Spontaneous Emergence of Cefiderocol Resistance in Klebsiella pneumoniae KPC-163: Genomic and Transcriptomic Insights
Abstract
1. Introduction
2. Results
2.1. Whole Genome Sequencing Analysis
2.2. Collateral Susceptibility to Carbapenems in the FDC-Resistant Mutant
2.3. Molecular and Transcriptional Adaptations Underlying FDC Resistance in the IHC216 Mutant
2.4. Increased Capsule and Biofilm Formation Was Seen in the FDC-Resistant Mutant
3. Discussion
4. Materials and Methods
4.1. Bacterial Strains
4.2. Whole Genome Sequencing
4.3. RNA Extraction and Transcriptional Analysis Using Quantitative RT-qPCR
4.4. Antimicrobial Susceptibility Testing
4.5. Capsule and Biofilm
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kerneis, S.; Lucet, J.C.; Santoro, A.; Meschiari, M. Individual and collective impact of Klebsiella pneumoniae carbapenemase (KPC)-producing K. pneumoniae in patients admitted to the ICU. J. Antimicrob. Chemother. 2021, 76 (Suppl. S1), i19–i26. [Google Scholar] [CrossRef]
- Li, T.; Zhu, Y.; Xiang, G.; Xu, Z.; Yang, H.; Li, M.; Shen, Z. Adaptive evolution of extensive drug resistance and persistence in epidemic ST11 KPC-producing Klebsiella pneumoniae during antimicrobial chemotherapy. Antimicrob. Agents Chemother. 2025, 69, e0123524. [Google Scholar] [CrossRef] [PubMed]
- Lee, G.C.; Burgess, D.S. Treatment of Klebsiella pneumoniae carbapenemase (KPC) infections: A review of published case series and case reports. Ann. Clin. Microbiol. Antimicrob. 2012, 11, 32. [Google Scholar] [CrossRef] [PubMed]
- Zhanel, G.G.; Golden, A.R.; Zelenitsky, S.; Wiebe, K.; Lawrence, C.K.; Adam, H.J.; Idowu, T.; Domalaon, R.; Schweizer, F.; Zhanel, M.A.; et al. Cefiderocol: A Siderophore Cephalosporin with Activity Against Carbapenem-Resistant and Multidrug-Resistant Gram-Negative Bacilli. Drugs 2019, 79, 271–289. [Google Scholar] [CrossRef]
- Bianco, G.; Boattini, M.; Cricca, M.; Diella, L.; Gatti, M.; Rossi, L.; Bartoletti, M.; Sambri, V.; Signoretto, C.; Fonnesu, R.; et al. Updates on the Activity, Efficacy and Emerging Mechanisms of Resistance to Cefiderocol. Curr. Issues Mol. Biol. 2024, 46, 14132–14153. [Google Scholar] [CrossRef]
- Castillo-Polo, J.A.; Hernandez-Garcia, M.; Morosini, M.I.; Perez-Viso, B.; Soriano, C.; De Pablo, R.; Cantón, R. Outbreak by KPC-62-producing ST307 Klebsiella pneumoniae isolates resistant to ceftazidime/avibactam and cefiderocol in a university hospital in Madrid, Spain. J. Antimicrob. Chemother. 2023, 78, 1259–1264. [Google Scholar] [CrossRef] [PubMed]
- Ding, R.; Li, X.; Zhang, X.; Zhang, Z.; Ma, X. The Epidemiology of Symptomatic Catheter-associated Urinary Tract Infections in the Intensive Care Unit: A 4-year Single Center Retrospective Study. Urol. J. 2019, 16, 312–317. [Google Scholar]
- Findlay, J.; Poirel, L.; Juhas, M.; Nordmann, P. KPC-Mediated Resistance to Ceftazidime-Avibactam and Collateral Effects in Klebsiella pneumoniae. Antimicrob. Agents Chemother. 2021, 65, e0089021. [Google Scholar] [CrossRef]
- Hobson, C.A.; Cointe, A.; Jacquier, H.; Choudhury, A.; Magnan, M.; Courroux, C.; Tenaillon, O.; Bonacorsi, S.; Birgy, A. Cross-resistance to cefiderocol and ceftazidime-avibactam in KPC beta-lactamase mutants and the inoculum effect. Clin. Microbiol. Infect. 2021, 27, 1172.E7–1172.E10. [Google Scholar] [CrossRef]
