Mechanisms of Cefiderocol Resistance in Carbapenemase-Producing Enterobacterales: Insights from Comparative Genomics
Abstract
1. Introduction
2. Results
2.1. Isolate Selection and Identification
2.2. Origin of Isolates and Antimicrobial Susceptibility Testing
2.3. Sequence Types, Resistome, and Plasmid Characterization
2.4. Mutation Analysis
2.4.1. Genes Involved in Iron Metabolism
2.4.2. Penicillin-Binding Proteins (PBPs)
2.4.3. Efflux Pumps
2.4.4. Allelic Variants in Carbapenemases and Class C Beta-Lactamases
2.4.5. Porin Loss
2.4.6. Pangenome Analysis
3. Discussion
3.1. Mutations in Genes Related to Iron Transport Systems
3.2. Presence, Mutation, and Overexpression of Specific Beta-Lactamases
3.3. Alterations in Penicillin-Binding Proteins (PBPs)
3.4. Alterations in Permeability and Active Efflux
3.5. Pangenome Analysis
4. Limitations and Future Directions
5. Materials and Methods
- (a)
- Strains belonging to the Enterobacteriaceae family;
- (b)
- Strains with carbapenemase detected by phenotypic or molecular methods;Strains with informed CFD susceptibility.
- (a)
- No archived strain available;
- (b)
- Non-viable archived strain;
- (c)
- Contaminated archived strain.
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sato, T.; Yamawaki, K. Cefiderocol: Discovery, Chemistry, and In Vivo Profiles of a Novel Siderophore Cephalosporin. Clin. Infect. Dis. 2019, 69 (Suppl. S7), S538–S543. [Google Scholar] [CrossRef] [PubMed]
- Katsube, T.; Echols, R.; Wajima, T. Pharmacokinetic and Pharmacodynamic Profiles of Cefiderocol, a Novel Siderophore Cephalosporin. Clin. Infect. Dis. 2019, 69 (Suppl. S7), S552–S558. [Google Scholar] [CrossRef] [PubMed]
- Price, T.K.; Davar, K.; Contreras, D.; Ward, K.W.; Garner, O.B.; Simner, P.J.; Yang, S.; Chandrasekaran, S. Case Report and Genomic Analysis of Cefiderocol-Resistant Escherichia coli Clinical Isolates. Am. J. Clin. Pathol. 2022, 157, 257–265. [Google Scholar] [CrossRef]
- Haidar, G.; Kline, E.G.; Kitsios, G.D.; Wang, X.; Kwak, E.J.; Newbrough, A.; Friday, K.; Kramer, K.H.; Shields, R.K. Emergence of high-level aztreonam–avibactam and cefiderocol resistance following treatment of an NDM-producing Escherichia coli bloodstream isolate exhibiting reduced susceptibility to both agents at baseline. JAC-Antimicrob. Resist. 2024, 6, dlae141. [Google Scholar] [CrossRef] [PubMed]
- Karakonstantis, S.; Rousaki, M.; Kritsotakis, E.I. Cefiderocol: Systematic Review of Mechanisms of Resistance, Heteroresistance and In Vivo Emergence of Resistance. Antibiotics 2022, 11, 723. [Google Scholar] [CrossRef]
- Wunderink, R.G.; Matsunaga, Y.; Ariyasu, M.; Clevenbergh, P.; Echols, R.; Kaye, K.S.; Kollef, M.; Menon, A.; Pogue, J.M.; Shorr, A.F.; et al. Cefiderocol versus high-dose, extend-ed-infusion meropenem for the treatment of Gram-negative nosocomial pneumonia (APEKS-NP): A randomised, double-blind, phase 3, non-inferiority trial. Lancet Infect. Dis. 2021, 21, 213–225. [Google Scholar] [CrossRef]
- Bassetti, M.; Echols, R.; Matsunaga, Y.; Ariyasu, M.; Doi, Y.; Ferrer, R.; Lodise, T.P.; Naas, T.; Niki, Y.; Paterson, D.L.; et al. Efficacy and safety of cefiderocol or best available therapy for the treatment of serious infections caused by carbapenem-resistant Gram-negative bacteria (CREDIBLE-CR): A randomised, open-label, multicentre, pathogen-focused, descriptive, phase 3 trial. Lancet Infect. Dis. 2021, 21, 226–240. [Google Scholar] [CrossRef]
- Álvarez-Lerma, F.; Catalán-González, M.; Álvarez, J.; Sánchez-García, M.; Palomar-Martínez, M.; Fernández-Moreno, I.; Garnacho-Montero, J.; Barcenilla-Gaite, F.; García, R.; Aranaz-Andrés, J.; et al. Impact of the “Zero Resistance” program on acquisition of multidrug-resistant bacteria in patients admitted to Intensive Care Units in Spain. A prospective, intervention, multimodal, multicenter study. Med. Intensiva. Engl. Ed. 2023, 47, 193–202. [Google Scholar] [CrossRef]
