The Small Molecule Inhibitor of the Type III Secretion System Fluorothiazinone Affects Flagellum Surface Presentation and Restricts Motility in Gram-Negative Bacteria
Abstract
1. Introduction
2. Results
2.1. Fluorothiazinone Inhibits Motility of Gram-Negative Bacteria
2.2. FT Inhibits Bacterial Motility Using Microfluidic Chamber Technique
2.3. L. monocytogenes Motility Is Not Affected by FT
2.4. Consecutive Passages Do Not Promote Resistance to FT’s Effects on Motility
2.5. Effect of Fluorothiazinone on Motility Requires at Least 2 h to Appear
2.6. Fluorothiazinone Inhibits Flagellum Assembly in Gram-Negative Bacteria
3. Discussion
- The effect did not occur immediately after FT addition to motile bacteria but was delayed by at least 2–3 h—a time span too long for a direct effect on rotation but sufficient for bacterial division, resulting in progeny lacking flagella;
- Western blotting did not reveal cell-associated flagellin in bacteria grown in the presence of FT, although the structural filament protein was found in the supernatant. These data suggest that assembly, not expression, was affected. The decrease in secreted flagellin concentration might result from complex regulatory networks controlling early and late flagellar genes [39];
- Transmission electron microscopy confirmed that FT impaired flagellar presentation on the bacterial surface. The high homology between T3SS and the flagellar export machinery supports this hypothesis.
4. Materials and Methods
4.1. Bacterial Strains and Cultivation Conditions
4.2. Fluorothiazinone
4.3. Semisolid Agar Assay
4.4. Development of FT Resistance Assay
4.5. In Situ Motility Assay
4.6. Isolation of Surface-Associated and Secreted E. coli Proteins
4.7. SDS-PAGE and Western Blotting
4.8. Transmission Electron Microscopy with Negative Staining
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
FT | Fluorothiazinone—a small molecule of the 2,4-disubstituted-4H-[1,3,4]-thiadiazine-5-one class |
LB | Luria-Bertani Broth |
UPEC | Uropathogenic Escherichia coli |
EHEC | Enterohemorrhagic Escherichia coli |
References
- Josenhans, C.; Suerbaum, S. The role of motility as a virulence factor in bacteria. Int. J. Med. Microbiol. 2002, 291, 605–614. [Google Scholar] [CrossRef]
- Duan, Q.; Zhou, M.; Zhu, L.; Zhu, G. Flagella and bacterial pathogenicity. J. Basic Microbiol. 2013, 53, 1–8. [Google Scholar] [CrossRef]
- Zegadło, K.; Gieroń, M.; Żarnowiec, P.; Durlik-Popińska, K.; Kręcisz, B.; Kaca, W.; Czerwonka, G. Bacterial Motility and Its Role in Skin and Wound Infections. Int. J. Mol. Sci. 2023, 24, 1707. [Google Scholar] [CrossRef] [PubMed]
- Chaban, B.; Hughes, H.V.; Beeby, M. The flagellum in bacterial pathogens: For motility and a whole lot more. Semin. Cell Dev. Biol. 2015, 46, 91–103. [Google Scholar] [CrossRef]
- Lane, M.C.; Alteri, C.J.; Smith, S.N.; Mobley, H.L.T. Expression of flagella is coincident with uropathogenic Escherichia coli ascension to the upper urinary tract. Proc. Natl. Acad. Sci. USA 2007, 104, 16669–16674. [Google Scholar] [CrossRef]
- Allison, C.; Coleman, N.; Jones, P.L.; Hughes, C. Ability of Proteus mirabilis to invade human urothelial cells is coupled to motility and swarming differentiation. Infect. Immun. 1992, 60, 4740–4746. [Google Scholar] [CrossRef]
- Echazarreta, M.A.; Klose, K.E. Vibrio Flagellar Synthesis. Front. Cell. Infect. Microbiol. 2019, 9, 131. [Google Scholar] [CrossRef] [PubMed]
- Misselwitz, B.; Barrett, N.; Kreibich, S.; Vonaesch, P.; Andritschke, D.; Rout, S.; Weidner, K.; Sormaz, M.; Songhet, P.; Horvath, P.; et al. Near surface swimming of Salmonella Typhimurium explains target-site selection and cooperative invasion. PLoS Pathog. 2012, 8, e1002810. [Google Scholar] [CrossRef]
