Influence of Seasonality and Pollution on the Presence of Antibiotic Resistance Genes and Potentially Pathogenic Bacteria in a Tropical Urban River
Abstract
1. Introduction
2. Results
2.1. Physicochemical and Microbiological Parameters
2.2. Seasonality Influences ARGs Distribution Along the Virilla River Watershed
2.3. Bacteria Diversity Analysis
2.4. Abundance of Potential Pathogens
2.5. Abundance of Distinctive ARGs in Metagenomic Data
3. Discussion
3.1. Impacts of Pollution on the Surface Water of the Virilla River Watershed
3.2. Seasonal Dynamics of ARGs Quantification
3.3. Spatial Patterns Drive Microbial Community Composition and ARG Distribution More than Temporal Variability
Limitations of the Study
4. Materials and Methods
4.1. Study Area and Sampling Design
4.2. Microbiological and Physical-Chemical Analysis
4.3. DNA Extraction and Quantification
4.4. Quantification of Antibiotic Resistance Genes (ARGs)
4.5. Shotgun Metagenomic Sequencing and Quality Control
4.6. Taxonomic Assignment and Diversity Analysis
4.7. ARGs Detection from Sediment Samples
4.8. Precipitation Data
4.9. Data Analysis and Visualization
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Morales-Mora, E.; Rivera-Montero, L.; Montiel-Mora, J.R.; Barrantes-Jiménez, K.; Chacón-Jiménez, L. Assessing microbial risks of Escherichia coli: A spatial and temporal study of virulence and resistance genes in surface water in resource-limited regions. Sci. Total Environ. 2025, 958, 178044. [Google Scholar] [CrossRef] [PubMed]
- Mendoza-Guido, B.; Barrantes, K.; Rodríguez, C.; Rojas-Jimenez, K.; Arias-Andres, M. The Impact of Urban Pollution on Plasmid-Mediated Resistance Acquisition in Enterobacteria from a Tropical River. Antibiotics 2024, 13, 1089. [Google Scholar] [CrossRef] [PubMed]
- Castañeda-Barba, S.; Top, E.M.; Stalder, T. Plasmids, a molecular cornerstone of antimicrobial resistance in the One Health era. Nat. Rev. Microbiol. 2024, 22, 18–32. [Google Scholar] [CrossRef] [PubMed]
- Smillie, C.; Garcillán-Barcia, M.P.; Francia, M.V.; Rocha, E.P.C.; de la Cruz, F. Mobility of Plasmids. Microbiol. Mol. Biol. Rev. 2010, 74, 434–452. [Google Scholar] [CrossRef]
- Wang, X.; Zhang, H.; Long, X.; Xu, X.; Ren, H.; Mao, D.; Alvarez, P.J.J.; Luo, Y.; Garcia-Solache, M.A. Global Increase of Antibiotic Resistance Genes in Conjugative Plasmids. Microbiol. Spectr. 2023, 11, e0447822. [Google Scholar] [CrossRef]
- Guizado-Batista, A.; Porres-Camacho, A.; Vargas-Villalobos, S.; Cortez-Martínez, M.; Umaña-Castro, R.; Sancho-Blanco, C.; Solano-Campos, F.; Quesada-Alvarado, F.; Spínola-Parallada, M.; Madrigal-Mora, A.; et al. Antimicrobial-resistant genes in feces from otters (Lontra longicaudis) within the Peñas Blancas river basin, Costa Rica. Heliyon 2024, 10, e40927. [Google Scholar] [CrossRef]
- Barrantes-Jiménez, K.; Lejzerowicz, F.; Tran, T.; Calderón-Osorno, M.; Rivera-Montero, L.; Rodríguez-Sánchez, C.; Wikmark, O.-G.; Eiler, A.; Grossart, H.-P.; Arias-Andrés, M.; et al. Anthropogenic imprint on riverine plasmidome diversity and proliferation of antibiotic resistance genes following pollution and urbanization. Water Res. 2025, 281, 123553. [Google Scholar] [CrossRef]
