological Programme; Michigan State University: East Lansing, MI, USA, 2019; ISBN 978-0-9967252-8-6. [Google Scholar]
- Tarek, M.H.; Garner, E. A Proposed Framework for the Identification of Indicator Genes for Monitoring Antibiotic Resistance in Wastewater: Insights from Metagenomic Sequencing. Sci. Total Environ. 2023, 854, 158698. [Google Scholar] [CrossRef]
- Álvarez-Rodríguez, I.; Arana, L.; Ugarte-Uribe, B.; Gómez-Rubio, E.; Martín-Santamaría, S.; Garbisu, C.; Alkorta, I. Type IV Coupling Proteins as Potential Targets to Control the Dissemination of Antibiotic Resistance. Front. Mol. Biosci. 2020, 7, 201. [Google Scholar] [CrossRef]
- Pal, C.; Asiani, K.; Arya, S.; Rensing, C.; Stekel, D.J.; Larsson, D.G.J.; Hobman, J.L. Metal Resistance and Its Association with Antibiotic Resistance. In Advances in Microbial Physiology; Poole, R.K., Ed.; Elsevier: Amsterdam, The Netherlands, 2017; Volume 70, pp. 261–313. ISBN 978-0-12-812386-7. [Google Scholar]
- Murray, L.M.; Hayes, A.; Snape, J.; Kasprzyk-Hordern, B.; Gaze, W.H.; Murray, A.K. Co-Selection for Antibiotic Resistance by Environmental Contaminants. npj Antimicrob. Resist. 2024, 2, 9. [Google Scholar] [CrossRef]
- Balta, I.; Lemon, J.; Gadaj, A.; Cretescu, I.; Stef, D.; Pet, I.; Stef, L.; McCleery, D.; Douglas, A.; Corcionivoschi, N. The Interplay between Antimicrobial Resistance, Heavy Metal Pollution, and the Role of Microplastics. Front. Microbiol. 2025, 16, 1550587. [Google Scholar] [CrossRef] [PubMed]
- Keely, S.P.; Brinkman, N.E.; Wheaton, E.A.; Jahne, M.A.; Siefring, S.D.; Varma, M.; Hill, R.A.; Leibowitz, S.G.; Martin, R.W.; Garland, J.L.; et al. Geospatial Patterns of Antimicrobial Resistance Genes in the US EPA National Rivers and Streams Assessment Survey. Environ. Sci. Technol. 2022, 56, 14960–14971. [Google Scholar] [CrossRef]
- Inda-Díaz, J.S.; Lund, D.; Parras-Moltó, M.; Johnning, A.; Bengtsson-Palme, J.; Kristiansson, E. Latent Antibiotic Resistance Genes Are Abundant, Diverse, and Mobile in Human, Animal, and Environmental Microbiomes. Microbiome 2023, 11, 44. [Google Scholar] [CrossRef]
- Bengtsson-Palme, J.; Larsson, D.G.J. Antibiotic Resistance Genes in the Environment: Prioritizing Risks. Nat. Rev. Microbiol. 2015, 13, 396. [Google Scholar] [CrossRef] [PubMed]
- Crossette, E.; Gumm, J.; Langenfeld, K.; Raskin, L.; Duhaime, M.; Wigginton, K. Metagenomic Quantification of Genes with Internal Standards. mBio 2021, 12, e03173-20. [Google Scholar] [CrossRef] [PubMed]
- Grenni, P.; Ancona, V.; Barra Caracciolo, A. Ecological Effects of Antibiotics on Natural Ecosystems: A Review. Microchem. J. 2018, 136, 25–39. [Google Scholar] [CrossRef]
- Zeglin, L.H. Stream Microbial Diversity in Response to Environmental Changes: Review and Synthesis of Existing Research. Front. Microbiol. 2015, 6, 454. [Google Scholar] [CrossRef]
- Liao, H.; Yen, J.Y.; Guan, Y.; Ke, D.; Liu, C. Differential Responses of Stream Water and Bed Sediment Microbial Communities to Watershed Degradation. Environ. Int. 2020, 134, 105198. [Google Scholar] [CrossRef] [PubMed]
- Hu, X.; Tlili, A.; Schirmer, K.; Bao, M.; Bürgmann, H. Metal Concentration in Freshwater Sediments Is Linked to Microbial Biodiversity and Community Composition. Environ. Int. 2025, 199, 109465. [Google Scholar] [CrossRef] [PubMed]
- Blanck, H. A Critical Review of Procedures and Approaches Used for Assessing Pollution-Induced Community Tolerance (PICT) in Biotic Communities. Hum. Ecol. Risk Assess. 2002, 8, 1003–1034. [Google Scholar] [CrossRef]
- Tlili, A.; Berard, A.; Blanck, H.; Bouchez, A. Pollution-induced Community Tolerance (PICT): Towards an Ecologically Relevant Risk Assessment of Chemicals in Aquatic Systems. Freshw. Biol. 2016, 61, 2141–2151. [Google Scholar] [CrossRef]
- Su, Z.; Gu, A.Z.; Wen, D.; Li, F.; Huang, B.; Mu, Q.; Chen, L. Rapid Identification of Antibiotic Resistance Gene Hosts by Prescreening ARG-like Reads. Environ. Sci. Ecotechnol. 2025, 23, 100502. [Google Scholar] [CrossRef]
- Spencer, S.J.; Tamminen, M.V.; Preheim, S.P.; Guo, M.T.; Briggs, A.W.; Brito, I.L.; A Weitz, D.; Pitkänen, L.K.; Vigneault, F.; Virta, M.P.J.; et al. Massively Parallel Sequencing of Single Cells by EpicPCR Links Functional Genes with Phylogenetic Markers. ISME J. 2016, 10, 427–436. [Google Scholar] [CrossRef]
- Hultman, J.; Tamminen, M.; Pärnänen, K.; Cairns, J.; Karkman, A.; Virta, M. Host Range of Antibiotic Resistance Genes in Wastewater Treatment Plant Influent and Effluent. FEMS Microbiol. Ecol. 2018, 94, fiy038. [Google Scholar] [CrossRef]
- Roman, V.L.; Merlin, C.; Virta, M.P.J.; Bellanger, X. EpicPCR 2.0: Technical and Methodological Improvement of a Cutting-Edge Single-Cell Genomic Approach. Microorganisms 2021, 9, 1649. [Google Scholar] [CrossRef]
- Liu, S.; Dai, S.; Deng, Y.; Li, J.; Zhang, Y.; Yang, M. Long-Read EpicPCR Enhances Species-Level Host Identification of Clinically Relevant Antibiotic Resistance Genes in Environmental Microbial Communities. Environ. Int. 2025, 197, 109337. [Google Scholar] [CrossRef]
- Lou, E.G.; Fu, Y.; Wang, Q.; Treangen, T.J.; Stadler, L.B. Sensitivity and Consistency of Long- and Short-Read Metagenomics and EpicPCR for the Detection of Antibiotic Resistance Genes and Their Bacterial Hosts in Wastewater. J. Hazard. Mater. 2024, 469, 133939. [Google Scholar] [CrossRef]
- Stalder, T.; Press, M.O.; Sullivan, S.; Liachko, I.; Top, E.M. Linking the Resistome and Plasmidome to the Microbiome. ISME J. 2019, 13, 2437–2446. [Google Scholar] [CrossRef]
- Li, L.-G.; Yin, X.; Zhang, T. Tracking Antibiotic Resistance Gene Pollution from Different Sources Using Machine-Learning Classification. Microbiome 2018, 6, 93. [Google Scholar] [CrossRef] [PubMed]
- Knights, D.; Kuczynski, J.; Charlson, E.S.; Zaneveld, J.; Mozer, M.C.; Collman, R.G.; Bushman, F.D.; Knight, R.; Kelley, S.T. Bayesian Community-Wide Culture-Independent Microbial Source Tracking. Nat. Methods 2011, 8, 761–763. [Google Scholar] [CrossRef] [PubMed]
- Shenhav, L.; Thompson, M.; Joseph, T.A.; Briscoe, L.; Furman, O.; Bogumil, D.; Mizrahi, I.; Pe’er, I.; Halperin, E. FEAST: Fast Expectation-Maximization for Microbial Source Tracking. Nat. Methods 2019, 16, 627–632. [Google Scholar] [CrossRef] [PubMed]
- McGhee, J.J.; Rawson, N.; Bailey, B.A.; Fernandez-Guerra, A.; Sisk-Hackworth, L.; Kelley, S.T. Meta-SourceTracker: Application of Bayesian Source Tracking to Shotgun Metagenomics. PeerJ 2020, 8, e8783. [Google Scholar] [CrossRef]
- An, U.; Shenhav, L.; Olson, C.A.; Hsiao, E.Y.; Halperin, E.; Sankararaman, S. STENSL: Microbial Source Tracking with ENvironment SeLection. mSystems 2022, 7, e00995-21. [Google Scholar] [CrossRef]
- Chong, H.; Zha, Y.; Yu, Q.; Cheng, M.; Xiong, G.; Wang, N.; Huang, X.; Huang, S.; Sun, C.; Wu, S.; et al. EXPERT: Transfer Learning-Enabled Context-Aware Microbial Community Classification. Brief. Bioinform. 2022, 23, bbac396. [Google Scholar] [CrossRef]
- Briscoe, L.; Halperin, E.; Garud, N.R. SNV-FEAST: Microbial Source Tracking with Single Nucleotide Variants. Genome Biol. 2023, 24, 101. [Google Scholar] [CrossRef]
- Saarenheimo, J.; Aalto, S.L.; Rissanen, A.J.; Tiirola, M. Microbial Community Response on Wastewater Discharge in Boreal Lake Sediments. Front. Microbiol. 2017, 8, 750. [Google Scholar] [CrossRef] [PubMed]