- Hamza, M.; Traglia, G.M.; Maccari, L.; Gomez, S.; Sanz, M.B.; Akhtar, U.; Mezcord, V.; Escalante, J.; Corso, A.; Rodriguez, C.; et al. Emerging Resistance to Novel beta-Lactam beta-Lactamase Inhibitor Combinations in Klebsiella pneumoniae bearing KPC Variants. J. Glob. Antimicrob. Resist. 2025, 14, 648765. [Google Scholar]
- Islam, M.M.; Jung, D.E.; Shin, W.S.; Oh, M.H. Colistin Resistance Mechanism and Management Strategies of Colistin-Resistant Acinetobacter baumannii Infections. Pathogens 2024, 13, 1049. [Google Scholar] [CrossRef] [PubMed]
- Karakonstantis, S.; Rousaki, M.; Kritsotakis, E.I. Cefiderocol: Systematic Review of Mechanisms of Resistance, Heteroresistance and In Vivo Emergence of Resistance. Antibiotics 2022, 11, 723. [Google Scholar] [CrossRef] [PubMed]
- Bianco, G.; Boattini, M.; Iannaccone, M.; Cavallo, R.; Costa, C. Bloodstream infection by two subpopulations of Klebsiella pneumoniae ST1685 carrying KPC-33 or KPC-14 following ceftazidime/avibactam treatment: Considerations regarding acquired heteroresistance and choice of carbapenemase detection assay. J. Antimicrob. Chemother. 2020, 75, 3075–3076. [Google Scholar] [CrossRef] [PubMed]
- Ding, L.; Shen, S.; Chen, J.; Tian, Z.; Shi, Q.; Han, R.; Guo, Y.; Hu, F. Klebsiella pneumoniae carbapenemase variants: The new threat to global public health. Clin. Microbiol. Rev. 2023, 36, e0000823. [Google Scholar] [CrossRef]
- Lin, T.L.; Lee, C.Z.; Hsieh, P.F.; Tsai, S.F.; Wang, J.T. Characterization of integrative and conjugative element ICEKp1-associated genomic heterogeneity in a Klebsiella pneumoniae strain isolated from a primary liver abscess. J. Bacteriol. 2008, 190, 515–526. [Google Scholar] [CrossRef]
- Goetz, D.H.; Holmes, M.A.; Borregaard, N.; Bluhm, M.E.; Raymond, K.N.; Strong, R.K. The neutrophil lipocalin NGAL is a bacteriostatic agent that interferes with siderophore-mediated iron acquisition. Mol. Cell 2002, 10, 1033–1043. [Google Scholar] [CrossRef]
- Bachman, M.A.; Miller, V.L.; Weiser, J.N. Mucosal lipocalin 2 has pro-inflammatory and iron-sequestering effects in response to bacterial enterobactin. PLoS Pathog. 2009, 5, e1000622. [Google Scholar] [CrossRef]
- Polani, R.; De Francesco, A.; Tomolillo, D.; Artuso, I.; Equestre, M.; Trirocco, R.; Arcari, G.; Antonelli, G.; Villa, L.; Prosseda, G.; et al. Cefiderocol Resistance Conferred by Plasmid-Located Ferric Citrate Transport System in KPC-Producing Klebsiella pneumoniae. Emerg. Infect. Dis. 2025, 31, 123–124. [Google Scholar] [CrossRef]
- Lan, P.; Lu, Y.; Liao, W.; Yu, Y.; Fu, Y.; Zhou, J. Cefiderocol-resistant hypervirulent Klebsiella pneumoniae with CirA deficiency and co-production of KPC-2 and SHV-12. Clin. Microbiol. Infect. 2024, 31, 125–127. [Google Scholar] [CrossRef]
- Kumar, A.; Chakravorty, S.; Yang, T.; Russo, T.A.; Newton, S.M.; Klebba, P.E. Siderophore-mediated iron acquisition by Klebsiella pneumoniae. J. Bacteriol. 2024, 206, e0002424. [Google Scholar] [CrossRef]
- Tsuka, T.; Kumashiro, S.; Kihara, T.; Iida, T. Correlation between Polymerase Chain Reaction Identification of Iron Acquisition Genes and an Iron-Deficient Incubation Test for Klebsiella pneumoniae Isolates from Bovine Mastitis. Microorganisms 2022, 10, 1138. [Google Scholar] [CrossRef]
- Daoud, L.; Al-Marzooq, F.; Moubareck, C.A.; Ghazawi, A.; Collyns, T. Elucidating the effect of iron acquisition systems in Klebsiella pneumoniae on susceptibility to the novel siderophore-cephalosporin cefiderocol. PLoS ONE 2022, 17, e0277946. [Google Scholar] [CrossRef]