- Ambler, R.P. The structure of b-lactamases. Philos. Trans. R Soc. Lond B Biol. Sci. 1980, 289, 321–331. [Google Scholar]
- Guerois, R.; Nielsen, J.E.; Serrano, L. Predicting Changes in the Stability of Proteins and Protein Complexes: A Study of More Than 1000 Mutations. J. Mol. Biol. 2002, 320, 369–387. [Google Scholar] [CrossRef]
- Zhang, X.; Xie, Y.; Zhang, Y.; Lei, T.; Zhou, L.; Yao, J.; Liu, L.; Liu, H.; He, J.; Yu, Y.; et al. Evolution of ceftazidime–avibactam resistance driven by mutations in double-copy blaKPC-2 to blaKPC-189 during treatment of ST11 carbapenem-resistant Klebsiella pneumoniae. mSystems 2024, 9, e00722-24. [Google Scholar] [CrossRef] [PubMed]
- Endimiani, A.; Doi, Y.; Bethel, C.R.; Taracila, M.; Adams-Haduch, J.M.; O’keefe, A.; Hujer, A.M.; Paterson, D.L.; Skalweit, M.J.; Page, M.G.P.; et al. Enhancing Resistance to Cephalosporins in Class C β-Lactamases: Impact of Gly214Glu in CMY-2. Biochemistry 2010, 49, 1014–1023. [Google Scholar] [CrossRef]
- Nordmann, P.; Shields, R.K.; Doi, Y.; Takemura, M.; Echols, R.; Matsunaga, Y.; Yamano, Y. Mechanisms of Reduced Susceptibility to Cefiderocol Among Isolates from the CREDIBLE-CR and APEKS-NP Clinical Trials. Microb. Drug Resist. 2022, 28, 398–407. [Google Scholar] [CrossRef]
- Jacoby, G.A. AmpC β-Lactamases. Clin. Microbiol. Rev. 2009, 22, 161–182. [Google Scholar] [CrossRef] [PubMed]
- Dey, S.; Gaur, M.; Sykes, E.M.E.; Prusty, M.; Elangovan, S.; Dixit, S.; Pati, S.; Kumar, A.; Subudhi, E. Unravelling the Evolutionary Dynamics of High-Risk Klebsiella pneumoniae ST147 Clones: Insights from Comparative Pangenome Analysis. Genes 2023, 14, 1037. [Google Scholar] [CrossRef]
- Bianconi, I.; Spath, M.; Aschbacher, R.; Pedron, R.; Wieser, S.; Pagani, E. Characterization of Verona Integron-Encoded Metallo-β-Lactamase-Type Carbapenemase-Producing Escherichia coli Isolates Collected over a 16-Year Period in Bolzano (Northern Italy). Microb. Drug Resist. 2023, 30, 91–100. [Google Scholar] [CrossRef] [PubMed]
- Spapen, H.; Jacobs, R.; Van Gorp, V.; Troubleyn, J.; Honoré, P.M. Renal and neurological side effects of colistin in critically ill patients. Ann. Intensive Care 2011, 1, 14. [Google Scholar] [CrossRef]
- Kim, D.; Park, B.Y.; Choi, M.H.; Yoon, E.-J.; Lee, H.; Lee, K.J.; Park, Y.S.; Shin, J.H.; Uh, Y.; Shin, K.S.; et al. Antimicrobial resistance and virulence factors of Klebsiella pneumoniae affecting 30 day mortality in patients with bloodstream infection. J. Antimicrob. Chemother. 2018, 74, 190–199. [Google Scholar] [CrossRef]
- Bianco, G.; Boattini, M.; Cricca, M.; Diella, L.; Gatti, M.; Rossi, L.; Bartoletti, M.; Sambri, V.; Signoretto, C.; Fonnesu, R.; et al. Updates on the Activity, Efficacy and Emerging Mechanisms of Resistance to Cefiderocol. Curr. Issues Mol. Biol. 2024, 46, 14132–14153. [Google Scholar] [CrossRef]
- Padovani, M.; Bertelli, A.; Corbellini, S.; Piccinelli, G.; Gurrieri, F.; De Francesco, M.A. In Vitro Activity of Cefiderocol on Multiresistant Bacterial Strains and Genomic Analysis of Two Cefiderocol Resistant Strains. Antibiotics 2023, 12, 785. [Google Scholar] [CrossRef]
- Bao, J.; Xie, L.; Ma, Y.; An, R.; Gu, B.; Wang, C. Proteomic and Transcriptomic Analyses Indicate Reduced Biofilm-Forming Abilities in Cefiderocol-Resistant Klebsiella pneumoniae. Front. Microbiol. 2022, 12, 778190. [Google Scholar] [CrossRef] [PubMed]
- Nurjadi, D.; Kocer, K.; Chanthalangsy, Q.; Klein, S.; Heeg, K.; Boutin, S. New Delhi Metallo-Beta-Lactamase Facilitates the Emergence of Cefiderocol Resistance in Enterobacter cloacae. Antimicrob. Agents Chemother. 2022, 66, e0201121. [Google Scholar] [CrossRef] [PubMed]