- Gao, Y.; Zhang, W.; Li, Y. Microbial Community Coalescence: Does It Matter in the Three Gorges Reservoir? Water Res. 2021, 205, 117638. [Google Scholar] [CrossRef]
- Xu, Y.; Han, G.; Zhang, H.; Yu, Z.; Liu, R. Application of Fast Expectation-Maximization Microbial Source Tracking to Discern Fecal Contamination in Rivers Exposed to Low Fecal Inputs. J. Microbiol. 2022, 60, 594–601. [Google Scholar] [CrossRef]
- Li, Y.; Li, R.; Hou, J.; Sun, X.; Wang, Y.; Li, L.; Yang, F.; Yao, Y.; An, Y. Mobile Genetic Elements Affect the Dissemination of Antibiotic Resistance Genes (ARGs) of Clinical Importance in the Environment. Environ. Res. 2024, 243, 117801. [Google Scholar] [CrossRef] [PubMed]
- Shahar, S.; Sant, K.E.; Allsing, N.; Kelley, S.T. Metagenomic Analysis of Microbial Communities and Antibiotic Resistant Genes in the Tijuana River, and Potential Sources. Environ. Pollut. 2024, 342, 123067. [Google Scholar] [CrossRef] [PubMed]
- Baral, D.; Dvorak, B.I.; Admiraal, D.; Jia, S.; Zhang, C.; Li, X. Tracking the Sources of Antibiotic Resistance Genes in an Urban Stream during Wet Weather Using Shotgun Metagenomic Analyses. Environ. Sci. Technol. 2018, 52, 9033–9044. [Google Scholar] [CrossRef] [PubMed]
- Chen, H.; Bai, X.; Li, Y.; Jing, L.; Chen, R.; Teng, Y. Source Identification of Antibiotic Resistance Genes in a Peri-Urban River Using Novel CrAssphage Marker Genes and Metagenomic Signatures. Water Res. 2019, 167, 115098. [Google Scholar] [CrossRef]
- Chen, H.; Li, Y.; Sun, W.; Song, L.; Zuo, R.; Teng, Y. Characterization and Source Identification of Antibiotic Resistance Genes in the Sediments of an Interconnected River-Lake System. Environ. Int. 2020, 137, 105538. [Google Scholar] [CrossRef]
- Chen, H.; Liu, C.; Teng, Y.; Zhang, Z.; Chen, Y.; Yang, Y. Environmental Risk Characterization and Ecological Process Determination of Bacterial Antibiotic Resistome in Lake Sediments. Environ. Int. 2021, 147, 106345. [Google Scholar] [CrossRef]
- Zhang, Y.; Liu, C.; Chen, H.; Chen, J.; Li, J.; Teng, Y. Metagenomic Insights into Resistome Coalescence in an Urban Sewage Treatment Plant-River System. Water Res. 2022, 224, 119061. [Google Scholar] [CrossRef]
- Chen, J.; Chen, H.; Liu, C.; Huan, H.; Teng, Y. Evaluation of FEAST for Metagenomics-Based Source Tracking of Antibiotic Resistance Genes. J. Hazard. Mater. 2023, 442, 130116. [Google Scholar] [CrossRef]
- Wang, X.; Wu, L.; Dai, L.; Yin, X.; Zhang, T.; Weiss, S.T.; Liu, Y. Ecological Dynamics Imposes Fundamental Challenges in Community-based Microbial Source Tracking. iMeta 2023, 2, e75. [Google Scholar] [CrossRef]
- Karkman, A.; Pärnänen, K.; Larsson, D.G.J. Fecal Pollution Can Explain Antibiotic Resistance Gene Abundances in Anthropogenically Impacted Environments. Nat. Commun. 2019, 10, 80. [Google Scholar] [CrossRef]
- Cheung, C.; Naughton, P.J.; Dooley, J.S.G.; Corcionivoschi, N.; Brooks, C. The Spread of Antimicrobial Resistance in the Aquatic Environment from Faecal Pollution: A Scoping Review of a Multifaceted Issue. Environ. Monit. Assess. 2025, 197, 467. [Google Scholar] [CrossRef] [PubMed]
- Li, E.; Saleem, F.; Edge, T.A.; Schellhorn, H.E. Biological Indicators for Fecal Pollution Detection and Source Tracking: A Review. Processes 2021, 9, 2058. [Google Scholar] [CrossRef]
- Holcomb, D.A.; Stewart, J.R. Microbial Indicators of Fecal Pollution: Recent Progress and Challenges in Assessing Water Quality. Curr. Environ. Health Rep. 2020, 7, 311–324. [Google Scholar] [CrossRef]
- Chen, Z.; Duan, Y.; Yin, L.; Chen, Y.; Xue, Y.; Wang, X.; Mao, D.; Luo, Y. Unraveling the Influence of Human Fecal Pollution on Antibiotic Resistance Gene Levels in Different Receiving Water Bodies Using CrAssphage Indicator Gene. J. Hazard. Mater. 2023, 442, 130005. [Google Scholar] [CrossRef]
- Harwood, V.J.; Staley, C.; Badgley, B.D.; Borges, K.; Korajkic, A. Microbial Source Tracking Markers for Detection of Fecal Contamination in Environmental Waters: Relationships between Pathogens and Human Health Outcomes. FEMS Microbiol. Rev. 2014, 38, 1–40. [Google Scholar] [CrossRef]
- Reynolds, L.J.; Martin, N.A.; Sala-Comorera, L.; Callanan, K.; Doyle, P.; O’Leary, C.; Buggy, P.; Nolan, T.M.; O’Hare, G.M.P.; O’Sullivan, J.J.; et al. Identifying Sources of Faecal Contamination in a Small Urban Stream Catchment: A Multiparametric Approach. Front. Microbiol. 2021, 12, 661954. [Google Scholar] [CrossRef] [PubMed]
- Williams, N.L.R.; Siboni, N.; Potts, J.; Campey, M.; Johnson, C.; Rao, S.; Bramucci, A.; Scanes, P.; Seymour, J.R. Molecular Microbiological Approaches Reduce Ambiguity about the Sources of Faecal Pollution and Identify Microbial Hazards within an Urbanised Coastal Environment. Water Res. 2022, 218, 118534. [Google Scholar] [CrossRef] [PubMed]
- Stachler, E.; Bibby, K. Metagenomic Evaluation of the Highly Abundant Human Gut Bacteriophage CrAssphage for Source Tracking of Human Fecal Pollution. Environ. Sci. Technol. Lett. 2014, 1, 405–409. [Google Scholar] [CrossRef]
- Dutilh, B.E.; Cassman, N.; McNair, K.; Sanchez, S.E.; Silva, G.G.Z.; Boling, L.; Barr, J.J.; Speth, D.R.; Seguritan, V.; Aziz, R.K.; et al. A Highly Abundant Bacteriophage Discovered in the Unknown Sequences of Human Faecal Metagenomes. Nat. Commun. 2014, 5, 4498. [Google Scholar] [CrossRef]
- Shkoporov, A.N.; Khokhlova, E.V.; Fitzgerald, C.B.; Stockdale, S.R.; Draper, L.A.; Ross, R.P.; Hill, C. ΦCrAss001 Represents the Most Abundant Bacteriophage Family in the Human Gut and Infects Bacteroides intestinalis. Nat. Commun. 2018, 9, 4781. [Google Scholar] [CrossRef] [PubMed]
- García-Aljaro, C.; Ballesté, E.; Muniesa, M.; Jofre, J. Determination of CrAssphage in Water Samples and Applicability for Tracking Human Faecal Pollution. Microb. Biotechnol. 2017, 10, 1775–1780. [Google Scholar] [CrossRef]
- Chen, H.; Bai, X.; Li, Y.; Jing, L.; Chen, R.; Teng, Y. Characterization and Source-Tracking of Antibiotic Resistomes in the Sediments of a Peri-Urban River. Sci. Total Environ. 2019, 679, 88–96. [Google Scholar] [CrossRef] [PubMed]
- Chen, H.; Jing, L.; Yao, Z.; Meng, F.; Teng, Y. Prevalence, Source and Risk of Antibiotic Resistance Genes in the Sediments of Lake Tai (China) Deciphered by Metagenomic Assembly: A Comparison with Other Global Lakes. Environ. Int. 2019, 127, 267–275. [Google Scholar] [CrossRef]
- Stachler, E.; Crank, K.; Bibby, K. Co-Occurrence of CrAssphage with Antibiotic Resistance Genes in an Impacted Urban Watershed. Environ. Sci. Technol. Lett. 2019, 6, 216–221. [Google Scholar] [CrossRef]
- Agramont, J.; Gutiérrez-Cortez, S.; Joffré, E.; Sjöling, Å.; Calderon Toledo, C. Fecal Pollution Drives Antibiotic Resistance and Class 1 Integron Abundance in Aquatic Environments of the Bolivian Andes Impacted by Mining and Wastewater. Microorganisms 2020, 8, 1122. [Google Scholar] [CrossRef]
- Kasuga, I.; Nagasawa, K.; Suzuki, M.; Kurisu, F.; Furumai, H. High-Throughput Screening of Antimicrobial Resistance Genes and Their Association With Class 1 Integrons in Urban Rivers in Japan. Front. Environ. Sci. 2022, 10, 825372. [Google Scholar] [CrossRef]
- Basiry, D.; Entezari Heravi, N.; Uluseker, C.; Kaster, K.M.; Kommedal, R.; Pala-Ozkok, I. The Effect of Disinfectants and Antiseptics on Co- and Cross-Selection of Resistance to Antibiotics in Aquatic Environments and Wastewater Treatment Plants. Front. Microbiol. 2022, 13, 1050558. [Google Scholar] [CrossRef] [PubMed]