- Maharjan, R.P.; Sullivan, G.J.; Adams, F.G.; Shah, B.S.; Hawkey, J.; Delgado, N.; Semenec, L.; Dinh, H.; Li, L.; Short, F.L.; et al. DksA is a conserved master regulator of stress response in Acinetobacter baumannii. Nucleic Acids Res. 2023, 51, 6101–6119. [Google Scholar] [CrossRef]
- Kim, N.; Son, J.H.; Kim, K.; Kim, H.J.; Kim, Y.J.; Shin, M.; Lee, J.C. Global regulator DksA modulates virulence of Acinetobacter baumannii. Virulence 2021, 12, 2750–2763. [Google Scholar] [CrossRef]
- Switala, J.; Triggs-Raine, B.L.; Loewen, P.C. Homology among bacterial catalase genes. Can. J. Microbiol. 1990, 36, 728–731. [Google Scholar] [CrossRef] [PubMed]
- Carvalho, I.; Chenouf, N.S.; Carvalho, J.A.; Castro, A.P.; Silva, V.; Capita, R.; Alonso-Calleja, C.; Enes Dapkevicius, M.L.N.; Igrejas, G.; Torres, C.; et al. Multidrug-resistant Klebsiella pneumoniae harboring extended spectrum beta-lactamase encoding genes isolated from human septicemias. PLoS ONE 2021, 16, e0250525. [Google Scholar] [CrossRef] [PubMed]
- Ejaz, H. Analysis of diverse beta-lactamases presenting high-level resistance in association with OmpK35 and OmpK36 porins in ESBL-producing Klebsiella pneumoniae. Saudi J. Biol. Sci. 2022, 29, 3440–3447. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Ni, M. Regulation of biofilm formation in Klebsiella pneumoniae. Front. Microbiol. 2023, 14, 1238482. [Google Scholar] [CrossRef]
- Shebl, R.I.; Elkhatib, W.F.; Badawy, M. Modulating the transcriptomic profile of multidrug-resistant Klebsiella pneumoniae biofilm formation by antibiotics in combination with zinc sulfate. Ann. Clin. Microbiol. Antimicrob. 2023, 22, 84. [Google Scholar] [CrossRef]
- Wang, L.; Zhang, Y.; Liu, Y.; Xu, M.; Yao, Z.; Zhang, X.; Sun, Y.; Zhou, T.; Shen, M. Effects of chlorogenic acid on antimicrobial, antivirulence, and anti-quorum sensing of carbapenem-resistant Klebsiella pneumoniae. Front. Microbiol. 2022, 13, 997310. [Google Scholar] [CrossRef]
- Raffatellu, M.; Chessa, D.; Wilson, R.P.; Tukel, C.; Akcelik, M.; Baumler, A.J. Capsule-mediated immune evasion: A new hypothesis explaining aspects of typhoid fever pathogenesis. Infect. Immun. 2006, 74, 19–27. [Google Scholar] [CrossRef]
- Huang, X.; Li, X.; An, H.; Wang, J.; Ding, M.; Wang, L.; Li, L.; Ji, Q.; Qu, F.; Wang, H.; et al. Capsule type defines the capability of Klebsiella pneumoniae in evading Kupffer cell capture in the liver. PLoS Pathog. 2022, 18, e1010693. [Google Scholar] [CrossRef] [PubMed]
- Findlay, J.; Bianco, G.; Boattini, M.; Nordmann, P. High-level cefiderocol and ceftazidime/avibactam resistance in KPC-producing Klebsiella pneumoniae associated with mutations in KPC and the sensor histidine kinase EnvZ. J. Antimicrob. Chemother. 2025, 80, 1155–1157. [Google Scholar] [CrossRef] [PubMed]
- Yang, C.; Wang, L.; Lv, J.; Wen, Y.; Gao, Q.; Qian, F.; Tian, X.; Zhu, J.; Zhu, Z.; Chen, L.; et al. Effects of different carbapenemase and siderophore production on cefiderocol susceptibility in Klebsiella pneumoniae. Antimicrob. Agents Chemother. 2024, 68, e0101924. [Google Scholar] [CrossRef] [PubMed]
- Roemhild, R.; Andersson, D.I. Mechanisms and therapeutic potential of collateral sensitivity to antibiotics. PLoS Pathog. 2021, 17, e1009172. [Google Scholar] [CrossRef]