- McElheny, C.L.; Fowler, E.L.; Iovleva, A.; Shields, R.K.; Doi, Y.; Goldberg, J.B. In Vitro Evolution of Cefiderocol Resistance in an NDM-Producing Klebsiella pneumoniae Due to Functional Loss of CirA. Microbiol. Spectr. 2021, 9, e0177921. [Google Scholar] [CrossRef]
- Ito, A.; Sato, T.; Ota, M.; Takemura, M.; Nishikawa, T.; Toba, S.; Kohira, N.; Miyagawa, S.; Ishibashi, N.; Matsumoto, S.; et al. In Vitro Antibacterial Properties of Cefiderocol, a Novel Sider-ophore Cephalosporin, against Gram-Negative Bacteria. Antimicrob. Agents Chemother. 2018, 62, e01454-17. [Google Scholar] [CrossRef] [PubMed]
- Klein, S.; Boutin, S.; Kocer, K.; OFiedler, M.; Störzinger, D.; AWeigand, M.; Tan, B.; Richter, D.; Rupp, C.; Mieth, M.; et al. Rapid Development of Cefiderocol Resistance in Carbapenem-resistant Enterobacter cloacae During Therapy Is Associated With Heterogeneous Mutations in the Catecholate Siderophore Receptor cirA. Clin. Infect. Dis. 2022, 74, 905–908. [Google Scholar] [CrossRef]
- Govers, S.K.; Mortier, J.; Adam, A.; Aertsen, A.; Laub, M. Protein aggregates encode epigenetic memory of stressful encounters in individual Escherichia coli cells. PLoS Biol. 2018, 16, e2003853. [Google Scholar] [CrossRef]
- Chu, B.C.; Garcia-Herrero, A.; Johanson, T.H.; Krewulak, K.D.; Lau, C.K.; Peacock, R.S.; Slavinskaya, Z.; Vogel, H.J. Siderophore uptake in bacteria and the battle for iron with the host; a bird’s eye view. BioMetals 2010, 23, 601–611. [Google Scholar] [CrossRef]
- Mushtaq, S.; Sadouki, Z.; Vickers, A.; Livermore, D.M.; Woodford, N. In Vitro Activity of Cefiderocol, a Siderophore Cephalosporin, against Multidrug-Resistant Gram-Negative Bacteria. Antimicrob. Agents Chemother. 2020, 64, e01582-20. [Google Scholar] [CrossRef]
- Hackel, M.A.; Tsuji, M.; Yamano, Y.; Echols, R.; Karlowsky, J.A.; Sahm, D.F. In Vitro Activity of the Siderophore Cephalosporin, Cefiderocol, against Carbapenem-Nonsusceptible and Multidrug-Resistant Isolates of Gram-Negative Bacilli Collected Worldwide in 2014 to 2016. Antimicrob. Agents Chemother. 2018, 62, e01968-17. [Google Scholar] [CrossRef]
- Longshaw, C.; Manissero, D.; Tsuji, M.; Echols, R.; Yamano, Y. In vitro activity of the siderophore cephalosporin, cefiderocol, against molecularly characterized, carbapenem-non-susceptible Gram-negative bacteria from Europe. JAC-Antimicrob. Resist. 2020, 2, dlaa060. [Google Scholar] [CrossRef]
- Tristancho-Baró, A.; Franco-Fobe, L.E.; Ariza, M.P.; Milagro, A.; López-Calleja, A.I.; Fortuño, B.; López, C.; Latorre-Millán, M.; Clusa, L.; Martínez, R.; et al. Genomic Characterization of Carbapenemase-Producing Enterobacteriaceae from Clinical and Epidemiological Human Samples. Antibiotics 2025, 14, 42. [Google Scholar] [CrossRef] [PubMed]
- Poirel, L.; Sadek, M.; Kusaksizoglu, A.; Nordmann, P. Co-resistance to ceftazidime-avibactam and cefiderocol in clinical isolates producing KPC variants. Eur. J. Clin. Microbiol. Infect. Dis. 2022, 41, 677–680. [Google Scholar] [CrossRef]
- Tiseo, G.; Falcone, M.; Leonildi, A.; Giordano, C.; Barnini, S.; Arcari, G.; Carattoli, A.; Menichetti, F. Meropenem-Vaborbactam as Salvage Therapy for Ceftazidime-Avibactam-, Cefiderocol-Resistant ST-512 Klebsiella pneumoniae –Producing KPC-31, a D179Y Variant of KPC-3. Open Forum Infect. Dis. 2021, 8, ofab141. [Google Scholar] [CrossRef] [PubMed]
- Jacob, A.S.; Chong, G.L.; Lagrou, K.; Depypere, M.; Desmet, S. No in vitro activity of cefiderocol against OXA-427-producing Enter-obacterales. J. Antimicrob. Chemother. 2021, 76, 3317–3318. [Google Scholar] [CrossRef] [PubMed]