- Qiu, D.; Ke, M.; Zhang, Q.; Zhang, F.; Lu, T.; Sun, L.; Qian, H. Response of Microbial Antibiotic Resistance to Pesticides: An Emerging Health Threat. Sci. Total Environ. 2022, 850, 158057. [Google Scholar] [CrossRef]
- Gago-Ferrero, P.; Krettek, A.; Fischer, S.; Wiberg, K.; Ahrens, L. Suspect Screening and Regulatory Databases: A Powerful Combination To Identify Emerging Micropollutants. Environ. Sci. Technol. 2018, 52, 6881–6894. [Google Scholar] [CrossRef]
- Castaño-Trias, M.; Rodríguez-Mozaz, S.; Buttiglieri, G. A Decade of Water Monitoring in a Mediterranean Region: Pharmaceutical Prioritisation for an Upgraded Analytical Methodology. Environ. Nanotechnol. Monit. Manag. 2023, 20, 100850. [Google Scholar] [CrossRef]
- Löffler, P.; Escher, B.I.; Baduel, C.; Virta, M.P.; Lai, F.Y. Antimicrobial Transformation Products in the Aquatic Environment: Global Occurrence, Ecotoxicological Risks, and Potential of Antibiotic Resistance. Environ. Sci. Technol. 2023, 57, 9474–9494. [Google Scholar] [CrossRef]
- Petrie, B.; Barden, R.; Kasprzyk-Hordern, B. A Review on Emerging Contaminants in Wastewaters and the Environment: Current Knowledge, Understudied Areas and Recommendations for Future Monitoring. Water Res. 2015, 72, 3–27. [Google Scholar] [CrossRef]
- Khan, H.K.; Rehman, M.Y.A.; Malik, R.N. Fate and Toxicity of Pharmaceuticals in Water Environment: An Insight on Their Occurrence in South Asia. J. Environ. Manag. 2020, 271, 111030. [Google Scholar] [CrossRef] [PubMed]
- Carvalho, I.T.; Santos, L. Antibiotics in the Aquatic Environments: A Review of the European Scenario. Environ. Int. 2016, 94, 736–757. [Google Scholar] [CrossRef]
- Barbosa, M.O.; Moreira, N.F.F.; Ribeiro, A.R.; Pereira, M.F.R.; Silva, A.M.T. Occurrence and Removal of Organic Micropollutants: An Overview of the Watch List of EU Decision 2015/495. Water Res. 2016, 94, 257–279. [Google Scholar] [CrossRef] [PubMed]
- Godoy, A.A.; Kummrow, F. What Do We Know about the Ecotoxicology of Pharmaceutical and Personal Care Product Mixtures? A Critical Review. Crit. Rev. Environ. Sci. Technol. 2017, 47, 1453–1496. [Google Scholar] [CrossRef]
- Branchet, P.; Arpin-Pont, L.; Piram, A.; Boissery, P.; Wong-Wah-Chung, P.; Doumenq, P. Pharmaceuticals in the Marine Environment: What Are the Present Challenges in Their Monitoring? Sci. Total Environ. 2021, 766, 142644. [Google Scholar] [CrossRef]
- Byers, E.N.; Messer, T.L.; Unrine, J.; Barton, C.; Agouridis, C.; Miller, D.N. The Occurrence and Persistence of Surface Water Contaminants across Different Landscapes. Sci. Total Environ. 2025, 958, 177837. [Google Scholar] [CrossRef]
- Anh, H.Q.; Le, T.P.Q.; Da Le, N.; Lu, X.X.; Duong, T.T.; Garnier, J.; Rochelle-Newall, E.; Zhang, S.; Oh, N.-H.; Oeurng, C.; et al. Antibiotics in Surface Water of East and Southeast Asian Countries: A Focused Review on Contamination Status, Pollution Sources, Potential Risks, and Future Perspectives. Sci. Total Environ. 2021, 764, 142865. [Google Scholar] [CrossRef]
- Zhu, L.; Jiang, C.; Panthi, S.; Allard, S.M.; Sapkota, A.R.; Sapkota, A. Impact of High Precipitation and Temperature Events on the Distribution of Emerging Contaminants in Surface Water in the Mid-Atlantic, United States. Sci. Total Environ. 2021, 755, 142552. [Google Scholar] [CrossRef] [PubMed]
- Manaia, C.M. Framework for Establishing Regulatory Guidelines to Control Antibiotic Resistance in Treated Effluents. Crit. Rev. Env. Sci. Tech. 2023, 53, 754–779. [Google Scholar] [CrossRef]
- Mutuku, C.; Gazdag, Z.; Melegh, S. Occurrence of Antibiotics and Bacterial Resistance Genes in Wastewater: Resistance Mechanisms and Antimicrobial Resistance Control Approaches. World J. Microbiol. Biotechnol. 2022, 38, 152. [Google Scholar] [CrossRef]
- Hanna, N.; Tamhankar, A.J.; Stålsby Lundborg, C. Antibiotic Concentrations and Antibiotic Resistance in Aquatic Environments of the WHO Western Pacific and South-East Asia Regions: A Systematic Review and Probabilistic Environmental Hazard Assessment. Lancet Planet. Health 2023, 7, e45–e54. [Google Scholar] [CrossRef]
- Finley, R.L.; Collignon, P.; Larsson, D.G.J.; McEwen, S.A.; Li, X.-Z.; Gaze, W.H.; Reid-Smith, R.; Timinouni, M.; Graham, D.W.; Topp, E. The Scourge of Antibiotic Resistance: The Important Role of the Environment. Clin. Infect. Dis. 2013, 57, 704–710. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Gao, L.; Niu, L.; Zhang, W.; Yang, N.; Du, J.; Gao, Y.; Li, J. Developing a Statistical-Weighted Index of Biotic Integrity for Large-River Ecological Evaluations. J. Environ. Manag. 2021, 277, 111382. [Google Scholar] [CrossRef] [PubMed]
- Su, Z.; Chen, L.; Wen, D. Impact of Wastewater Treatment Plant Effluent Discharge on the Antibiotic Resistome in Downstream Aquatic Environments: A Mini Review. Front. Environ. Sci. Eng. 2024, 18, 36. [Google Scholar] [CrossRef]
- Novo, A.; Manaia, C.M. Factors Influencing Antibiotic Resistance Burden in Municipal Wastewater Treatment Plants. Appl. Microbiol. Biotechnol. 2010, 87, 1157–1166. [Google Scholar] [CrossRef]
- Vaz-Moreira, I.; Nunes, O.C.; Manaia, C.M. Bacterial Diversity and Antibiotic Resistance in Water Habitats: Searching the Links with the Human Microbiome. FEMS Microbiol. Rev. 2014, 38, 761–778. [Google Scholar] [CrossRef]
- Mills, M.; Lee, S.; Mollenkopf, D.; Wittum, T.; Sullivan, S.M.P.; Lee, J. Comparison of Environmental Microbiomes in an Antibiotic Resistance-Polluted Urban River Highlights Periphyton and Fish Gut Communities as Reservoirs of Concern. Sci. Total Environ. 2022, 851, 158042. [Google Scholar] [CrossRef]
- Lee, J.; Ju, F.; Beck, K.; Bürgmann, H. Differential Effects of Wastewater Treatment Plant Effluents on the Antibiotic Resistomes of Diverse River Habitats. ISME J. 2023, 17, 1993–2002. [Google Scholar] [CrossRef]
- Chau, K.K.; Barker, L.; Budgell, E.P.; Vihta, K.D.; Sims, N.; Kasprzyk-Hordern, B.; Harriss, E.; Crook, D.W.; Read, D.S.; Walker, A.S.; et al. Systematic Review of Wastewater Surveillance of Antimicrobial Resistance in Human Populations. Environ. Int. 2022, 162, 107171. [Google Scholar] [CrossRef]
- Tiwari, A.; Kurittu, P.; Al-Mustapha, A.I.; Heljanko, V.; Johansson, V.; Thakali, O.; Mishra, S.K.; Lehto, K.-M.; Lipponen, A.; Oikarinen, S.; et al. Wastewater Surveillance of Antibiotic-Resistant Bacterial Pathogens: A Systematic Review. Front. Microbiol. 2022, 13, 977106. [Google Scholar] [CrossRef]
- Gholipour, S.; Shamsizadeh, Z.; Halabowski, D.; Gwenzi, W.; Nikaeen, M. Combating Antibiotic Resistance Using Wastewater Surveillance: Significance, Applications, Challenges, and Future Directions. Sci. Total Environ. 2024, 908, 168056. [Google Scholar] [CrossRef] [PubMed]
- Parkins, M.D.; Lee, B.E.; Acosta, N.; Bautista, M.; Hubert, C.R.J.; Hrudey, S.E.; Frankowski, K.; Pang, X.-L. Wastewater-Based Surveillance as a Tool for Public Health Action: SARS-CoV-2 and Beyond. Clin. Microbiol. Rev. 2023, 37, e00103-22. [Google Scholar] [CrossRef]
- Sims, N.; Kasprzyk-Hordern, B. Future Perspectives of Wastewater-Based Epidemiology: Monitoring Infectious Disease Spread and Resistance to the Community Level. Environ. Int. 2020, 139, 105689. [Google Scholar] [CrossRef] [PubMed]
- Owens, P.N.; Xu, Z. Recent Advances and Future Directions in Soils and Sediments Research. J. Soils Sediments 2011, 11, 875–888. [Google Scholar] [CrossRef]