- Pournaras, S.; Kristo, I.; Vrioni, G.; Ikonomidis, A.; Poulou, A.; Petropoulou, D.; Tsakris, A. Characteristics of meropenem heteroresistance in Klebsiella pneumoniae carbapenemase (KPC)-producing clinical isolates of K. pneumoniae. J. Clin. Microbiol. 2010, 48, 2601–2604. [Google Scholar] [CrossRef]
- Stewart, P.S.; Franklin, M.J. Physiological heterogeneity in biofilms. Nat. Rev. Microbiol. 2008, 6, 199–210. [Google Scholar] [CrossRef]
- De Serrano, L.O.; Camper, A.K.; Richards, A.M. An overview of siderophores for iron acquisition in microorganisms living in the extreme. Biometals 2016, 29, 551–571. [Google Scholar] [CrossRef]
- Page, M.G.P. The Role of Iron and Siderophores in Infection, and the Development of Siderophore Antibiotics. Clin. Infect. Dis. 2019, 69 (Suppl. S7), S529–S537. [Google Scholar] [CrossRef]
- Li, C.; Pan, D.; Li, M.; Wang, Y.; Song, L.; Yu, D.; Zuo, Y.; Wang, K.; Liu, Y.; Wei, Z.; et al. Aerobactin-Mediated Iron Acquisition Enhances Biofilm Formation, Oxidative Stress Resistance, and Virulence of Yersinia pseudotuberculosis. Front. Microbiol. 2021, 12, 699913. [Google Scholar] [CrossRef]
- Crawford, M.A.; Tapscott, T.; Fitzsimmons, L.F.; Liu, L.; Reyes, A.M.; Libby, S.J.; Trujillo, M.; Fang, F.C.; Radi, R.; Vázquez-Torres, A. Redox-Active Sensing by Bacterial DksA Transcription Factors Is Determined by Cysteine and Zinc Content. mBio 2016, 7, e02161-15. [Google Scholar] [CrossRef]
- Bonilla, C.Y. Generally Stressed Out Bacteria: Environmental Stress Response Mechanisms in Gram-Positive Bacteria. Integr. Comp. Biol. 2020, 60, 126–133. [Google Scholar] [CrossRef]
- Sun, F.; Liang, H.; Kong, X.; Xie, S.; Cho, H.; Deng, X.; Ji, Q.; Zhang, H.; Alvarez, S.; Hicks, L.M.; et al. Quorum-sensing agr mediates bacterial oxidation response via an intramolecular disulfide redox switch in the response regulator AgrA. Proc. Natl. Acad. Sci. USA 2012, 109, 9095–9100. [Google Scholar] [CrossRef]
- Viver, T.; Conrad, R.E.; Rodriguez, R.L.; Ramirez, A.S.; Venter, S.N.; Rocha-Cardenas, J.; Llabrés, M.; Amann, R.; Konstantinidis, K.T.; Rossello-Mora, R. Towards estimating the number of strains that make up a natural bacterial population. Nat. Commun. 2024, 15, 544. [Google Scholar] [CrossRef]
- Seemann, T. Prokka: Rapid prokaryotic genome annotation. Bioinformatics 2014, 30, 2068–2069. [Google Scholar] [CrossRef]
- Cantalapiedra, C.P.; Hernandez-Plaza, A.; Letunic, I.; Bork, P.; Huerta-Cepas, J. eggNOG-mapper v2: Functional Annotation, Orthology Assignments, and Domain Prediction at the Metagenomic Scale. Mol. Biol. Evol. 2021, 38, 5825–5829. [Google Scholar] [CrossRef] [PubMed]
- Page, A.J.; Cummins, C.A.; Hunt, M.; Wong, V.K.; Reuter, S.; Holden, M.T.; Fookes, M.; Falush, D.; Keane, J.A.; Parkhill, J. Roary: Rapid large-scale prokaryote pan genome analysis. Bioinformatics 2015, 31, 3691–3693. [Google Scholar] [CrossRef] [PubMed]
- Lam, M.M.C.; Wick, R.R.; Watts, S.C.; Cerdeira, L.T.; Wyres, K.L.; Holt, K.E. A genomic surveillance framework and genotyping tool for Klebsiella pneumoniae and its related species complex. Nat. Commun. 2021, 12, 4188. [Google Scholar] [CrossRef]
- Livak, K.J.; Schmittgen, T.D. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods 2001, 25, 402–408. [Google Scholar] [CrossRef] [PubMed]
- CLSI M100-S30:2020; Performance Standards for Antimicrobial Susceptibility Testing: Thirty Edition Informational Supplement. Clinical Lab Standards Institute: Wayne, PA, USA, 2020.