- Sato, T.; Ito, A.; Ishioka, Y.; Matsumoto, S.; Rokushima, M.; Kazmierczak, K.M.; Hackel, M.; Sahm, D.F.; Yamano, Y. Escherichia coli strains possessing a four amino acid YRIN insertion in PBP3 identified as part of the SIDERO-WT-2014 surveillance study. JAC-Antimicrob. Resist. 2020, 2, dlaa081. [Google Scholar] [CrossRef]
- Simner, P.J.; Beisken, S.; Bergman, Y.; Ante, M.; Posch, A.E.; Tamma, P.D. Defining Baseline Mechanisms of Cefiderocol Resistance in the Enterobacterales. Microb. Drug Resist. 2022, 28, 161–170. [Google Scholar] [CrossRef]
- David, S.; Wong, J.L.C.; Sanchez-Garrido, J.; Kwong, H.-S.; Low, W.W.; Morecchiato, F.; Giani, T.; Rossolini, G.M.; Brett, S.J.; Clements, A.; et al. Widespread emergence of OmpK36 loop 3 insertions among multidrug-resistant clones of Klebsiella pneumoniae. PLoS Pathog. 2022, 18, e1010334. [Google Scholar] [CrossRef]
- Padilla, E.; Llobet, E.; DoménEch-SánChez, A.; MartínEz-MartínEz, L.; Bengoechea, J.A.; Albertí, S. Klebsiella pneumoniae AcrAB Efflux Pump Contributes to Antimicrobial Resistance and Virulence. Antimicrob. Agents Chemother. 2010, 54, 177–183. [Google Scholar] [CrossRef]
- Mosquera-Rendón, J.; Moreno-Herrera, C.X.; Robledo, J.; Hurtado-Páez, U. Genome-Wide Association Studies (GWAS) Approaches for the Detection of Genetic Variants Associated with Antibiotic Resistance: A Systematic Review. Microorganisms 2023, 11, 2866. [Google Scholar] [CrossRef]
- The European Committee on Antimicrobial Susceptibility Testing. Breakpoint Tables for Interpretation of MICs and Zone Diameters Version 15 [Internet]. 2025. Available online: https://www.eucast.org/clinical_breakpoints (accessed on 30 March 2025).
- Wick, R.R.; Judd, L.M.; Gorrie, C.L.; Holt, K.E. Unicycler: Resolving bacterial genome assemblies from short and long sequencing reads. PLoS Comput. Biol. 2017, 13, e1005595. [Google Scholar] [CrossRef]
- Gurevich, A.; Saveliev, V.; Vyahhi, N.; Tesler, G. QUAST: Quality assessment tool for genome assemblies. Bioinformatics 2013, 29, 1072–1075. [Google Scholar] [CrossRef] [PubMed]
- Seppey, M.; Manni, M.; Zdobnov, E.M. BUSCO: Assessing Genome Assembly and Annotation Completeness. In Gene Prediction; Kollmar, M., Ed.; Springer: New York, NY, USA, 2019; Volume 1962, pp. 227–245. Available online: http://link.springer.com/10.1007/978-1-4939-9173-0_14 (accessed on 3 July 2025).
- Ondov, B.D.; Starrett, G.J.; Sappington, A.; Kostic, A.; Koren, S.; Buck, C.B.; Phillippy, A.M. Mash Screen: High-throughput sequence containment estimation for genome discovery. Genome Biol. 2019, 20, 232. [Google Scholar] [CrossRef]
- Orakov, A.; Fullam, A.; Coelho, L.P.; Khedkar, S.; Szklarczyk, D.; Mende, D.R.; Schmidt, T.S.; Bork, P. GUNC: Detection of chimerism and contamination in prokaryotic genomes. Genome Biol. 2021, 22, 178. [Google Scholar] [CrossRef]
- Wick, R.R.; Schultz, M.B.; Zobel, J.; Holt, K.E. Bandage: Interactive visualization of de novo genome assemblies. Bioinformatics 2015, 31, 3350–3352. [Google Scholar] [CrossRef] [PubMed]
- Lumpe, J.; Gumbleton, L.; Gorzalski, A.; Libuit, K.; Varghese, V.; Lloyd, T.; Tadros, F.; Arsimendi, T.; Wagner, E.; Stephens, C.; et al. GAMBIT (Genomic Approximation Method for Bacterial Identification and Tracking): A methodology to rapidly leverage whole genome sequencing of bacterial isolates for clinical identification. PLoS ONE 2023, 18, e0277575. [Google Scholar] [CrossRef] [PubMed]
- Jolley, K.A.; Bray, J.E.; Maiden, M.C.J. Open-access bacterial population genomics: BIGSdb software, the PubMLST.org website and their applications. Wellcome Open Res. 2018, 3, 124. [Google Scholar] [CrossRef]
- Seemann, T. mlst [Internet]. GitHub. 2022. Available online: https://github.com/tseemann/mlst (accessed on 3 July 2025).