- Adyari, B.; Hou, L.; Zhang, L.; Chen, N.; Ju, F.; Zhu, L.; Yu, C.-P.; Hu, A. Seasonal hydrological dynamics govern lifestyle preference of aquatic antibiotic resistome. Environ. Sci. Ecotechnol. 2023, 13, 100223. [Google Scholar] [CrossRef]
- Gomes, M.P. The Convergence of Antibiotic Contamination, Resistance, and Climate Dynamics in Freshwater Ecosystems. Water 2024, 16, 2606. [Google Scholar] [CrossRef]
- Neher, T.P.; Ma, L.; Moorman, T.B.; Howe, A.; Soupir, M.L. Seasonal variations in export of antibiotic resistance genes and bacteria in runoff from an agricultural watershed in Iowa. Sci. Total Environ. 2020, 738, 140224. [Google Scholar] [CrossRef]
- Jiang, X.; Liu, L.; Chen, J.; Fan, X.; Xie, S.; Huang, J.; Yu, G. Antibiotic resistance genes and mobile genetic elements in a rural river in Southeast China: Occurrence, seasonal variation and association with the antibiotics. Sci. Total Environ. 2021, 778, 146131. [Google Scholar] [CrossRef] [PubMed]
- Zhao, W.; Ye, C.; Li, J.; Yu, X. Increased risk of antibiotic resistance in surface water due to global warming. Environ. Res. 2024, 263, 120149. [Google Scholar] [CrossRef] [PubMed]
- Heß, S.; Berendonk, T.U.; Kneis, D. Antibiotic resistant bacteria and resistance genes in the bottom sediment of a small stream and the potential impact of remobilization. FEMS Microbiol. Ecol. 2018, 94, fiy128. [Google Scholar] [CrossRef]
- Tockdale, S.R.; Harrington, R.S.; Shkoporov, A.N.; Khokhlova, E.V.; Daly, K.M.; McDonnell, S.A.; O’rEagan, O.; Nolan, J.A.; Sheehan, D.; Lavelle, A.; et al. Metagenomic assembled plasmids of the human microbiome vary across disease cohorts. Sci. Rep. 2022, 12, 9212. [Google Scholar] [CrossRef]
- Yu, M.K.; Fogarty, E.C.; Eren, A.M. Diverse plasmid systems and their ecology across human gut metagenomes revealed by PlasX and MobMess. Nat. Microbiol. 2024, 9, 830–847. [Google Scholar] [CrossRef]
- SINIGIRH. Sistema Nacional de Información Para La Gestión Integrada Del Recurso Hídrico. Available online: https://mapas.da.go.cr/mapnew.php (accessed on 10 December 2024).
- Herrera-Murillo, J.; Anchía-Leitón, D.; Rojas-Marín, J.F.; Mora-Campos, D.; Gamboa-Jiménez, A.A.; Chaves-Villalobos, M. Influencia de los patrones de uso de la tierra en la calidad de las aguas superfciales de la subcuenca del río Virilla, Costa Rica. Rev. Geogr. Am. Cent. 2019, 4, 11–35. [Google Scholar] [CrossRef]
- Mena-Rivera, L.; Vásquez-Bolaños, O.; Gómez-Castro, C.; Fonseca-Sánchez, A.; Rodríguez-Rodríguez, A.; Sánchez-Gutiérrez, R. Ecosystemic Assessment of Surface Water Quality in the Virilla River: Towards Sanitation Processes in Costa Rica. Water 2018, 10, 845. [Google Scholar] [CrossRef]
- Jiang, Y.; Xu, C.; Wu, X.; Chen, Y.; Han, W.; Gin, K.Y.-H.; He, Y. Occurrence, Seasonal Variation and Risk Assessment of Antibiotics in Qingcaosha Reservoir. Water 2018, 10, 115. [Google Scholar] [CrossRef]