- Taylor, N.G.H.; Verner-Jeffreys, D.W.; Baker-Austin, C. Aquatic Systems: Maintaining, Mixing and Mobilising Antimicrobial Resistance? Trends Ecol. Evol. 2011, 26, 278–284. [Google Scholar] [CrossRef]
- Huang, Z.; Zhao, W.; Xu, T.; Zheng, B.; Yin, D. Occurrence and Distribution of Antibiotic Resistance Genes in the Water and Sediments of Qingcaosha Reservoir, Shanghai, China. Environ. Sci. Eur. 2019, 31, 81. [Google Scholar] [CrossRef]
- Kemp, M.J.; Dodds, W.K. Centimeter-Scale Patterns in Dissolved Oxygen and Nitrification Rates in a Prairie Stream. J. N. Am. Benthol. Soc. 2001, 20, 347–357. [Google Scholar] [CrossRef]
- Marti, E.; Jofre, J.; Balcazar, J.L. Prevalence of Antibiotic Resistance Genes and Bacterial Community Composition in a River Influenced by a Wastewater Treatment Plant. PLoS ONE 2013, 8, e78906. [Google Scholar] [CrossRef]
- Calero-Cáceres, W.; Méndez, J.; Martín-Díaz, J.; Muniesa, M. The Occurrence of Antibiotic Resistance Genes in a Mediterranean River and Their Persistence in the Riverbed Sediment. Environ. Pollut. 2017, 223, 384–394. [Google Scholar] [CrossRef]
- Demanèche, S.; Jocteur-Monrozier, L.; Quiquampoix, H.; Simonet, P. Evaluation of Biological and Physical Protection against Nuclease Degradation of Clay-Bound Plasmid DNA. Appl. Environ. Microbiol. 2001, 67, 293–299. [Google Scholar] [CrossRef]
- Luo, Y.; Mao, D.; Rysz, M.; Zhou, Q.; Zhang, H.; Xu, L.; Alvarez, P.J.J. Trends in Antibiotic Resistance Genes Occurrence in the Haihe River, China. Environ. Sci. Technol. 2010, 44, 7220–7225. [Google Scholar] [CrossRef]
- Czekalski, N.; Gascón Díez, E.; Bürgmann, H. Wastewater as a Point Source of Antibiotic-Resistance Genes in the Sediment of a Freshwater Lake. ISME J. 2014, 8, 1381–1390. [Google Scholar] [CrossRef] [PubMed]
- Mao, D.; Luo, Y.; Mathieu, J.; Wang, Q.; Feng, L.; Mu, Q.; Feng, C.; Alvarez, P.J.J. Persistence of Extracellular DNA in River Sediment Facilitates Antibiotic Resistance Gene Propagation. Environ. Sci. Technol. 2014, 48, 71–78. [Google Scholar] [CrossRef] [PubMed]
- Deshpande, A.S.; Fahrenfeld, N.L. Abundance, Diversity, and Host Assignment of Total, Intracellular, and Extracellular Antibiotic Resistance Genes in Riverbed Sediments. Water Res. 2022, 217, 118363. [Google Scholar] [CrossRef]
- Buelow, E.; Dauga, C.; Carrion, C.; Mathé-Hubert, H.; Achaibou, S.; Gaschet, M.; Jové, T.; Chesneau, O.; Kennedy, S.P.; Ploy, M.-C.; et al. Hospital and Urban Wastewaters Shape the Matrix and Active Resistome of Environmental Biofilms. Water Res. 2023, 244, 120408. [Google Scholar] [CrossRef] [PubMed]
- Abe, K.; Nomura, N.; Suzuki, S. Biofilms: Hot Spots of Horizontal Gene Transfer (HGT) in Aquatic Environments, with a Focus on a New HGT Mechanism. FEMS Microbiol. Ecol. 2020, 96, fiaa031. [Google Scholar] [CrossRef]
- Flores-Vargas, G.; Bergsveinson, J.; Lawrence, J.R.; Korber, D.R. Environmental Biofilms as Reservoirs for Antimicrobial Resistance. Front. Microbiol. 2021, 12, 766242. [Google Scholar] [CrossRef]
- Aubertheau, E.; Stalder, T.; Mondamert, L.; Ploy, M.-C.; Dagot, C.; Labanowski, J. Impact of Wastewater Treatment Plant Discharge on the Contamination of River Biofilms by Pharmaceuticals and Antibiotic Resistance. Sci. Total Environ. 2017, 579, 1387–1398. [Google Scholar] [CrossRef]
- Balcázar, J.L.; Subirats, J.; Borrego, C.M. The Role of Biofilms as Environmental Reservoirs of Antibiotic Resistance. Front. Microbiol. 2015, 6, 1216. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Y.; Zhang, Y.; Guo, J.; Wang, J.; Li, Y. Shifts in Periphyton Research Themes over the Past Three Decades. Environ. Sci. Pollut. Res. 2023, 30, 5281–5295. [Google Scholar] [CrossRef] [PubMed]
- Guo, X.; Yang, Y.; Lu, D.; Niu, Z.; Feng, J.; Chen, Y.; Tou, F.; Garner, E.; Xu, J.; Liu, M.; et al. Biofilms as a Sink for Antibiotic Resistance Genes (ARGs) in the Yangtze Estuary. Water Res. 2018, 129, 277–286. [Google Scholar] [CrossRef] [PubMed]
- Li, Q.; Zhang, Q. Prevalence and Pollution Characteristics of Antibiotic Resistant Genes in One High Anthropogenically-Impacted River. PLoS ONE 2020, 15, e0231128. [Google Scholar] [CrossRef]
- Reichert, G.; Hilgert, S.; Alexander, J.; Rodrigues de Azevedo, J.C.; Morck, T.; Fuchs, S.; Schwartz, T. Determination of Antibiotic Resistance Genes in a WWTP-Impacted River in Surface Water, Sediment, and Biofilm: Influence of Seasonality and Water Quality. Sci. Total Environ. 2021, 768, 144526. [Google Scholar] [CrossRef]
- Engemann, C.A.; Keen, P.L.; Knapp, C.W.; Hall, K.J.; Graham, D.W. Fate of Tetracycline Resistance Genes in Aquatic Systems: Migration from the Water Column to Peripheral Biofilms. Environ. Sci. Technol. 2008, 42, 5131–5136. [Google Scholar] [CrossRef]
- Zhang, W.; Sturm, B.S.M.; Knapp, C.W.; Graham, D.W. Accumulation of Tetracycline Resistance Genes in Aquatic Biofilms Due to Periodic Waste Loadings from Swine Lagoons. Environ. Sci. Technol. 2009, 43, 7643–7650. [Google Scholar] [CrossRef]
- Gilbert, P.; Maira-Litran, T.; McBain, A.J.; Rickard, A.H.; Whyte, F.W. The Physiology and Collective Recalcitrance of Microbial Biofilm Communities. Adv. Microb. Physiol. 2002, 46, 202–256. [Google Scholar] [CrossRef]
- Mah, T.-F. Biofilm-Specific Antibiotic Resistance. Future Microbiol. 2012, 7, 1061–1072. [Google Scholar] [CrossRef] [PubMed]
- Flemming, H.-C.; Wingender, J.; Szewzyk, U.; Steinberg, P.; Rice, S.A.; Kjelleberg, S. Biofilms: An Emergent Form of Bacterial Life. Nat. Rev. Microbiol. 2016, 14, 563–575. [Google Scholar] [CrossRef]
- Uruén, C.; Chopo-Escuin, G.; Tommassen, J.; Mainar-Jaime, R.C.; Arenas, J. Biofilms as Promoters of Bacterial Antibiotic Resistance and Tolerance. Antibiotics 2020, 10, 3. [Google Scholar] [CrossRef]
- Michaelis, C.; Grohmann, E. Horizontal Gene Transfer of Antibiotic Resistance Genes in Biofilms. Antibiotics 2023, 12, 328. [Google Scholar] [CrossRef]
- Huerta, B.; Rodriguez-Mozaz, S.; Nannou, C.; Nakis, L.; Ruhí, A.; Acuña, V.; Sabater, S.; Barcelo, D. Determination of a Broad Spectrum of Pharmaceuticals and Endocrine Disruptors in Biofilm from a Waste Water Treatment Plant-Impacted River. Sci. Total Environ. 2016, 540, 241–249. [Google Scholar] [CrossRef]
- Valdés, M.E.; Santos, L.H.M.L.M.; Rodríguez Castro, M.C.; Giorgi, A.; Barceló, D.; Rodríguez-Mozaz, S.; Amé, M.V. Distribution of Antibiotics in Water, Sediments and Biofilm in an Urban River (Córdoba, Argentina, LA). Environ. Pollut. 2021, 269, 116133. [Google Scholar] [CrossRef]
- Bowler, P.; Murphy, C.; Wolcott, R. Biofilm Exacerbates Antibiotic Resistance: Is This a Current Oversight in Antimicrobial Stewardship? Antimicrob. Resist. Infect. Control 2020, 9, 162. [Google Scholar] [CrossRef]
- Marti, E.; Huerta, B.; Rodríguez-Mozaz, S.; Barceló, D.; Marcé, R.; Balcázar, J.L. Abundance of Antibiotic Resistance Genes and Bacterial Community Composition in Wild Freshwater Fish Species. Chemosphere 2018, 196, 115–119. [Google Scholar] [CrossRef]
- Xue, X.; Jia, J.; Yue, X.; Guan, Y.; Zhu, L.; Wang, Z. River Contamination Shapes the Microbiome and Antibiotic Resistance in Sharpbelly (Hemiculter leucisculus). Environ. Pollut. 2021, 268, 115796. [Google Scholar] [CrossRef] [PubMed]