- Lam, M.M.C.; Wick, R.R.; Watts, S.C.; Cerdeira, L.T.; Wyres, K.L.; Holt, K.E. A genomic surveillance framework and genotyping tool for Klebsiella pneumoniae and its related species complex. Nat. Commun. 2021, 12, 4188. [Google Scholar] [CrossRef]
- Seemann, T. Prokka: Rapid Prokaryotic Genome Annotation. Bioinformatics 2014, 30, 2068–2069. [Google Scholar] [CrossRef]
- Casimiro-Soriguer, C.S.; Muñoz-Mérida, A.; Pérez-Pulido, A.J. Sma3s: A universal tool for easy functional annotation of proteomes and transcriptomes. Proteomics 2017, 17, 1700071. [Google Scholar] [CrossRef]
- Alcock, B.P.; Huynh, W.; Chalil, R.; Smith, K.W.; Raphenya, A.R.; AWlodarski, M.; Edalatmand, A.; Petkau, A.; ASyed, S.; Tsang, K.K.; et al. CARD 2023: Expanded curation, support for machine learning, and resistome prediction at the Comprehensive Antibiotic Resistance Database. Nucleic Acids Res. 2023, 51, D690–D699. [Google Scholar] [CrossRef]
- Robertson, J.; Nash, J.H.E. MOB-suite: Software tools for clustering, reconstruction and typing of plasmids from draft assemblies. Microb. Genom. 2018, 4, e000206. [Google Scholar] [CrossRef] [PubMed]
- Page, A.J.; Cummins, C.A.; Hunt, M.; Wong, V.K.; Reuter, S.; Holden, M.T.G.; Fookes, M.; Falush, D.; Keane, J.A.; Parkhill, J. Roary: Rapid large-scale prokaryote pan genome analysis. Bioinformatics 2015, 31, 3691–3693. [Google Scholar] [CrossRef] [PubMed]
- Brynildsrud, O.; Bohlin, J.; Scheffer, L.; Eldholm, V. Rapid scoring of genes in microbial pan-genome-wide association studies with Scoary. Genome Biol. 2016, 17, 238. [Google Scholar] [CrossRef] [PubMed]
- Katoh, K.; Standley, D.M. MAFFT Multiple Sequence Alignment Software Version 7: Improvements in Performance and Usability. Mol. Biol. Evol. 2013, 30, 772–780. [Google Scholar] [CrossRef]
- Price, M.N.; Dehal, P.S.; Arkin, A.P. FastTree 2—Approximately Maximum-Likelihood Trees for Large Alignments. PLoS ONE 2010, 5, e9490. [Google Scholar] [CrossRef]
- Tamura, K.; Stecher, G.; Kumar, S. MEGA11: Molecular Evolutionary Genetics Analysis Version 11. Mol. Biol. Evol. 2021, 38, 3022–3027. [Google Scholar] [CrossRef]
- Seemann, T. Snippy [Internet]. GitHub. 2020. Available online: https://github.com/tseemann/snippy (accessed on 31 October 2024).
- Cingolani, P.; Platts, A.; Wang, L.L.; Coon, M.; Nguyen, T.; Wang, L.; Land, S.J.; Lu, X.; Ruden, D.M. Program for annotating and predicting the effects of single nucleotide polymorphisms, SnpEff: SNPs in the genome of Drosophila melanogaster strain w1118; iso-2; iso-3. Fly 2012, 6, 80–92. [Google Scholar] [CrossRef]
- Schymkowitz, J.; Borg, J.; Stricher, F.; Nys, R.; Rousseau, F.; Serrano, L. The FoldX web server: An online force field. Nucleic Acids Res. 2005, 33, W382–W388. [Google Scholar] [CrossRef]
Sample Name | CFD Profile | Sample Type | Species Name | ST | Carbapenemase | ESBL | AmpC | Other Beta-Lactamases | Plasmid Size |
---|---|---|---|---|---|---|---|---|---|
CF1313021 | R | Triple-swab | Citrobacter portucalensis | 1129 | NDM-1 | 0 | CMY-13 | 0 | - |
EC1096797 | R | Triple-swab | Escherichia coli | 167 | NDM-1; OXA-244 | CTX-M-15 | EC-15 | TEM-1 | 219.5 |
EC1151567 | R | Triple-swab | Escherichia coli | 361 | NDM-5; KPC-3 | CTX-M-15 | CMY-145 | OXA-1;SHV-11;TEM-1 | 78.1 |