- Pan, C.; Bao, Y.; Xu, B. Seasonal variation of antibiotics in surface water of Pudong New Area of Shanghai, China and the occurrence in typical wastewater sources. Chemosphere 2020, 239, 124816. [Google Scholar] [CrossRef] [PubMed]
- Yu, Q.; Han, Q.; Shi, S.; Sun, X.; Wang, X.; Wang, S.; Yang, J.; Su, W.; Nan, Z.; Li, H. Metagenomics reveals the response of antibiotic resistance genes to elevated temperature in the Yellow River. Sci. Total Environ. 2023, 859, 160324. [Google Scholar] [CrossRef]
- Huang, Z.; Zhao, W.; Xu, T.; Zheng, B.; Yin, D. Occurrence and distribution of antibiotic resistance genes in the water and sediments of Qingcaosha Reservoir, Shanghai, China. Environ. Sci. Eur. 2019, 31, 81. [Google Scholar] [CrossRef]
- Nolan, T.M.; Martin, N.A.; Reynolds, L.J.; Sala-Comorera, L.; O’HAre, G.M.; O’SUllivan, J.J.; Meijer, W.G. Agricultural and urban practices are correlated to changes in the resistome of riverine systems. Sci. Total Environ. 2024, 927, 172261. [Google Scholar] [CrossRef]
- Granados-Chinchilla, F.; Rodríguez, C. Tetracyclines in Food and Feedingstuffs: From Regulation to Analytical Methods, Bacterial Resistance, and Environmental and Health Implications. J. Anal. Methods Chem. 2017, 2017, 1315497. [Google Scholar] [CrossRef]
- Blanco-Meneses, M.; Castro-Zúñiga, O.; Calderón-Abarca, A. Diagnóstico del uso de antibióticos en regiones productoras de tomate en Costa Rica. Agron. Costarric. 2023, 1, 87–99. Available online: www.mag.go.cr/rev_agr/index.html (accessed on 10 March 2025). [CrossRef]
- Hocquet, D.; Muller, A.; Bertrand, X. What happens in hospitals does not stay in hospitals: Antibiotic-resistant bacteria in hospital wastewater systems. J. Hosp. Infect. 2016, 93, 395–402. [Google Scholar] [CrossRef]
- Hassoun-Kheir, N.; Stabholz, Y.; Kreft, J.-U.; de la Cruz, R.; Romalde, J.L.; Nesme, J.; Sørensen, S.J.; Smets, B.F.; Graham, D.; Paul, M. Comparison of antibiotic-resistant bacteria and antibiotic resistance genes abundance in hospital and community wastewater: A systematic review. Sci. Total Environ. 2020, 743, 140804. [Google Scholar] [CrossRef]
- Le, T.-H.; Ng, C.; Chen, H.; Yi, X.Z.; Koh, T.H.; Barkham, T.M.S.; Zhou, Z.; Gin, K.Y.-H. Occurrences and Characterization of Antibiotic-Resistant Bacteria and Genetic Determinants of Hospital Wastewater in a Tropical Country. Antimicrob. Agents Chemother. 2016, 60, 7449–7456. [Google Scholar] [CrossRef]
- Díaz-Madriz, J.P.; Rojas-Chinchilla, C.; Zavaleta-Monestel, E.; Ching-Fung, S.M.; Marin-Piva, H.; Marin, G.H.; Giangreco, L. Assessing antimicrobial consumption in public and private sectors within the Costa Rican health system: Current status and future directions. BMC Public Health 2024, 24, 3205. [Google Scholar] [CrossRef] [PubMed]
- Ministerio de Salud de Costa Rica. Plan de Accion Nacional de Lucha Contra la Resistencia a Los Antimicrobianos Costa RICA 2018–2025. Available online: https://cdn.who.int/media/docs/default-source/antimicrobial-resistance/amr-spc-npm/nap-library/nap-costa-rica-2018-2025.pdf?sfvrsn=b5bbf21f_1&download=true (accessed on 10 December 2024).