- Abdulkadieva, M.M.; Sysolyatina, E.V.; Vasilieva, E.V.; Litvinenko, V.V.; Kalinin, E.V.; Zhukhovitsky, V.G.; Shevlyagina, N.V.; Andreevskaya, S.G.; Stanishevskyi, Y.M.; Vasiliev, M.M.; et al. Motility provides specific adhesion patterns and improves Listeria monocytogenes invasion into human HEp-2 cells. PLoS ONE 2023, 18, e0290842. [Google Scholar] [CrossRef] [PubMed]
- Berg, H.C.; Anderson, R.A. Bacteria swim by rotating their flagellar filaments. Nature 1973, 245, 380–382. [Google Scholar] [CrossRef]
- Kearns, D.B. A field guide to bacterial swarming motility. Nat. Rev. Microbiol. 2010, 8, 634–644. [Google Scholar] [CrossRef] [PubMed]
- Jarrell, K.F.; McBride, M.J. The surprisingly diverse ways that prokaryotes move. Nat. Rev. Microbiol. 2008, 6, 466–476. [Google Scholar] [CrossRef] [PubMed]
- Al-Otaibi, N.S.; Bergeron, J.R.C. Structure and Assembly of the Bacterial Flagellum. Subcell. Biochem. 2022, 99, 395–420. [Google Scholar] [CrossRef]
- Glagolev, A.N.; Skulachev, V.P. The proton pump is a molecular engine of motile bacteria. Nature 1978, 272, 280–282. [Google Scholar] [CrossRef] [PubMed]
- Terashima, H.; Kawamoto, A.; Tatsumi, C.; Namba, K.; Minamino, T.; Imada, K. In vitro reconstitution of functional type III protein export and insights into flagellar assembly. MBio 2018, 9, 10–1128. [Google Scholar] [CrossRef]
- Halte, M.; Erhardt, M. Protein Export via the Type III Secretion System of the Bacterial Flagellum. Biomolecules 2021, 11, 186. [Google Scholar] [CrossRef]
- Grishin, A.V.; Luyksaar, S.I.; Kapotina, L.N.; Kirsanov, D.D.; Zayakin, E.S.; Karyagina, A.S.; Zigangirova, N.A. Identification of chlamydial T3SS inhibitors through virtual screening against T3SS ATPase. Chem. Biol. Drug Des. 2018, 91, 717–727. [Google Scholar] [CrossRef]
- Sheremet, A.B.; Zigangirova, N.A.; Zayakin, E.S.; Luyksaar, S.I.; Kapotina, L.N.; Nesterenko, L.N.; Kobets, N.V.; Gintsburg, A.L. Small Molecule Inhibitor of Type Three Secretion System Belonging to a Class 2,4-disubstituted-4H-[1,3,4]-thiadiazine-5-ones Improves Survival and Decreases Bacterial Loads in an Airway Pseudomonas aeruginosa Infection in Mice. Biomed Res. Int. 2018, 2018, 5810767. [Google Scholar] [CrossRef]
- Zigangirova, N.A.; Lubenec, N.L.; Beloborodov, V.B.; Sheremet, A.B.; Nelyubina, S.A.; Bondareva, N.E.; Zakharov, K.A.; Luyksaar, S.I.; Zolotov, S.A.; Levchenko, E.U.; et al. A New “Non-Traditional” Antibacterial Drug Fluorothiazinone-Clinical Research in Patients with Complicated Urinary Tract Infections. Antibiotics 2024, 13, 476. [Google Scholar] [CrossRef]
- Zigangirova, N.A.; Nesterenko, L.N.; Sheremet, A.B.; Soloveva, A.V.; Luyksaar, S.I.; Zayakin, E.S.; Balunets, D.V.; Gintsburg, A.L. Fluorothiazinon, a small-molecular inhibitor of T3SS, suppresses salmonella oral infection in mice. J. Antibiot. 2021, 74, 244–254. [Google Scholar] [CrossRef]
- Koroleva, E.A.; Soloveva, A.V.; Morgunova, E.Y.; Kapotina, L.N.; Luyksaar, S.I.; Luyksaar, S.V.; Bondareva, N.E.; Nelubina, S.A.; Lubenec, N.L.; Zigangirova, N.A.; et al. Fluorothiazinon inhibits the virulence factors of uropathogenic Escherichia coli involved in the development of urinary tract infection. J. Antibiot. 2023, 76, 279–290. [Google Scholar] [CrossRef]
- Abdulkadieva, M.M.; Sysolyatina, E.V.; Vasilieva, E.V.; Gusarov, A.I.; Domnin, P.A.; Slonova, D.A.; Stanishevskiy, Y.M.; Vasiliev, M.M.; Petrov, O.F.; Ermolaeva, S.A. Strain specific motility patterns and surface adhesion of virulent and probiotic Escherichia coli. Sci. Rep. 2022, 12, 614. [Google Scholar] [CrossRef]