- Mills, M.; Mollenkopf, D.; Wittum, T.; Sullivan, M.P.; Lee, J. One Health Threat of Treated Wastewater Discharge in Urban Ohio Rivers: Implications for Surface Water and Fish Gut Microbiome and Resistome. Environ. Sci. Technol. 2024, 58, 13402–13414. [Google Scholar] [CrossRef] [PubMed]
- Leopold, M.; Kolm, C.; Linke, R.B.; Schachner-Groehs, I.; Koller, M.; Kandler, W.; Kittinger, C.; Zarfel, G.; Farnleitner, A.H.; Kirschner, A.K.T. Using a Harmonised Study Design and Quantitative Tool-Box Reveals Major Inconsistencies When Investigating the Main Drivers of Water and Biofilm Antibiotic Resistomes in Different Rivers. J. Hazard. Mater. 2025, 488, 137343. [Google Scholar] [CrossRef]
- Marizzi del Olmo, A.; López-Doval, J.C.; Hidalgo, M.; Serra, T.; Colomer, J.; Salvadó, V.; Escolà Casas, M.; Medina, J.S.; Matamoros, V. Holistic Assessment of Chemical and Biological Pollutants in a Mediterranean Wastewater Effluent-Dominated Stream: Interactions and Ecological Impacts. Environ. Pollut. 2025, 370, 125833. [Google Scholar] [CrossRef] [PubMed]
- Xu, H.; Zhu, D.; Zhong, M.; Li, C.; Wen, C.; Zhu, S.; Li, Q.; Luo, X. Source-Oriented Risks of Heavy Metals and Their Effects on Resistance Genes in Natural Biofilms. J. Hazard. Mater. 2025, 484, 136735. [Google Scholar] [CrossRef] [PubMed]
- Mills, M.; Wittum, T.; Lee, J. Dynamic Microbiome and Mobile Resistome Are Revealed in River Biofilms from a Multi-Use Watershed through Long-Read Sequencing. Front. Environ. Sci. 2024, 12, 1440635. [Google Scholar] [CrossRef]
- Deshpande, A.S.; Fahrenfeld, N.L. Influence of DNA from Non-Viable Sources on the Riverine Water and Biofilm Microbiome, Resistome, Mobilome, and Resistance Gene Host Assignments. J. Hazard. Mater. 2023, 446, 130743. [Google Scholar] [CrossRef]
- Bastos, M.C.; Rheinheimer, D.d.S.; Le Guet, T.; Vargas Brunet, J.; Aubertheau, E.; Mondamert, L.; Labanowski, J. Presence of Pharmaceuticals and Bacterial Resistance Genes in River Epilithic Biofilms Exposed to Intense Agricultural and Urban Pressure. Environ. Monit. Assess. 2023, 195, 328. [Google Scholar] [CrossRef]
- Haenelt, S.; Richnow, H.H.; Müller, J.A.; Musat, N. Antibiotic Resistance Indicator Genes in Biofilm and Planktonic Microbial Communities after Wastewater Discharge. Front. Microbiol. 2023, 14, 1252870. [Google Scholar] [CrossRef]
- Yao, Y.; Liu, Z.; Yip, K.K.; Pu, Y.; Cheng, W.; Li, M.; Habimana, O. Cross-Regional Scale Pollution of Freshwater Biofilms Unveiled by Antibiotic Resistance Genes. Sci. Total Environ. 2022, 818, 151835. [Google Scholar] [CrossRef]
- Matviichuk, O.; Mondamert, L.; Geffroy, C.; Gaschet, M.; Dagot, C.; Labanowski, J. River Biofilms Microbiome and Resistome Responses to Wastewater Treatment Plant Effluents Containing Antibiotics. Front. Microbiol. 2022, 13, 795206. [Google Scholar] [CrossRef]
- Roberto, A.A.; Van Gray, J.B.; Engohang-Ndong, J.; Leff, L.G. Distribution and Co-Occurrence of Antibiotic and Metal Resistance Genes in Biofilms of an Anthropogenically Impacted Stream. Sci. Total Environ. 2019, 688, 437–449. [Google Scholar] [CrossRef]
- Song, W.; Qi, R.; Zhao, L.; Xue, N.; Wang, L.; Yang, Y. Bacterial Community Rather than Metals Shaping Metal Resistance Genes in Water, Sediment and Biofilm in Lakes from Arid Northwestern China. Environ. Pollut. 2019, 254, 113041. [Google Scholar] [CrossRef]
- Subirats, J.; Triadó-Margarit, X.; Mandaric, L.; Acuña, V.; Balcázar, J.L.; Sabater, S.; Borrego, C.M. Wastewater Pollution Differently Affects the Antibiotic Resistance Gene Pool and Biofilm Bacterial Communities across Streambed Compartments. Mol. Ecol. 2017, 26, 5567–5581. [Google Scholar] [CrossRef]
- Subirats, J.; Royo, E.; Balcázar, J.L.; Borrego, C.M. Real-Time PCR Assays for the Detection and Quantification of Carbapenemase Genes (Bla KPC, Bla NDM, and Bla OXA-48) in Environmental Samples. Environ. Sci. Pollut. Res. 2017, 24, 6710–6714. [Google Scholar] [CrossRef]
- Winkworth-Lawrence, C.; Lange, K. Antibiotic Resistance Genes in Freshwater Biofilms May Reflect Influences from High-Intensity Agriculture. Microb. Ecol. 2016, 72, 763–772. [Google Scholar] [CrossRef]
- Proia, L.; von Schiller, D.; Sànchez-Melsió, A.; Sabater, S.; Borrego, C.M.; Rodríguez-Mozaz, S.; Balcázar, J.L. Occurrence and Persistence of Antibiotic Resistance Genes in River Biofilms after Wastewater Inputs in Small Rivers. Environ. Pollut. 2016, 210, 121–128. [Google Scholar] [CrossRef]
- Marti, E.; Huerta, B.; Rodríguez-Mozaz, S.; Barceló, D.; Jofre, J.; Balcázar, J.L. Characterization of Ciprofloxacin-Resistant Isolates from a Wastewater Treatment Plant and Its Receiving River. Water Res. 2014, 61, 67–76. [Google Scholar] [CrossRef]
- Winkworth, C.L. Antibiotic Resistance Genes in Freshwater Biofilms along a Whole River. J. Water Health 2013, 11, 186–198. [Google Scholar] [CrossRef] [PubMed]
- Gillings, M.R.; Holley, M.P.; Stokes, H.W. Evidence for Dynamic Exchange of Qac Gene Cassettes between Class 1 Integrons and Other Integrons in Freshwater Biofilms. FEMS Microbiol. Lett. 2009, 296, 282–288. [Google Scholar] [CrossRef] [PubMed]
- Sammut Bartolo, N.; Azzopardi, L.M.; Serracino-Inglott, A. Pharmaceuticals and the Environment. Early Hum. Dev. 2021, 155, 105218. [Google Scholar] [CrossRef]
- Schwermer, C.U.; Uhl, W. Calculating Expected Effects of Treatment Effectivity and River Flow Rates on the Contribution of WWTP Effluent to the ARG Load of a Receiving River. J. Environ. Manag. 2021, 288, 112445. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.; Beck, K.; Bürgmann, H. Wastewater Bypass Is a Major Temporary Point-Source of Antibiotic Resistance Genes and Multi-Resistance Risk Factors in a Swiss River. Water Res. 2022, 208, 117827. [Google Scholar] [CrossRef] [PubMed]
- Pulicharla, R.; Proulx, F.; Behmel, S.; Sérodes, J.-B.; Rodriguez, M.J. Spatial and Temporal Variability of Contaminants of Emerging Concern in a Drinking Water Source. RSC Adv. 2022, 12, 20876–20885. [Google Scholar] [CrossRef]
- Pereira, A.M.P.T.; Silva, L.J.G.; Laranjeiro, C.S.M.; Meisel, L.M.; Lino, C.M.; Pena, A. Human Pharmaceuticals in Portuguese Rivers: The Impact of Water Scarcity in the Environmental Risk. Sci. Total Environ. 2017, 609, 1182–1191. [Google Scholar] [CrossRef]
- Rodriguez-Mozaz, S.; Vaz-Moreira, I.; Varela Della Giustina, S.; Llorca, M.; Barceló, D.; Schubert, S.; Berendonk, T.U.; Michael-Kordatou, I.; Fatta-Kassinos, D.; Martinez, J.L.; et al. Antibiotic Residues in Final Effluents of European Wastewater Treatment Plants and Their Impact on the Aquatic Environment. Environ. Int. 2020, 140, 105733. [Google Scholar] [CrossRef]
- Burnham, J.P. Climate Change and Antibiotic Resistance: A Deadly Combination. Ther. Adv. Infect. Dis. 2021, 8, 2049936121991374. [Google Scholar] [CrossRef]
- Tian, R.; Posselt, M.; Miaz, L.T.; Fenner, K.; McLachlan, M.S. Influence of Season on Biodegradation Rates in Rivers. Environ. Sci. Technol. 2024, 58, 7144–7153. [Google Scholar] [CrossRef]
- Kosma, C.I.; Kapsi, M.G.; Konstas, P.-S.G.; Trantopoulos, E.P.; Boti, V.I.; Konstantinou, I.K.; Albanis, T.A. Assessment of Multiclass Pharmaceutical Active Compounds (PhACs) in Hospital WWTP Influent and Effluent Samples by UHPLC-Orbitrap MS: Temporal Variation, Removals and Environmental Risk Assessment. Environ. Res. 2020, 191, 110152. [Google Scholar] [CrossRef] [PubMed]