- Proia, L.; von Schiller, D.; Sànchez-Melsió, A.; Sabater, S.; Borrego, C.M.; Rodríguez-Mozaz, S.; Balcázar, J.L. Occurrence and persistence of antibiotic resistance genes in river biofilms after wastewater inputs in small rivers. Environ. Pollut. 2016, 210, 121–128. [Google Scholar] [CrossRef]
- Intergovernmental Panel on Climate Change (IPCC). Human Influence on the Climate System. In Climate Change 2021—The Physical Science Basis; Cambridge University Press: Cambridge, UK, 2023; pp. 423–552. [Google Scholar] [CrossRef]
- Calero-Cáceres, W.; Méndez, J.; Martín-Díaz, J.; Muniesa, M. The occurrence of antibiotic resistance genes in a Mediterranean river and their persistence in the riverbed sediment. Environ. Pollut. 2017, 223, 384–394. [Google Scholar] [CrossRef] [PubMed]
- Di Cesare, A.; Sabatino, R.; Sbaffi, T.; Fontaneto, D.; Brambilla, D.; Beghi, A.; Pandolfi, F.; Borlandelli, C.; Fortino, D.; Biccai, G.; et al. Anthropogenic pollution drives the bacterial resistome in a complex freshwater ecosystem. Chemosphere 2023, 331, 138800. [Google Scholar] [CrossRef]
- Philippot, L.; Griffiths, B.S.; Langenheder, S. Microbial Community Resilience across Ecosystems and Multiple Disturbances. Microbiol. Mol. Biol. Rev. 2021, 85, 10-1128. [Google Scholar] [CrossRef]
- Rodríguez-Beltrán, J.; DelaFuente, J.; León-Sampedro, R.; MacLean, R.C.; Millán, Á.S. Beyond horizontal gene transfer: The role of plasmids in bacterial evolution. Nat. Rev. Microbiol. 2021, 19, 347–359. [Google Scholar] [CrossRef] [PubMed]
- Liu, S.; Wang, P.; Wang, C.; Wang, X.; Chen, J. Anthropogenic disturbances on antibiotic resistome along the Yarlung Tsangpo River on the Tibetan Plateau: Ecological dissemination mechanisms of antibiotic resistance genes to bacterial pathogens. Water Res. 2021, 202, 117447. [Google Scholar] [CrossRef] [PubMed]
- Lekunberri, I.; Balcázar, J.L.; Borrego, C.M. Metagenomic exploration reveals a marked change in the river resistome and mobilome after treated wastewater discharges. Environ. Pollut. 2018, 234, 538–542. [Google Scholar] [CrossRef]
- Kämpfer, P. Acinetobacter. In Encyclopedia of Food Microbiology, 2nd ed.; Elsevier Inc.: Amsterdam, The Netherlands, 2014; pp. 11–17. [Google Scholar] [CrossRef]
- Towner, K. The Genus Acinetobacter. In The Prokaryotes; Springer: New York, NY, USA, 2006; pp. 746–758. [Google Scholar] [CrossRef]
- Dai, Y.; Gao, J.; Jiang, M. Case Report: A rare infection of multidrug-resistant Aeromonas caviae in a pediatric case with acute lymphoblastic leukemia and review of the literature. Front. Pediatr. 2024, 12, 1233600. [Google Scholar] [CrossRef]
- Mayslich, C.; Grange, P.A.; Dupin, N.; Brüggemann, H. Cutibacterium acnes as an Opportunistic Pathogen: An Update of Its Virulence-Associated Factors. Microorganisms 2021, 9, 303. [Google Scholar] [CrossRef] [PubMed]
- Nakamura, T.; Komatsu, M.; Yamasaki, K.; Fukuda, S.; Miyamoto, Y.; Higuchi, T.; Ono, T.; Nishio, H.; Sueyoshi, N.; Kida, K.; et al. Epidemiology of Escherichia coli, Klebsiella Species, and Proteus mirabilis strains producing extended-spectrum β-Lactamases from clinical samples in the Kinki region of Japan. Am. J. Clin. Pathol. 2012, 137, 620–626. [Google Scholar] [CrossRef]
- Zayet, S.; Lang, S.; Garnier, P.; Pierron, A.; Plantin, J.; Toko, L.; Royer, P.-Y.; Villemain, M.; Klopfenstein, T.; Gendrin, V. Leclercia adecarboxylata as Emerging Pathogen in Human Infections: Clinical Features and Antimicrobial Susceptibility Testing. Pathogens 2021, 10, 1399. [Google Scholar] [CrossRef]
- Chorost, M.S.; Smith, N.C.; Hutter, J.N.; Ong, A.C.; Stam, J.A.; McGann, P.T.; Hinkle, M.K.; Schaecher, K.E.; Kamau, E. Bacteraemia due to Microbacterium paraoxydans in a patient with chronic kidney disease, refractory hypertension and sarcoidosis. JMM Case Rep. 2018, 5, e005169. [Google Scholar] [CrossRef]
- Yao, K.; Liu, D. Moraxella Catarrhalis. In Molecular Medical Microbiology, 3rd ed.; Elsevier: Amsterdam, The Netherlands, 2023; pp. 1503–1517. [Google Scholar] [CrossRef]
- Alzahrani, O.M.; Elumalai, P.; Nada, H.S.; Ahmed, S.A.A.; Zaglool, A.W.; Shawky, S.M.; Alkafafy, M.; Mahboub, H.H. Pseudomonas putida: Sensitivity to Various Antibiotics, Genetic Diversity, Virulence, and Role of Formic Acid to Modulate the Immune-Antioxidant Status of the Challenged Nile tilapia Compared to Carvacrol Oil. Fishes 2023, 8, 6. [Google Scholar] [CrossRef]
- Niu, C.; Wang, B.; Wang, Z.; Zhang, H. Effect of pH on antibiotic resistance genes removal and bacterial nucleotides metabolism function in the wastewater by the combined ferrate and sulfite treatment. Chem. Eng. J. 2024, 480, 148042. [Google Scholar] [CrossRef]
- American Public Health Association; American Water Works Association; Water Environment Federation. 9221E, 9221F, 9230B, 2510B; Part 9000—Microbiological Examination. In Standard Methods for the Examination of Water and Wastewater, 23rd ed.; American Public Health Association: Washington, DC, USA, 2017; Available online: https://www.standardmethods.org/doi/10.2105/SMWW.2882.216 (accessed on 16 June 2025).