- Peel, M.; Donachie, W.; Shaw, A. Temperature-dependent expression of flagella of Listeria monocytogenes studied by electron microscopy, SDS-PAGE and western blotting. J. Gen. Microbiol. 1988, 134, 2171–2178. [Google Scholar] [CrossRef]
- Levin-Reisman, I.; Ronin, I.; Gefen, O.; Braniss, I.; Shoresh, N.; Balaban, N.Q. Antibiotic tolerance facilitates the evolution of resistance. Science 2017, 355, 826–830. [Google Scholar] [CrossRef]
- Wistrand-Yuen, E.; Knopp, M.; Hjort, K.; Koskiniemi, S.; Berg, O.G.; Andersson, D.I. Evolution of high-level resistance during low-level antibiotic exposure. Nat. Commun. 2018, 9, 1599. [Google Scholar] [CrossRef] [PubMed]
- Sim, M.; Koirala, S.; Picton, D.; Strahl, H.; Hoskisson, P.A.; Rao, C.V.; Gillespie, C.S.; Aldridge, P.D. Growth rate control of flagellar assembly in Escherichia coli strain RP437. Sci. Rep. 2017, 7, 41189. [Google Scholar] [CrossRef]
- Tsarenko, S.V.; Zigangirova, N.A.; Soloveva, A.V.; Bondareva, N.E.; Koroleva, E.A.; Sheremet, A.B.; Kapotina, L.N.; Shevlyagina, N.V.; Andreevskaya, S.G.; Zhukhovitsky, V.G.; et al. A novel antivirulent compound fluorothiazinone inhibits Klebsiella pneumoniae biofilm in vitro and suppresses model pneumonia. J. Antibiot. 2023, 76, 397–405. [Google Scholar] [CrossRef] [PubMed]
- Bondareva, N.E.; Soloveva, A.V.; Sheremet, A.B.; Koroleva, E.A.; Kapotina, L.N.; Morgunova, E.Y.; Luyksaar, S.I.; Zayakin, E.S.; Zigangirova, N.A. Preventative treatment with Fluorothiazinon suppressed Acinetobacter baumannii-associated septicemia in mice. J. Antibiot. 2022, 75, 155–163. [Google Scholar] [CrossRef]
- Nesterenko, L.N.; Zigangirova, N.A.; Zayakin, E.S.; Luyksaar, S.I.; Kobets, N.V.; Balunets, D.V.; Shabalina, L.A.; Bolshakova, T.N.; Dobrynina, O.Y.; Gintsburg, A.L. A small-molecule compound belonging to a class of 2,4-disubstituted 1,3,4-thiadiazine-5-ones suppresses Salmonella infection in vivo. J. Antibiot. 2016, 69, 422–427. [Google Scholar] [CrossRef] [PubMed]
- Li, P.; Zhang, S.; Wang, J.; Al-Shamiri, M.M.; Han, B.; Chen, Y.; Han, S.; Han, L. Uncovering the Secretion Systems of Acinetobacter baumannii: Structures and Functions in Pathogenicity and Antibiotic Resistance. Antibiotics 2023, 12, 195. [Google Scholar] [CrossRef] [PubMed]
- Liu, W.; Li, M.; Cao, S.; Ishaq, H.M.; Zhao, H.; Yang, F.; Liu, L. The Biological and Regulatory Role of Type VI Secretion System of Klebsiella pneumoniae. Infect. Drug Resist. 2023, 16, 6911–6922. [Google Scholar] [CrossRef]
- Erhardt, M. Strategies to Block Bacterial Pathogenesis by Interference with Motility and Chemotaxis. Curr. Top. Microbiol. Immunol. 2016, 398, 185–205. [Google Scholar] [CrossRef]
- Akahoshi, D.T.; Bevins, C.L. Flagella at the Host-Microbe Interface: Key Functions Intersect With Redundant Responses. Front. Immunol. 2022, 13, 828758. [Google Scholar] [CrossRef] [PubMed]
- Rütschlin, S.; Böttcher, T. Inhibitors of Bacterial Swarming Behavior. Chemistry 2020, 26, 964–979. [Google Scholar] [CrossRef]
- Jaques, S.; Kim, Y.K.; McCarter, L.L. Mutations conferring resistance to phenamil and amiloride, inhibitors of sodium-driven motility of Vibrio parahaemolyticus. Proc. Natl. Acad. Sci. USA 1999, 96, 5740–5745. [Google Scholar] [CrossRef]
- Zheng, Y.; Tsuji, G.; Opoku-Temeng, C.; Sintim, H.O. Inhibition of P. aeruginosa c-di-GMP phosphodiesterase RocR and swarming motility by a benzoisothiazolinone derivative. Chem. Sci. 2016, 7, 6238–6244. [Google Scholar] [CrossRef]
- Claudine, B.; Harwood, C.S. Cyclic diguanosine monophosphate represses bacterial flagella synthesis by interacting with the Walker A motif of the enhancer-binding protein FleQ. Proc. Natl. Acad. Sci. USA 2013, 110, 18478–18483. [Google Scholar] [CrossRef]