EC1242016 | R | Rectal swab | Escherichia coli | 38 | NDM-1 | CTX-M-15 | CMY-16; EC-8 | OXA-1; OXA-10 | 246.8 |
EC1242191 | R | Triple-swab | Escherichia coli | 131 | OXA-48 | CTX-M-163 | CMY-181 | OXA-1;TEM-1 | 4.3 |
EC673020 | R | Surgical wound | Escherichia coli | 2659 | NDM-5 | 0 | CMY-42; EC-8 | TEM-1 | 120.1 |
EC761716 | R | Urine | Escherichia coli | 2659 | NDM-5 | 0 | CMY-42; EC-8 | TEM-1 | 119.3 |
EC782935 | R | Triple-swab | Escherichia coli | 410 | OXA-181 | 0 | CMY-4; EC-14 | OXA-1 | 27.9 |
EC901482 | R | Urine | Escherichia coli | 167 | NDM-1; OXA-244 | CTX-M-15 | EC-15 | TEM-1 | 201.9 |
EC944575 | R | Triple-swab | Escherichia coli | 405 | NDM-5 | CTX-M-55 | EC-8 | OXA-1;TEM-1 | 79.4 |
EE1280220 | R | Triple-swab | Enterobacter hormaechei | 108 | OXA-181 | 0 | ACT-55 | 0 | 49.8 |
EE1332654 | R | Urine | Enterobacter kobei | 191 | VIM-1 | 0 | ACT-52 | 0 | 96.9 |
EE1338763 | R | Ascitic fluid | Enterobacter asburiae | 702 | OXA-48 | 0 | MIR-3 | 0 | - |
EE974926 | R | Wound | Enterobacter hormaechei | 51 | KPC-3 | 0 | ACT-40 | TEM-1 | 50.6 |
KP1059745 | R | Triple-swab | Klebsiella pneumoniae | 307 | KPC-2; NDM-1 | 0 | 0 | SHV-28 | 95.1 |
KP1067518 | R | Rectal swab | Klebsiella pneumoniae | 23 | NDM-1;OXA-48 | CTX-M-55 | 0 | SHV-1 | 66.9 |
KP1207364 | R | Triple-swab | Klebsiella pneumoniae | 101 | KPC-3 | 0 | 0 | SHV-1 | 15.4 |
KP1207896 | R | Wound | Klebsiella pneumoniae | 395 | NDM-1; OXA-48 | 0 | CMY-6 | SHV-11 | 353.8 |
KP1207904 | R | Triple-swab | Klebsiella pneumoniae | 512 | KPC-3 | 0 | 0 | SHV-11 | - |
KP1215397 | R | Surgical wound | Klebsiella pneumoniae | 392 | NDM-1 | CTX-M-15 | 0 | SHV-11;TEM-1 | 342.5 |
KP1234533 | R | Urine | Klebsiella pneumoniae | 395 | NDM-1; OXA-48 | CTX-M-15 | 0 | OXA-1;SHV-1;TEM-257 | 339.2 |
KP1268564 | R | Abscess | Klebsiella pneumoniae | 14 | VIM-1 | 0 | 0 | SHV-1 | 76.7 |
KP1307832 | R | Urine | Klebsiella pneumoniae | 11 | KPC-3 | 0 | 0 | OXA-1;SHV-11 | - |
KP944560 | R | Triple-swab | Klebsiella pneumoniae | 23 | NDM-1; OXA-48 | CTX-M-55 | 0 | SHV-1 | 6.6 |
KP944575 | R | Triple-swab | Klebsiella pneumoniae | 405 | NDM-1 | CTX-M-15 | 0 | OXA-1;SHV-28; TEM-1 | 342.9 |
KP953369 | R | Triple-swab | Klebsiella pneumoniae | 147 | NDM-1; OXA-48 | CTX-M-15 | 0 | OXA-1; OXA-9;SHV-1 | 99.3 |
KP971943 | R | Triple-swab | Klebsiella pneumoniae | 395 | NDM-1 | CTX-M-15 | 0 | OXA-1;SHV-11 35Q; TEM-1 | 338.9 |
KP985068 | R | Surgical wound | Klebsiella pneumoniae | 512 | KPC-3 | 0 | 0 | SHV-11 35Q | 48.5 |
PS965060 | R | Urine | Providencia stuartii | 405 | NDM-5 | 0 | 0 | 0 | 8.1 |
CF775268 | S | Rectal swab | Citrobacter portucalensis | 493 | VIM-1 | CTX-M-9 | CMY-2 | OXA-1 | 38.0 |
CK1116243 | S | Rectal swab | Citrobacter koseri | 937 | VIM-24 | CTX-M-9 | CKO-1 | OXA-1 | 290.0 |
EC1023956 | S | Rectal swab | Escherichia coli | 29 | VIM-1 | 0 | EC-14 | TEM-1 | 7.7 |
EC1024606 | S | Rectal swab | Escherichia coli | 539 | VIM-1 | 0 | EC-18 | 0 | 115.3 |
EC1197488 | S | Triple-swab | Escherichia coli | 409 | KPC-3 | 0 | EC-15 | SHV-11 | 52.4 |
EC1233581 | S | Urine | Escherichia coli | 602 | NDM-5 | CTX-M-15 | EC-15 | TEM-1 | 41.1 |