- Marselina, M.; Wibowo, F.; Mushfiroh, A. Water quality index assessment methods for surface water: A case study of the Citarum River in Indonesia. Heliyon 2022, 8, e09848. [Google Scholar] [CrossRef] [PubMed]
- Al-Hamdany, N.A.S.; Al-Shaker, Y.M.S.; Al-Saffawi, A.Y.T. Water quality assessment using the nsfwqi model for drinking and domestic purposes: A case study of groundwater on the left side of Mosul city, Iraq. Plant Arch. 2020, 20, 3079–3085. [Google Scholar]
- Srivastava, G.; Kumar, P. Water Quality Index with Missing Parameters. Int. J. Res. Eng. Technol. 2013, 2, 609–614. [Google Scholar] [CrossRef]
- Kuala, U.S.; Ichwana, I.; Syahrul, S.; Nelly, W. Water Quality Index by Using National Sanitation Foundation-Water Quality Index (NSF-WQI) Method at Krueng Tamiang Aceh. In Proceeding of the First International Conference on Technology, Innovation and Society; ITP Press: Tokyo, Japan, 2016; pp. 110–117. [Google Scholar] [CrossRef]
- Uddin, M.G.; Nash, S.; Olbert, A.I. A review of water quality index models and their use for assessing surface water quality. Ecol. Indic. 2021, 122, 107218. [Google Scholar] [CrossRef]
- Chen, S.; Zhou, Y.; Chen, Y.; Gu, J. fastp: An ultra-fast all-in-one FASTQ preprocessor. Bioinformatics 2018, 34, i884–i890. [Google Scholar] [CrossRef]
- Langmead, B.; Salzberg, S.L. Fast gapped-read alignment with Bowtie 2. Nat. Methods 2012, 9, 357–359. [Google Scholar] [CrossRef]
- Wood, D.E.; Lu, J.; Langmead, B. Improved metagenomic analysis with Kraken 2. Genome Biol. 2019, 20, 257. [Google Scholar] [CrossRef]
- Chaumeil, P.-A.; Mussig, A.J.; Hugenholtz, P.; Parks, D.H. GTDB-Tk: A toolkit to classify genomes with the Genome Taxonomy Database. Bioinformatics 2020, 36, 1925–1927. [Google Scholar] [CrossRef]
- Lu, J.; Breitwieser, F.P.; Thielen, P.; Salzberg, S.L. Bracken: Estimating species abundance in metagenomics data. PeerJ Comput. Sci. 2017, 2017, e104. [Google Scholar] [CrossRef]
- McMurdie, P.J.; Holmes, S. Shiny-phyloseq: Web application for interactive microbiome analysis with provenance tracking. Bioinformatics 2015, 31, 282–283. [Google Scholar] [CrossRef]
- Bartlett, A.; Padfield, D.; Lear, L.; Bendall, R.; Vos, M. A comprehensive list of bacterial pathogens infecting humans. Microbiology 2022, 168, 001269. [Google Scholar] [CrossRef] [PubMed]
- Li, D.; Liu, C.-M.; Luo, R.; Sadakane, K.; Lam, T.-W. MEGAHIT: An ultra-fast single-node solution for large and complex metagenomics assembly via succinct de Bruijn graph. Bioinformatics 2015, 31, 1674–1676. [Google Scholar] [CrossRef] [PubMed]
- Mikheenko, A.; Saveliev, V.; Gurevich, A. MetaQUAST: Evaluation of metagenome assemblies. Bioinformatics 2016, 32, 1088–1090. [Google Scholar] [CrossRef]