- Knudsmark Sjøholm, K.; Birch, H.; Hammershøj, R.; Saunders, D.M.V.; Dechesne, A.; Loibner, A.P.; Mayer, P. Determining the Temperature Dependency of Biodegradation Kinetics for 34 Hydrocarbons While Avoiding Chemical and Microbial Confounding Factors. Environ. Sci. Technol. 2021, 55, 11091–11101. [Google Scholar] [CrossRef] [PubMed]
- Challis, J.K.; Hanson, M.L.; Friesen, K.J.; Wong, C.S. A Critical Assessment of the Photodegradation of Pharmaceuticals in Aquatic Environments: Defining Our Current Understanding and Identifying Knowledge Gaps. Environ. Sci. Process. Impacts 2014, 16, 672–696. [Google Scholar] [CrossRef]
- Eysseric, E.; Gagnon, C.; Segura, P.A. Uncovering Transformation Products of Four Organic Contaminants of Concern by Photodegradation Experiments and Analysis of Real Samples from a Local River. Chemosphere 2022, 293, 133408. [Google Scholar] [CrossRef]
- Vione, D.; Saglia, F.; Pelazza, C. Possible Effects of Changes in Carbonate Concentration and River Flow Rate on Photochemical Reactions in Temperate Aquatic Environments. Molecules 2023, 28, 7072. [Google Scholar] [CrossRef]
- Tian, R.; Posselt, M.; Fenner, K.; McLachlan, M.S. Variability of Biodegradation Rates of Commercial Chemicals in Rivers in Different Regions of Europe. Environ. Sci. Technol. 2024, 58, 20201–20210. [Google Scholar] [CrossRef]
- Koumaki, E.; Mamais, D.; Noutsopoulos, C.; Nika, M.-C.; Bletsou, A.A.; Thomaidis, N.S.; Eftaxias, A.; Stratogianni, G. Degradation of Emerging Contaminants from Water under Natural Sunlight: The Effect of Season, PH, Humic Acids and Nitrate and Identification of Photodegradation by-Products. Chemosphere 2015, 138, 675–681. [Google Scholar] [CrossRef] [PubMed]
- Yamamoto, H.; Nakamura, Y.; Moriguchi, S.; Nakamura, Y.; Honda, Y.; Tamura, I.; Hirata, Y.; Hayashi, A.; Sekizawa, J. Persistence and Partitioning of Eight Selected Pharmaceuticals in the Aquatic Environment: Laboratory Photolysis, Biodegradation, and Sorption Experiments. Water Res. 2009, 43, 351–362. [Google Scholar] [CrossRef] [PubMed]
- Alfee, S.L.; Bloor, M.C. A Global Review of River Sediment Contamination and Remobilization through Climate Change-Induced Flooding. Sustain. Environ. 2025, 11, 2440957. [Google Scholar] [CrossRef]
- Chaturvedi, P.; Shukla, P.; Giri, B.S.; Chowdhary, P.; Chandra, R.; Gupta, P.; Pandey, A. Prevalence and Hazardous Impact of Pharmaceutical and Personal Care Products and Antibiotics in Environment: A Review on Emerging Contaminants. Environ. Res. 2021, 194, 110664. [Google Scholar] [CrossRef] [PubMed]
- Lindholm-Lehto, P.C.; Ahkola, H.S.J.; Knuutinen, J.S.; Herve, S.H. Widespread Occurrence and Seasonal Variation of Pharmaceuticals in Surface Waters and Municipal Wastewater Treatment Plants in Central Finland. Environ. Sci. Pollut. Res. 2016, 23, 7985–7997. [Google Scholar] [CrossRef]
- Weyrauch, P.; Matzinger, A.; Pawlowsky-Reusing, E.; Plume, S.; von Seggern, D.; Heinzmann, B.; Schroeder, K.; Rouault, P. Contribution of Combined Sewer Overflows to Trace Contaminant Loads in Urban Streams. Water Res. 2010, 44, 4451–4462. [Google Scholar] [CrossRef]
- Vos, M. The Evolution of Bacterial Pathogens in the Anthropocene. Infect. Genet. Evol. 2020, 86, 104611. [Google Scholar] [CrossRef]
- Deng, C.; Liu, X.; Li, L.; Shi, J.; Guo, W.; Xue, J. Temporal Dynamics of Antibiotic Resistant Genes and Their Association with the Bacterial Community in a Water-Sediment Mesocosm under Selection by 14 Antibiotics. Environ. Int. 2020, 137, 105554. [Google Scholar] [CrossRef]
- Knapp, C.W.; Lima, L.; Olivares-Rieumont, S.; Bowen, E.; Werner, D.; Graham, D.W. Seasonal Variations in Antibiotic Resistance Gene Transport in the Almendares River, Havana, Cuba. Front. Microbiol. 2012, 3, 34138. [Google Scholar] [CrossRef] [PubMed]
- Luo, X.; Xiang, X.; Yang, Y.; Huang, G.; Fu, K.; Che, R.; Chen, L. Seasonal Effects of River Flow on Microbial Community Coalescence and Diversity in a Riverine Network. FEMS Microbiol. Ecol. 2020, 96, fiaa132. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Shen, G.; Hu, S.; He, Y.; Li, P.; Zhang, B. Deciphering of Antibiotic Resistance Genes (ARGs) and Potential Abiotic Indicators for the Emergence of ARGs in an Interconnected Lake-River-Reservoir System. J. Hazard. Mater. 2021, 410, 124552. [Google Scholar] [CrossRef]
- Di Cesare, A.; Eckert, E.M.; Rogora, M.; Corno, G. Rainfall Increases the Abundance of Antibiotic Resistance Genes within a Riverine Microbial Community. Environ. Pollut. 2017, 226, 473–478. [Google Scholar] [CrossRef]
- Yu, W.; Xu, Y.; Wang, Y.; Sui, Q.; Xin, Y.; Wang, H.; Zhang, J.; Zhong, H.; Wei, Y. An Extensive Assessment of Seasonal Rainfall on Intracellular and Extracellular Antibiotic Resistance Genes in Urban River Systems. J. Hazard. Mater. 2023, 455, 131561. [Google Scholar] [CrossRef]
- Baquero, F.; Coque, T.M.; Guerra-Pinto, N.; Galán, J.C.; Jiménez-Lalana, D.; Tamames, J.; Pedrós-Alió, C. The Influence of Coalescent Microbiotic Particles From Water and Soil on the Evolution and Spread of Antimicrobial Resistance. Front. Environ. Sci. 2022, 10, 824963. [Google Scholar] [CrossRef]
- Zhang, T.; Xu, S.; Yan, R.; Wang, R.; Gao, Y.; Kong, M.; Yi, Q.; Zhang, Y. Similar Geographic Patterns but Distinct Assembly Processes of Abundant and Rare Bacterioplankton Communities in River Networks of the Taihu Basin. Water Res. 2022, 211, 118057. [Google Scholar] [CrossRef]
- Makk, J.; Toumi, M.; Krett, G.; Lange-Enyedi, N.T.; Schachner-Groehs, I.; Kirschner, A.K.T.; Tóth, E. Temporal Changes in the Morphological and Microbial Diversity of Biofilms on the Surface of a Submerged Stone in the Danube River. Biol. Future 2024, 75, 261–277. [Google Scholar] [CrossRef]
- Hullar, M.A.J.; Kaplan, L.A.; Stahl, D.A. Recurring Seasonal Dynamics of Microbial Communities in Stream Habitats. Appl. Environ. Microbiol. 2006, 72, 713–722. [Google Scholar] [CrossRef] [PubMed]
- Guo, X.; Liu, X.; Niu, Z.; Lu, D.; Zhao, S.; Sun, X.; Wu, J.; Chen, Y.; Tou, F.; Hou, L.; et al. Seasonal and Spatial Distribution of Antibiotic Resistance Genes in the Sediments along the Yangtze Estuary, China. Environ. Pollut. 2018, 242, 576–584. [Google Scholar] [CrossRef]
- Akinwole, P.; Guta, A.; Draper, M.; Atkinson, S. Spatio-Temporal Variations in the Physiological Profiles of Streambed Bacterial Communities: Implication of Wastewater Treatment Plant Effluents. World J. Microbiol. Biotechnol. 2021, 37, 136. [Google Scholar] [CrossRef]
- Son, D.; Aleta, P.; Park, M.; Yoon, H.; Cho, K.H.; Kim, Y.M.; Kim, S. Seasonal Changes in Antibiotic Resistance Genes in Rivers and Reservoirs in South Korea. J. Environ. Qual. 2018, 47, 1079–1085. [Google Scholar] [CrossRef]
- Milaković, M.; Vestergaard, G.; González-Plaza, J.J.; Petrić, I.; Kosić-Vukšić, J.; Senta, I.; Kublik, S.; Schloter, M.; Udiković-Kolić, N. Effects of Industrial Effluents Containing Moderate Levels of Antibiotic Mixtures on the Abundance of Antibiotic Resistance Genes and Bacterial Community Composition in Exposed Creek Sediments. Sci. Total Environ. 2020, 706, 136001. [Google Scholar] [CrossRef] [PubMed]
- Grenni, P. Antimicrobial Resistance in Rivers: A Review of the Genes Detected and New Challenges. Environ. Toxicol. Chem. 2022, 41, 687–714. [Google Scholar] [CrossRef]