EC863253 | S | Rectal swab | Escherichia coli | 327 | VIM-1 | 0 | EC-14 | 0 | 24.5 |
EE1274028 | S | Rectal swab | Enterobacter hormaechei | 45 | VIM-1 | 0 | 0 | SHV-12;TEM-1 | 87.2 |
EE1318769 | S | Rectal swab | Enterobacter hormaechei | 90 | VIM-24 | CTX-M-9 | ACT-56 | OXA-1 | 320.3 |
KP1045007 | S | Rectal swab | Klebsiella variicola | 4365 | VIM-24 | CTX-M-9 | 0 | OXA-1;LEN-16 | 289.8 |
KP1096796 | S | Triple-swab | Klebsiella pneumoniae | 147 | NDM-1;OXA-48 | CTX-M-15 | 0 | OXA-1; OXA-9;SHV-1; TEM-1 | 112.8 |
KP1096799 | S | Triple-swab | Klebsiella pneumoniae | 147 | NDM-1;OXA-48 | CTX-M-15; TEM-150 | 0 | OXA-1; OXA-9;SHV-1 | 49.2 |
KP1131939 | S | Surgical wound | Klebsiella pneumoniae | 3817 | VIM-1 | 0 | DHA-1 | SHV-1 | 99.5 |
KP1156073 | S | Urine | Klebsiella pneumoniae | 15 | OXA-48 | CTX-M-15 | 0 | OXA-1;SHV-28;TEM-1 | 61.4 |
KP1174934 | S | Prosthetics | Klebsiella pneumoniae | 395 | OXA-48 | CTX-M-15;CTX-M14 | 0 | SHV-11;TEM-1 | 74.9 |
KP1216215 | S | Urine | Klebsiella pneumoniae | 9 | VIM-1 | 0 | 0 | SHV-161 | 12.2 |
KP1255048 | S | Ear swab | Klebsiella pneumoniae | 395 | NDM-1;OXA-48 | CTX-M-15 | 0 | OXA-1;SHV-11;TEM-1 | 360.5 |
KP1289033 | S | Urine | Klebsiella pneumoniae | 307 | NDM-1 | 0 | 0 | SHV-28 | - |
KP1348849 | S | Triple-swab | Klebsiella pneumoniae | 20 | VIM-1 | 0 | 0 | SHV-187 | 228.3 |
KP822390 | S | Triple-swab | Klebsiella pneumoniae | 147 | NDM-1 | CTX-M-15; TEM-150 | 0 | OXA-1; OXA-9;SHV-1 | 95.0 |
KP838840 | S | Blood culture | Klebsiella pneumoniae | 4387 | VIM-1 | 0 | 0 | SHV-1 | 71.7 |
KP844839 | S | Surgical wound | Klebsiella pneumoniae | 395 | NDM-1;OXA-48 | CTX-M-15; TEM-105 | 0 | OXA-1;SHV-1 | 338.5 |
KP846745 | S | Rectal swab | Klebsiella pneumoniae | 147 | NDM-1;OXA-48 | CTX-M-15; TEM-150 | 0 | OXA-1; OXA-9;SHV-1; | 99.4 |
KP882410 | S | Triple-swab | Klebsiella pneumoniae | 307 | NDM-1 | CTX-M-15 | 0 | OXA-1;SHV-28; TEM-1 | 337.3 |
KP896137 | S | Rectal swab | Klebsiella pneumoniae | 584 | VIM-1 | 0 | 0 | OXA-1;SHV-168 | 61.9 |
KP932969 | S | Rectal swab | Klebsiella pneumoniae | 268 | VIM-1 | 0 | DHA-1 | SHV-1; DHA-1 | 80.3 |
MM1207184 | S | Skin ulcer | Morganella morganii | - | NDM-1 | CTX-M-15 | 0 | TEM-1 | 179.9 |
PR1307361 | S | Urine | Providencia hangzhouensis | 44 | NDM-1 | 0 | 0 | 0 | - |
PS1207364 | S | Triple-swab | Providencia stuartii | 11 | NDM-5 | 0 | 0 | 0 | - |
SM1131939 | S | Wound | Serratia sarumanii | 522 | VIM-1 | 0 | SRT-2 | 0 | 12.3 |
Resistance Mechanism | Locus | Amino Acid Variant |
---|---|---|
Iron metabolism | cirA | D95G, E465D, E507fs, I174V, I547F, I547L, R514fs |
fecB | A134T, A214S, D55Y, I57S, L8V, T23M | |
fes | A143T, A189V, A264D, A272G, A327T, D99V, E192G, E329Q, EY42GH (complex), H293N, I163T, I163T (complex), I343V, I362L, I53V, K177N, K324Q, K324Q(complex), L130P, L261Q, N75D (complex), P164A, Q222R, Q316H, Q66R, R174W, R350Q, T186I, T45A, T45P, T80K, V104A, V214A (complex), V30I, V320M, V51I, V56M | |
fhuC | A122V, A72T, E239D, E67A, L70I, M100L, S188A, S188A (complex), S64T | |
fhuF | A127V, A208T, A64T, C214Y, D176G, E119Q, E144D, H155Q, I179N, K149R, K35E, L214I, L55Q, M83T, P52L, P63T, PT23AG (complex), QDPT21HDAG (complex), R126C, S153A, S163R, SQ58TE (complex), T219M, V12I, V135A, V135A (complex), V65A | |