- Eren, A.M.; Kiefl, E.; Shaiber, A.; Veseli, I.; Miller, S.E.; Schechter, M.S.; Fink, I.; Pan, J.N.; Yousef, M.; Fogarty, E.C.; et al. Community-led, integrated, reproducible multi-omics with anvi’o. Nat. Microbiol. 2021, 6, 3–6. [Google Scholar] [CrossRef]
- Hyatt, D.; Chen, G.-L.; Locascio, P.F.; Land, M.L.; Larimer, F.W.; Hauser, L.J. Prodigal: Prokaryotic gene recognition and translation initiation site identification. BMC Bioinform. 2010, 11, 119. [Google Scholar] [CrossRef] [PubMed]
- Galperin, M.Y.; Alvarez, R.V.; Karamycheva, S.; Makarova, K.S.; Wolf, Y.I.; Landsman, D.; Koonin, E.V. COG database update 2024. Nucleic Acids Res. 2025, 53, D356–D363. [Google Scholar] [CrossRef]
- Mistry, J.; Chuguransky, S.; Williams, L.; Qureshi, M.; Salazar, G.A.; Sonnhammer, E.L.L.; Tosatto, S.C.; Paladin, L.; Raj, S.; Richardson, L.J.; et al. Pfam: The protein families database in 2021. Nucleic Acids Res. 2021, 49, D412–D419. [Google Scholar] [CrossRef]
- Jia, B.; Raphenya, A.R.; Alcock, B.; Waglechner, N.; Guo, P.; Tsang, K.K.; Lago, B.A.; Dave, B.M.; Pereira, S.; Sharma, A.N.; et al. CARD 2017: Expansion and model-centric curation of the comprehensive antibiotic resistance database. Nucleic Acids Res. 2017, 45, D566–D573. [Google Scholar] [CrossRef]
- Li, H.; Handsaker, B.; Wysoker, A.; Fennell, T.; Ruan, J.; Homer, N. The Sequence Alignment/Map format and SAMtools. Bioinformatics 2009, 25, 2078–2079. [Google Scholar] [CrossRef]
- Bairoch, A.; Apweiler, R. The SWISS-PROT protein sequence database and its supplement TrEMBL in 2000. Nucleic Acids Res. 2000, 28, 45–48. [Google Scholar] [CrossRef]
- Wang, W.; Griswold, M.E. Natural interpretations in Tobit regression models using marginal estimation methods. Stat. Methods Med. Res. 2017, 26, 2622–2632. [Google Scholar] [CrossRef] [PubMed]
- Halsey, L.G. The reign of the p-value is over: What alternative analyses could we employ to fill the power vacuum? Biol. Lett. 2019, 15, 20190174. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, S.G.; Raza, S.; Ta, L.T.; Le, L.-A.T.; Ho, C.T.; Unno, T. Metagenomic investigation of the seasonal distribution of bacterial community and antibiotic-resistant genes in Day River Downstream, Ninh Binh, Vietnam. Appl. Biol. Chem. 2022, 65, 26. [Google Scholar] [CrossRef]
Sampling Sites | Fecal Coliforms (Mean ± Standard Deviation) MPN/100 mL | E. coli (Mean ± Standard Deviation) MPN/100 mL | E. faecalis (Mean ± Standard Deviation) MPN/100 mL | O2 Sat % (Mean ± Standard Deviation) | Temperature (Mean ± Standard Deviation) °C | pH (Mean ± Standard Deviation) | Turbidity (Mean ± Standard Deviation) UNT | NSFQI |
---|---|---|---|---|---|---|---|---|
Sampling campaign 1 (wet season 2021) | ||||||||
Site 1 | (4.33 ± 7.76) × 104 | (2.99 ± 4.34) × 104 | (3.12 ± 1.90) × 104 | 71.4 ± 3.7 | 18.7 ± 3.2 | 7.94 ± 2.30 × 10−1 | 142.0 ± 95.4 | 44 |