- Valcek, A.; Philippe, C.; Whiteway, C.; Robino, E.; Nesporova, K.; Bove, M.; Coenye, T.; De Pooter, T.; De Coster, W.; Strazisar, M.; et al. Phenotypic Characterization and Heterogeneity among Modern Clinical Isolates of Acinetobacter baumannii. Microbiol. Spectr. 2023, 11, e0306122. [Google Scholar] [CrossRef]
- Martinez, J.; Fernandez, J.S.; Liu, C.; Hoard, A.; Mendoza, A.; Nakanouchi, J.; Rodman, N.; Courville, R.; Tuttobene, M.R.; Lopez, C.; et al. Human pleural fluid triggers global changes in the transcriptional landscape of Acinetobacter baumannii as an adaptive response to stress. Sci. Rep. 2019, 9, 17251. [Google Scholar] [CrossRef]
- Mezcord, V.; Escalante, J.; Nishimura, B.; Traglia, G.M.; Sharma, R.; Valle, Q.; Tuttobene, M.R.; Subils, T.; Marin, I.; Pasteran, F.; et al. Induced Heteroresistance in Carbapenem-Resistant Acinetobacter baumannii (CRAB) via Exposure to Human Pleural Fluid (HPF) and Its Impact on Cefiderocol Susceptibility. Int. J. Mol. Sci. 2023, 24, 11752. [Google Scholar] [CrossRef]
MIC (mg/L) | KPNMA 216 | IHC216 |
---|---|---|
Meropenem (MEM) | 32 | 0.50 |
Imipenem (IMP) | 48 | 3 |
Imipenem/Relebactam (I/R) | 2 | 0.75 |
Meropenem/Vaborbactam (M/V) | 2 | 0.064 |
Cefepime/Zidebactam (FPZ) | 16 | 16 |
Ciprofloxacin (CIP) | 0.094 | 0.064 |
Ceftolozane/Tazobactam (C/T) | >256 | >256 |
Aztreonam (ATM) | 24 | 24 |
Amikacin (AK) | 1.5 | 1.5 |
Tigecycline (TGC) | 0.25 | 0.75–1 |
Colistin (CS) | 1.5 | 1.5 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Luu, I.; Mezcord, V.; Escalante, J.; Traglia, G.M.; Tuttobene, M.R.; Rodriguez, C.; Cheng, C.F.; Valle, Q.; Sharma, R.; Tolmasky, M.E.; et al. Spontaneous Emergence of Cefiderocol Resistance in Klebsiella pneumoniae KPC-163: Genomic and Transcriptomic Insights. Antibiotics 2025, 14, 832. https://doi.org/10.3390/antibiotics14080832
Luu I, Mezcord V, Escalante J, Traglia GM, Tuttobene MR, Rodriguez C, Cheng CF, Valle Q, Sharma R, Tolmasky ME, et al. Spontaneous Emergence of Cefiderocol Resistance in Klebsiella pneumoniae KPC-163: Genomic and Transcriptomic Insights. Antibiotics. 2025; 14(8):832. https://doi.org/10.3390/antibiotics14080832
Chicago/Turabian StyleLuu, Irene, Vyanka Mezcord, Jenny Escalante, German M. Traglia, Marisel R. Tuttobene, Cecilia Rodriguez, Chun Fu Cheng, Quentin Valle, Rajnikant Sharma, Marcelo E. Tolmasky, and et al. 2025. "Spontaneous Emergence of Cefiderocol Resistance in Klebsiella pneumoniae KPC-163: Genomic and Transcriptomic Insights" Antibiotics 14, no. 8: 832. https://doi.org/10.3390/antibiotics14080832
APA StyleLuu, I., Mezcord, V., Escalante, J., Traglia, G. M., Tuttobene, M. R., Rodriguez, C., Cheng, C. F., Valle, Q., Sharma, R., Tolmasky, M. E., Bonomo, R. A., Rao, G., Pasteran, F., & Ramirez, M. S. (2025). Spontaneous Emergence of Cefiderocol Resistance in Klebsiella pneumoniae KPC-163: Genomic and Transcriptomic Insights. Antibiotics, 14(8), 832. https://doi.org/10.3390/antibiotics14080832