- Oest, A.; Alsaffar, A.; Fenner, M.; Azzopardi, D.; Tiquia-Arashiro, S.M. Patterns of Change in Metabolic Capabilities of Sediment Microbial Communities in River and Lake Ecosystems. Int. J. Microbiol. 2018, 2018, 6234931. [Google Scholar] [CrossRef] [PubMed]
- Miller, J.H.; Novak, J.T.; Knocke, W.R.; Pruden, A. Elevation of Antibiotic Resistance Genes at Cold Temperatures: Implications for Winter Storage of Sludge and Biosolids. Lett. Appl. Microbiol. 2014, 59, 587–593. [Google Scholar] [CrossRef] [PubMed]
- Calero-Cáceres, W.; Muniesa, M. Persistence of Naturally Occurring Antibiotic Resistance Genes in the Bacteria and Bacteriophage Fractions of Wastewater. Water Res. 2016, 95, 11–18. [Google Scholar] [CrossRef]
- Dawan, J.; Ahn, J. Bacterial Stress Responses as Potential Targets in Overcoming Antibiotic Resistance. Microorganisms 2022, 10, 1385. [Google Scholar] [CrossRef]
- Milaković, M.; Vestergaard, G.; González-Plaza, J.J.; Petrić, I.; Šimatović, A.; Senta, I.; Kublik, S.; Schloter, M.; Smalla, K.; Udiković-Kolić, N. Pollution from Azithromycin-Manufacturing Promotes Macrolide-Resistance Gene Propagation and Induces Spatial and Seasonal Bacterial Community Shifts in Receiving River Sediments. Environ. Int. 2019, 123, 501–511. [Google Scholar] [CrossRef]
- Zoppini, A.; Amalfitano, S.; Fazi, S.; Puddu, A. Dynamics of a Benthic Microbial Community in a Riverine Environment subject to Hydrological Fluctuations (Mulargia River, Italy). In Global Change and River Ecosystems—Implications for Structure, Function and Ecosystem Services. Developments in Hydrobiology; Stevenson, R.J., Sabater, S., Eds.; Springer: Dordrecht, The Netherlands, 2010; Volume 215, pp. 37–51. ISBN 978-94-007-0608-8. [Google Scholar]
- Zoppini, A.; Ademollo, N.; Amalfitano, S.; Casella, P.; Patrolecco, L.; Polesello, S. Organic Priority Substances and Microbial Processes in River Sediments Subject to Contrasting Hydrological Conditions. Sci. Total Environ. 2014, 484, 74–83. [Google Scholar] [CrossRef]
- Nguyen, D.; Joshi-Datar, A.; Lepine, F.; Bauerle, E.; Olakanmi, O.; Beer, K.; McKay, G.; Siehnel, R.; Schafhauser, J.; Wang, Y.; et al. Active Starvation Responses Mediate Antibiotic Tolerance in Biofilms and Nutrient-Limited Bacteria. Science 2011, 334, 982–986. [Google Scholar] [CrossRef]
- Zhang, S.; Yang, G.; Zhang, Y.; Yang, C. High-Throughput Profiling of Antibiotic Resistance Genes in the Yellow River of Henan Province, China. Sci. Rep. 2024, 14, 17490. [Google Scholar] [CrossRef]
- Behbahani, S.B.; Kiridena, S.D.; Wijayaratna, U.N.; Taylor, C.; Anker, J.N.; Tzeng, T.-R.J. PH Variation in Medical Implant Biofilms: Causes, Measurements, and Its Implications for Antibiotic Resistance. Front. Microbiol. 2022, 13, 1028560. [Google Scholar] [CrossRef] [PubMed]
- Vaccaro, M.; Pilat, A.M.; Gusmano, L.; Pham, M.T.N.; Barich, D.; Gibson, A.; Epalle, M.; Frost, D.J.; Volin, E.; Slimak, Z.C.; et al. Pond Water Microbiome Antibiotic Resistance Genes Vary Seasonally with Environmental PH and Tannins. Microbiol. Spectr. 2025, 13, e03034-24. [Google Scholar] [CrossRef]
- Krulwich, T.A.; Sachs, G.; Padan, E. Molecular Aspects of Bacterial PH Sensing and Homeostasis. Nat. Rev. Microbiol. 2011, 9, 330–343. [Google Scholar] [CrossRef] [PubMed]
- Hillman, T. Antibiotics, Efflux, and PH. Arch. Proteom. Bioinform. 2023, 3, 15–18. [Google Scholar] [CrossRef]
- Liu, Y.; Van Horn, A.M.; Pham, M.T.N.; Dinh, B.N.N.; Chen, R.; Raphael, S.D.R.; Paulino, A.; Thaker, K.; Somadder, A.; Frost, D.J.; et al. Fitness Trade-Offs of Multidrug Efflux Pumps in Escherichia coli K-12 in Acid or Base, and with Aromatic Phytochemicals. Appl. Environ. Microbiol. 2024, 90, e02096-23. [Google Scholar] [CrossRef]
- Bombaywala, S.; Bajaj, A.; Dafale, N.A. Deterministic Effect of Oxygen Level Variation on Shaping Antibiotic Resistome. J. Hazard. Mater. 2024, 465, 133047. [Google Scholar] [CrossRef]
- Qi, W.; Jonker, M.J.; Teichmann, L.; Wortel, M.; ter Kuile, B.H. The Influence of Oxygen and Oxidative Stress on de Novo Acquisition of Antibiotic Resistance in E. coli and Lactobacillus lactis. BMC Microbiol. 2023, 23, 279. [Google Scholar] [CrossRef]
- Albesa, I.; Becerra, M.C.; Battán, P.C.; Páez, P.L. Oxidative Stress Involved in the Antibacterial Action of Different Antibiotics. Biochem. Biophys. Res. Commun. 2004, 317, 605–609. [Google Scholar] [CrossRef]
- Belenky, P.; Ye, J.D.; Porter, C.B.M.; Cohen, N.R.; Lobritz, M.A.; Ferrante, T.; Jain, S.; Korry, B.J.; Schwarz, E.G.; Walker, G.C.; et al. Bactericidal Antibiotics Induce Toxic Metabolic Perturbations That Lead to Cellular Damage. Cell Rep. 2015, 13, 968–980. [Google Scholar] [CrossRef]
- Hoeksema, M.; Brul, S.; ter Kuile, B.H. Influence of Reactive Oxygen Species on De Novo Acquisition of Resistance to Bactericidal Antibiotics. Antimicrob. Agents Chemother. 2018, 62, e02354-17. [Google Scholar] [CrossRef] [PubMed]
- Tikariha, H.; Khardenavis, A.A.; Purohit, H.J. Dissolved Oxygen-Mediated Enrichment of Quorum-Sensing Phenomenon in the Bacterial Community to Combat Oxidative Stress. Arch. Microbiol. 2018, 200, 1371–1379. [Google Scholar] [CrossRef]
- Wang, J.; Rong, H.; Zhang, C. Evaluation of the Impact of Dissolved Oxygen Concentration on Biofilm Microbial Community in Sequencing Batch Biofilm Reactor. J. Biosci. Bioeng. 2018, 125, 532–542. [Google Scholar] [CrossRef]
- Li, S.; Murava, R.T.; Zhang, Q.; Zhou, T.; Omoregie, A.I.; Rajasekar, A.; Ouahbi, T. Linking Antibiotic Residues and Antibiotic Resistance Genes to Water Quality Parameters in Urban Reservoirs: A Seasonal Perspective. Environments 2025, 12, 96. [Google Scholar] [CrossRef]
- Jiao, Y.-N.; Zhou, Z.-C.; Chen, T.; Wei, Y.-Y.; Zheng, J.; Gao, R.-X.; Chen, H. Biomarkers of Antibiotic Resistance Genes during Seasonal Changes in Wastewater Treatment Systems. Environ. Pollut. 2018, 234, 79–87. [Google Scholar] [CrossRef]
- Schages, L.; Wichern, F.; Kalscheuer, R.; Bockmühl, D. Winter Is Coming—Impact of Temperature on the Variation of Beta-Lactamase and Mcr Genes in a Wastewater Treatment Plant. Sci. Total Environ. 2020, 712, 136499. [Google Scholar] [CrossRef] [PubMed]
- Rodríguez, E.A.; Pino, N.J.; Jiménez, J.N. Climatological and Epidemiological Conditions Are Important Factors Related to the Abundance of BlaKPC and Other Antibiotic Resistance Genes (ARGs) in Wastewater Treatment Plants and Their Effluents, in an Endemic Country. Front. Cell. Infect. Microbiol. 2021, 11, 686472. [Google Scholar] [CrossRef] [PubMed]
- Makuwa, S.; Tlou, M.; Fosso-Kankeu, E.; Green, E. The Effects of Dry versus Wet Season on the Performance of a Wastewater Treatment Plant in North West Province, South Africa. Water SA 2022, 48, 40–49. [Google Scholar] [CrossRef]
- Maphanga, T.; Madonsela, B.S.; Chidi, B.S.; Shale, K.; Munjonji, L.; Lekata, S. The Effect of Rainfall on Escherichia coli and Chemical Oxygen Demand in the Effluent Discharge from the Crocodile River Wastewater Treatment; South Africa. Water 2022, 14, 2802. [Google Scholar] [CrossRef]
- Honda, R.; Matsuura, N.; Sorn, S.; Asakura, S.; Morinaga, Y.; Van Huy, T.; Sabar, M.A.; Masakke, Y.; Hara-Yamamura, H.; Watanabe, T. Transition of Antimicrobial Resistome in Wastewater Treatment Plants: Impact of Process Configuration, Geographical Location and Season. npj Clean Water 2023, 6, 46. [Google Scholar] [CrossRef]