Site 2 | (6.79 ± 10.50) × 104 | (6.79 ± 10.50) × 104 | (1.10 ± 1.65) × 105 | 61.1 ± 33.0 | 19.5 ± 3.5 | 7.90 ± 2.23 × 10−1 | 33.0 ± 9.3 | 41 |
Site 3 | (1.48 ± 1.49) × 105 | (1.35 ± 1.54) × 105 | (1.92 ± 12.30) × 104 | 51.9 ± 6.4 | 19.2 ± 3.4 | 7.93 ± 9.50 × 10−2 | 13.1 ± 15.1 | 28 |
Sampling campaign 2 (dry season 2022) | ||||||||
Site 1 | (2.88 ± 0.64) × 102 | (2.11 ± 1.00) × 102 | (6.67 ± 3.29) × 102 | 78.1 ± 0.0 | 15.8 ± 0.0 | 7.51 ± 1.09 × 10−15 | 9.8 ± 0.0 | 66 |
Site 2 | (9.64 ± 7.22) × 104 | (6.71 ± 6.74) × 104 | (1.87 ± 0.44) × 104 | 71.8 ± 0.0 | 23.4 ± 0.0 | 7.85 ± 1.09 × 10−15 | 8.7 ± 0.0 | 49 |
Site 3 | (3.38 ± 1.10) × 105 | (2.59 ± 1.00) × 105 | (5.58 ± 2.90) × 103 | 47.7 ± 0.0 | 28.0 ± 0.0 | 7.90 ± 1.09 × 10−15 | 21.9 ± 0.3 | 35 |
Sampling campaign 3 (wet season 2022) | ||||||||
Site 1 | (4.60 ± 0.00) × 103 | (4.60 ± 0.00) × 103 | (3.50 ± 0.00) × 103 | 86.2 ± 0.0 | 15.9 ± 0.0 | 7.72 ± 0.0 | 38.0 ± 3.0 | 49 |
Site 2 | (9.20 ± 0.00) × 104 | (5.40 ± 0.00) × 104 | (3.50 ± 0.00) × 104 | 80.0 ± 0.0 | 20.7 ± 0.0 | 8.10 ± 0.0 | 167.0 ± 2.0 | 41 |
Site 3 | (7.00 ± 0.00) × 104 | (3.10 ± 0.00) × 104 | (9.20 ± 0.00) × 103 | 77.0 ± 0.0 | 25.6 ± 0.0 | 7.76 ± 1.09 × 10−15 | 215.0 ± 5.0 | 42 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Barrantes-Jiménez, K.; Mendoza-Guido, B.; Morales-Mora, E.; Rivera-Montero, L.; Montiel-Mora, J.; Chacón-Jiménez, L.; Rojas-Jiménez, K.; Arias-Andrés, M. Influence of Seasonality and Pollution on the Presence of Antibiotic Resistance Genes and Potentially Pathogenic Bacteria in a Tropical Urban River. Antibiotics 2025, 14, 798. https://doi.org/10.3390/antibiotics14080798
Barrantes-Jiménez K, Mendoza-Guido B, Morales-Mora E, Rivera-Montero L, Montiel-Mora J, Chacón-Jiménez L, Rojas-Jiménez K, Arias-Andrés M. Influence of Seasonality and Pollution on the Presence of Antibiotic Resistance Genes and Potentially Pathogenic Bacteria in a Tropical Urban River. Antibiotics. 2025; 14(8):798. https://doi.org/10.3390/antibiotics14080798
Chicago/Turabian StyleBarrantes-Jiménez, Kenia, Bradd Mendoza-Guido, Eric Morales-Mora, Luis Rivera-Montero, José Montiel-Mora, Luz Chacón-Jiménez, Keilor Rojas-Jiménez, and María Arias-Andrés. 2025. "Influence of Seasonality and Pollution on the Presence of Antibiotic Resistance Genes and Potentially Pathogenic Bacteria in a Tropical Urban River" Antibiotics 14, no. 8: 798. https://doi.org/10.3390/antibiotics14080798
APA StyleBarrantes-Jiménez, K., Mendoza-Guido, B., Morales-Mora, E., Rivera-Montero, L., Montiel-Mora, J., Chacón-Jiménez, L., Rojas-Jiménez, K., & Arias-Andrés, M. (2025). Influence of Seasonality and Pollution on the Presence of Antibiotic Resistance Genes and Potentially Pathogenic Bacteria in a Tropical Urban River. Antibiotics, 14(8), 798. https://doi.org/10.3390/antibiotics14080798