- Sintim, H.O.; Smith, J.A.; Wang, J.; Nakayama, S.; Yan, L. Paradigm shift in discovering next-generation anti-infective agents: Targeting quorum sensing, c-di-GMP signaling and biofilm formation in bacteria with small molecules. Future Med. Chem. 2010, 2, 1005–1035. [Google Scholar] [CrossRef] [PubMed]
- Chevance, F.F.V.; Hughes, K.T. Coordinating assembly of a bacterial macromolecular machine. Nat. Rev. Microbiol. 2008, 6, 455–465. [Google Scholar] [CrossRef]
- Domnin, P.; Arkhipov, A.; Petrov, S.; Sysolyatina, E.; Parfenov, V.; Karalkin, P.; Mukhachev, A.; Gusarov, A.; Moisenovich, M.; Khesuani, Y.; et al. An In Vitro Model of Nonattached Biofilm-Like Bacterial Aggregates Based on Magnetic Levitation. Appl. Environ. Microbiol. 2020, 86, e01074-20. [Google Scholar] [CrossRef] [PubMed]
- Glaser, P.; Frangeul, L.; Buchrieser, C.; Rusniok, C.; Amend, A.; Baquero, F.; Berche, P.; Bloecker, H.; Brandt, P.; Chakraborty, T.; et al. Comparative genomics of Listeria species. Science 2001, 294, 849–852. [Google Scholar] [CrossRef] [PubMed]
- Steiner, T.S.; Nataro, J.P.; Poteet-Smith, C.E.; Smith, J.A.; Guerrant, R.L. Enteroaggregative Escherichia coli expresses a novel flagellin that causes IL-8 release from intestinal epithelial cells. J. Clin. Investig. 2000, 105, 1769–1777. [Google Scholar] [CrossRef] [PubMed]
Strain | Characteristics | Reference |
---|---|---|
Escherichia coli | ||
GIMC1401:EC_CNL19 | UPEC, clinical isolate | [21] |
ATCC 43890 | EHEC, O157:H7, type strain | [40] |
Pseudomonas aeruginosa | ||
GIMC5016:PA1840 | Clinical isolate | |
2943 | Clinical isolate | |
Proteus mirabilis | ||
1 | Clinical isolate | |
172388 | Clinical isolate | |
Listeria monocytogenes | ||
EGDe | Type strain | [41] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Slonov, A.; Abdulkadieva, M.; Kalinin, E.; Bondareva, N.; Kapotina, L.; Andreevskaya, S.; Shevlyagina, N.; Sheremet, A.; Sysolyatina, E.; Zhukhovitsky, V.; et al. The Small Molecule Inhibitor of the Type III Secretion System Fluorothiazinone Affects Flagellum Surface Presentation and Restricts Motility in Gram-Negative Bacteria. Antibiotics 2025, 14, 820. https://doi.org/10.3390/antibiotics14080820
Slonov A, Abdulkadieva M, Kalinin E, Bondareva N, Kapotina L, Andreevskaya S, Shevlyagina N, Sheremet A, Sysolyatina E, Zhukhovitsky V, et al. The Small Molecule Inhibitor of the Type III Secretion System Fluorothiazinone Affects Flagellum Surface Presentation and Restricts Motility in Gram-Negative Bacteria. Antibiotics. 2025; 14(8):820. https://doi.org/10.3390/antibiotics14080820
Chicago/Turabian StyleSlonov, Alexey, Mariam Abdulkadieva, Egor Kalinin, Natalya Bondareva, Lydia Kapotina, Svetlana Andreevskaya, Natalia Shevlyagina, Anna Sheremet, Elena Sysolyatina, Vladimir Zhukhovitsky, and et al. 2025. "The Small Molecule Inhibitor of the Type III Secretion System Fluorothiazinone Affects Flagellum Surface Presentation and Restricts Motility in Gram-Negative Bacteria" Antibiotics 14, no. 8: 820. https://doi.org/10.3390/antibiotics14080820
APA StyleSlonov, A., Abdulkadieva, M., Kalinin, E., Bondareva, N., Kapotina, L., Andreevskaya, S., Shevlyagina, N., Sheremet, A., Sysolyatina, E., Zhukhovitsky, V., Vasiliev, M., Petrov, O., Ermolaeva, S., Zigangirova, N., & Gintsburg, A. (2025). The Small Molecule Inhibitor of the Type III Secretion System Fluorothiazinone Affects Flagellum Surface Presentation and Restricts Motility in Gram-Negative Bacteria. Antibiotics, 14(8), 820. https://doi.org/10.3390/antibiotics14080820