- Ching, C.; Sutradhar, I.; Zaman, M.H. Understanding the Impacts of Temperature and Precipitation on Antimicrobial Resistance in Wastewater: Theory, Modeling, Observation, and Limitations. mSphere 2025, 10, e00947-24. [Google Scholar] [CrossRef]
- Perez-Bou, L.; Muñoz-Palazon, B.; Gonzalez-Lopez, J.; Gonzalez-Martinez, A.; Correa-Galeote, D. Deciphering the Role of WWTPs in Cold Environments as Hotspots for the Dissemination of Antibiotic Resistance Genes. Microb. Ecol. 2023, 87, 14. [Google Scholar] [CrossRef]
- Sousa, J.C.G.; Ribeiro, A.R.; Barbosa, M.O.; Pereira, M.F.R.; Silva, A.M.T. A Review on Environmental Monitoring of Water Organic Pollutants Identified by EU Guidelines. J. Hazard. Mater. 2018, 344, 146–162. [Google Scholar] [CrossRef]
- Bai, X.; Lutz, A.; Carroll, R.; Keteles, K.; Dahlin, K.; Murphy, M.; Nguyen, D. Occurrence, Distribution, and Seasonality of Emerging Contaminants in Urban Watersheds. Chemosphere 2018, 200, 133–142. [Google Scholar] [CrossRef] [PubMed]
- Chau, K.K.; Goodall, T.; Bowes, M.; Easterbrook, K.; Brett, H.; Hughes, J.; Crook, D.W.; Read, D.S.; Walker, A.S.; Stoesser, N. High-Resolution Characterization of Short-Term Temporal Variability in the Taxonomic and Resistome Composition of Wastewater Influent. Microb. Genom. 2023, 9, 000983. [Google Scholar] [CrossRef]
- Lou, E.G.; Ali, P.; Lu, K.; Kalvapalle, P.; Stadler, L.B. Snapshot ARG Removal Rates across Wastewater Treatment Plants Are Not Representative Due to Diurnal Variations. ACS EST Water 2023, 3, 166–175. [Google Scholar] [CrossRef]
- Huijbers, P.M.C.; Bobis Camacho, J.; Hutinel, M.; Larsson, D.G.J.; Flach, C.-F. Sampling Considerations for Wastewater Surveillance of Antibiotic Resistance in Fecal Bacteria. Int. J. Environ. Res. Public Health 2023, 20, 4555. [Google Scholar] [CrossRef] [PubMed]
- Brinch, C.; Leekitcharoenphon, P.; Duarte, A.S.R.; Svendsen, C.A.; Jensen, J.D.; Aarestrup, F.M. Long-Term Temporal Stability of the Resistome in Sewage from Copenhagen. mSystems 2020, 5, e00841-20. [Google Scholar] [CrossRef] [PubMed]
- Cornman, R.S.; McKenna, J.E.; Fike, J.; Oyler-McCance, S.J.; Johnson, R. An Experimental Comparison of Composite and Grab Sampling of Stream Water for Metagenetic Analysis of Environmental DNA. PeerJ 2018, 6, e5871. [Google Scholar] [CrossRef]
- Osińska, A.; Korzeniewska, E.; Harnisz, M.; Felis, E.; Bajkacz, S.; Jachimowicz, P.; Niestępski, S.; Konopka, I. Small-Scale Wastewater Treatment Plants as a Source of the Dissemination of Antibiotic Resistance Genes in the Aquatic Environment. J. Hazard. Mater. 2020, 381, 121221. [Google Scholar] [CrossRef]
- Eraqi, W.A.; ElRakaiby, M.T.; Megahed, S.A.; Yousef, N.H.; Elshahed, M.S.; Yassin, A.S. The Nile River Microbiome Reveals a Remarkably Stable Community Between Wet and Dry Seasons, and Sampling Sites, in a Large Urban Metropolis (Cairo, Egypt). OMICS 2018, 22, 553–564. [Google Scholar] [CrossRef]
- Li, B.; Chang, C.; Sun, C.; Zhao, D.; Hu, E.; Li, M. Multi-Habitat Distribution and Coalescence of Resistomes at the Watershed Scale Based on Metagenomics. J. Hazard. Mater. 2024, 477, 135349. [Google Scholar] [CrossRef]
- Jia, J.; Guan, Y.; Cheng, M.; Chen, H.; He, J.; Wang, S.; Wang, Z. Occurrence and Distribution of Antibiotics and Antibiotic Resistance Genes in Ba River, China. Sci. Total Environ. 2018, 642, 1136–1144. [Google Scholar] [CrossRef]
- Zheng, J.; Zhou, Z.; Wei, Y.; Chen, T.; Feng, W.; Chen, H. High-Throughput Profiling of Seasonal Variations of Antibiotic Resistance Gene Transport in a Peri-Urban River. Environ. Int. 2018, 114, 87–94. [Google Scholar] [CrossRef] [PubMed]
- Engloner, A.I.; Vargha, M.; Kós, P.; Borsodi, A.K. Planktonic and Epilithic Prokaryota Community Compositions in a Large Temperate River Reflect Climate Change Related Seasonal Shifts. PLoS ONE 2023, 18, e0292057. [Google Scholar] [CrossRef] [PubMed]
- van Bavel, B.; Berrang-Ford, L.; Moon, K.; Gudda, F.; Thornton, A.J.; Robinson, R.F.S.; King, R. Intersections between Climate Change and Antimicrobial Resistance: A Systematic Scoping Review. Lancet Planet. Health 2024, 8, e1118–e1128. [Google Scholar] [CrossRef]
- Alhassan, M.Y.; Ahmad, A.A. Antimicrobial Resistance in a Changing Climate: A One Health Approach for Adaptation and Mitigation. Bull. Natl. Res. Cent. 2025, 49, 26. [Google Scholar] [CrossRef]
- Liu, T.; Zhang, A.N.; Wang, J.; Liu, S.; Jiang, X.; Dang, C.; Ma, T.; Liu, S.; Chen, Q.; Xie, S.; et al. Integrated Biogeography of Planktonic and Sedimentary Bacterial Communities in the Yangtze River. Microbiome 2018, 6, 16. [Google Scholar] [CrossRef] [PubMed]
- Rickard, A.H.; McBain, A.J.; Stead, A.T.; Gilbert, P. Shear Rate Moderates Community Diversity in Freshwater Biofilms. Appl. Environ. Microbiol. 2004, 70, 7426–7435. [Google Scholar] [CrossRef]
- Besemer, K.; Singer, G.; Hödl, I.; Battin, T.J. Bacterial Community Composition of Stream Biofilms in Spatially Variable-Flow Environments. Appl. Environ. Microbiol. 2009, 75, 7189–7195. [Google Scholar] [CrossRef] [PubMed]
- Villeneuve, A.; Bouchez, A.; Montuelle, B. In Situ Interactions between the Effects of Season, Current Velocity and Pollution on a River Biofilm. Freshw. Biol. 2011, 56, 2245–2259. [Google Scholar] [CrossRef]
- Gao, P.; Deng, J.; Chai, X.; Mu, X.; Zhao, G.; Shao, H.; Sun, W. Dynamic Sediment Discharge in the Hekou–Longmen Region of Yellow River and Soil and Water Conservation Implications. Sci. Total Environ. 2017, 578, 56–66. [Google Scholar] [CrossRef]
- Treves, D.S.; Xia, B.; Zhou, J.; Tiedje, J.M. A Two-Species Test of the Hypothesis That Spatial Isolation Influences Microbial Diversity in Soil. Microb. Ecol. 2003, 45, 20–28. [Google Scholar] [CrossRef]
- Akinwole, P.O.; Kan, J.; Kaplan, L.A.; Findlay, R.H. Spatial Variability in Streambed Microbial Community Structure across Two Watersheds. Microbiol. Spectr. 2021, 9, 17. [Google Scholar] [CrossRef] [PubMed]
- Shade, A.; Gregory Caporaso, J.; Handelsman, J.; Knight, R.; Fierer, N. A Meta-Analysis of Changes in Bacterial and Archaeal Communities with Time. ISME J. 2013, 7, 1493–1506. [Google Scholar] [CrossRef] [PubMed]
Method | Strengths | Limitations |
---|---|---|
Culture-based methods |
|
|
qPCR technologies |
|
|
Targeted sequencing (amplicon-based metabarcoding) |
|
|
Whole genome sequencing |
|
|
Shotgun metagenomics sequencing |
|
|
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Beltrán de Heredia, I.; Alkorta, I.; Garbisu, C.; Ruiz-Romera, E. A Practical Framework for Environmental Antibiotic Resistance Monitoring in Freshwater Ecosystems. Antibiotics 2025, 14, 840. https://doi.org/10.3390/antibiotics14080840
Beltrán de Heredia I, Alkorta I, Garbisu C, Ruiz-Romera E. A Practical Framework for Environmental Antibiotic Resistance Monitoring in Freshwater Ecosystems. Antibiotics. 2025; 14(8):840. https://doi.org/10.3390/antibiotics14080840
Chicago/Turabian StyleBeltrán de Heredia, Irene, Itziar Alkorta, Carlos Garbisu, and Estilita Ruiz-Romera. 2025. "A Practical Framework for Environmental Antibiotic Resistance Monitoring in Freshwater Ecosystems" Antibiotics 14, no. 8: 840. https://doi.org/10.3390/antibiotics14080840
APA StyleBeltrán de Heredia, I., Alkorta, I., Garbisu, C., & Ruiz-Romera, E. (2025). A Practical Framework for Environmental Antibiotic Resistance Monitoring in Freshwater Ecosystems. Antibiotics, 14(8), 840. https://doi.org/10.3390/antibiotics14080840