fiu | A417T, D70N, G388A, M513V, Q58K, R212H, S389A, T367A, T38A, T493A, T493A (complex), V211A, V235I, V495M, V630M, Y274F | |
nfeF | A172V, A237T, D107E, DG107ED (complex), G113C, G113S, N179H, P61S, P81S, Q119K, R156C, R24H, T4S, V25A, Y240F | |
PBP | dacB | A121T, K112R, L136F, P182Q, R228S, T269A, V18I |
ftsI | A233T, E349K, I332V, I532L, Q227H | |
mrcA | A373V, G414D, R711H, S497G | |
mrcB | D765N, H604N, R556C | |
mrdA | A530S, D354N | |
Efflux pumps | TolC | E230D, G243D, I354L, I3M, L8I, M5I, N212D, N28S, N31S, N436S, Q167K, Q169K, Q356R, Q429L, R289S, S124G, S313A, T61R, V165I, V328I, V49A, LA30QT (complex) |
acrA | E142D, L147Q, M334T, S122A, S73N, T104A, T379K | |
acrB | H596N, K1035N, S1043N | |
acrD | A28T, A696T, D308E, I841V, K652E, L230V, N248D, N74D, N793S, S804T, T851A, V1026I, V575I | |
acrE | D327N, N103S, N77S, P302S, Q260P, R167H, T382F, T382S | |
acrF | A24V, E429D, H338Q, K428R, K849Q, S806A | |
acrR | A117T, A145S, A146T, A163T, A183T, A20D, A45V, A7T, A80T, D11E, D157V, E186T, E196D, E79D, E91A, F38L, G115S, G168C, G78S, K193Q, K56R, L58V, N130S, P206L, P216S, Q139H, Q141K, Q191K, Q64H, R135H, R13C, R176K, R23K, R62C, R9H, S116N, S120Y, S184T, S85P, T183A, T54N, T73A, V101A, Ala47fs, K80fs, L101fs, L109fs, V29fs, QS152RT (complex), LS212HN, TN213IT, Q122* | |
oqxB | A203T, A851V, D1046E, N798S, FA550IV | |
tolC | A233T, E205Q, I280V, K139N, L108M, N137Q, N489T, S467G, S476P, T483A | |
Beta-lactamases | blaEC-14 | Q23K, R248C, H312R, A367T |
blaEC-15 | Q23K, P110S, A367T | |
blaEC-8 | T4M, D140E, N201T, P209S, S298I, T321A, T367A | |
blaACT-55 | V311dup | |
Porin loss | OmpK36 | TD134ins |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tristancho-Baró, A.; López-Calleja, A.I.; Milagro, A.; Ariza, M.; Viñeta, V.; Fortuño, B.; López, C.; Latorre-Millán, M.; Clusa, L.; Badenas-Alzugaray, D.; et al. Mechanisms of Cefiderocol Resistance in Carbapenemase-Producing Enterobacterales: Insights from Comparative Genomics. Antibiotics 2025, 14, 703. https://doi.org/10.3390/antibiotics14070703
Tristancho-Baró A, López-Calleja AI, Milagro A, Ariza M, Viñeta V, Fortuño B, López C, Latorre-Millán M, Clusa L, Badenas-Alzugaray D, et al. Mechanisms of Cefiderocol Resistance in Carbapenemase-Producing Enterobacterales: Insights from Comparative Genomics. Antibiotics. 2025; 14(7):703. https://doi.org/10.3390/antibiotics14070703
Chicago/Turabian StyleTristancho-Baró, Alexander, Ana Isabel López-Calleja, Ana Milagro, Mónica Ariza, Víctor Viñeta, Blanca Fortuño, Concepción López, Miriam Latorre-Millán, Laura Clusa, David Badenas-Alzugaray, and et al. 2025. "Mechanisms of Cefiderocol Resistance in Carbapenemase-Producing Enterobacterales: Insights from Comparative Genomics" Antibiotics 14, no. 7: 703. https://doi.org/10.3390/antibiotics14070703
APA StyleTristancho-Baró, A., López-Calleja, A. I., Milagro, A., Ariza, M., Viñeta, V., Fortuño, B., López, C., Latorre-Millán, M., Clusa, L., Badenas-Alzugaray, D., Martínez, R., Torres, C., & Rezusta, A. (2025). Mechanisms of Cefiderocol Resistance in Carbapenemase-Producing Enterobacterales: Insights from Comparative Genomics. Antibiotics, 14(7), 703. https://doi.org/10.3390/antibiotics14070703