Evaluation of Infections Caused by Carbapenem-Resistant Pseudomonas aeruginosa, Acinetobacter baumannii, and Klebsiella pneumoniae in an Intensive Care Unit: A Retrospective Study
Abstract
1. Introduction
2. Results
3. Discussion
Study Limitations
4. Materials and Methods
4.1. Ethical Considerations
4.2. Inclusion and Exclusion Criteria
4.3. Definitions
4.4. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
References
- Thacharodi, A.; Vithlani, A.; Hassan, S.; Alqahtani, A.; Pugazhendhi, A. Carbapenem-resistant Acinetobacter baumannii raises global alarm for new antibiotic regimens. iScience 2024, 27, 111367. [Google Scholar] [CrossRef] [PubMed]
- Russo, A.; Serapide, F. The Multifaceted Landscape of Healthcare-Associated Infections Caused by Carbapenem-Resistant Acinetobacter baumannii. Microorganisms 2025, 13, 829. [Google Scholar] [CrossRef]
- Girmenia, C.; Serrao, A.; Canichella, M. Epidemiology of Carbapenem Resistant Klebsiella pneumoniae Infections in Mediterranean Countries. Mediterr. J. Hematol. Infect. Dis. 2016, 8, e2016032. [Google Scholar] [CrossRef]
- Abushanab, D.; Nasr, Z.G.; Al-Badriyeh, D. Efficacy and Safety of Colistin versus Tigecycline for Multi-Drug-Resistant and Extensively Drug-Resistant Gram-Negative Pathogens-A Meta-Analysis. Antibiotics 2022, 11, 1630. [Google Scholar] [CrossRef]
- Sheu, C.C.; Chang, Y.T.; Lin, S.Y.; Chen, Y.H.; Hsueh, P.R. Infections Caused by Carbapenem-Resistant Enterobacteriaceae: An Update on Therapeutic Options. Front. Microbiol. 2019, 10, 80. [Google Scholar] [CrossRef] [PubMed]
- Tamma, P.D.; Aitken, S.L.; Bonomo, R.A.; Mathers, A.J.; van Duin, D.; Clancy, C.J. Infectious Diseases Society of America Guidance on the Treatment of AmpC beta-Lactamase-Producing Enterobacterales, Carbapenem-Resistant Acinetobacter baumannii, and Stenotrophomonas maltophilia Infections. Clin. Infect. Dis. 2022, 74, 2089–2114. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization. WHO Bacterial Priority Pathogens List, 2024: Bacterial Pathogens of Public Health Importance to Guide Research, Development and Strategies to Prevent and Control Antimicrobial Resistance; World Health Organization: Geneva, Switzerland, 2024. [Google Scholar]
- European Centre for Disease Prevention and Control. Antimicrobial Resistance in the EU/EEA (EARS-Net)—Annual Epidemiological Report 2023; ECDC: Stockholm, Sweden, 2024. [Google Scholar]
- Spiliopoulou, A.; Giannopoulou, I.; Assimakopoulos, S.F.; Jelastopulu, E.; Bartzavali, C.; Marangos, M.; Paliogianni, F.; Kolonitsiou, F. Laboratory Surveillance of Acinetobacter spp. Bloodstream Infections in a Tertiary University Hospital during a 9-Year Period. Trop. Med. Infect. Dis. 2023, 8, 503. [Google Scholar] [CrossRef]
- Harding, C.M.; Hennon, S.W.; Feldman, M.F. Uncovering the mechanisms of Acinetobacter baumannii virulence. Nat. Rev. Microbiol. 2018, 16, 91–102. [Google Scholar] [CrossRef]
- Jean, S.S.; Harnod, D.; Hsueh, P.R. Global Threat of Carbapenem-Resistant Gram-Negative Bacteria. Front. Cell Infect. Microbiol. 2022, 12, 823684. [Google Scholar] [CrossRef]
- Zeng, M.; Xia, J.; Zong, Z.; Shi, Y.; Ni, Y.; Hu, F.; Chen, Y.; Zhuo, C.; Hu, B.; Lv, X.; et al. Guidelines for the diagnosis, treatment, prevention and control of infections caused by carbapenem-resistant gram-negative bacilli. J. Microbiol. Immunol. Infect. 2023, 56, 653–671. [Google Scholar] [CrossRef]
- Li, Q.; Zhou, X.; Yang, R.; Shen, X.; Li, G.; Zhang, C.; Li, P.; Li, S.; Xie, J.; Yang, Y. Carbapenem-resistant Gram-negative bacteria (CR-GNB) in ICUs: Resistance genes, therapeutics, and prevention—A comprehensive review. Front. Public. Health 2024, 12, 1376513. [Google Scholar] [CrossRef] [PubMed]
- Budia-Silva, M.; Kostyanev, T.; Ayala-Montano, S.; Bravo-Ferrer Acosta, J.; Garcia-Castillo, M.; Canton, R.; Goossens, H.; Rodriguez-Bano, J.; Grundmann, H.; Reuter, S. International and regional spread of carbapenem-resistant Klebsiella pneumoniae in Europe. Nat. Commun. 2024, 15, 5092. [Google Scholar] [CrossRef] [PubMed]
- Canton, R.; Akova, M.; Carmeli, Y.; Giske, C.G.; Glupczynski, Y.; Gniadkowski, M.; Livermore, D.M.; Miriagou, V.; Naas, T.; Rossolini, G.M.; et al. Rapid evolution and spread of carbapenemases among Enterobacteriaceae in Europe. Clin. Microbiol. Infect. 2012, 18, 413–431. [Google Scholar] [CrossRef]
- Nordmann, P. Carbapenemase-producing Enterobacteriaceae: Overview of a major public health challenge. Med. Mal. Infect. 2014, 44, 51–56. [Google Scholar] [CrossRef] [PubMed]
- Bonomo, R.A.; Burd, E.M.; Conly, J.; Limbago, B.M.; Poirel, L.; Segre, J.A.; Westblade, L.F. Carbapenemase-Producing Organisms: A Global Scourge. Clin. Infect. Dis. 2018, 66, 1290–1297. [Google Scholar] [CrossRef]
- Poirel, L.; Heritier, C.; Tolun, V.; Nordmann, P. Emergence of oxacillinase-mediated resistance to imipenem in Klebsiella pneumoniae. Antimicrob. Agents Chemother. 2004, 48, 15–22. [Google Scholar] [CrossRef] [PubMed]
- Martel, N.; Conquet, G.; Sababadichetty, L.; Benavides, J.A.; Godreuil, S.; Miltgen, G.; Dupont, C. Neglected class A carbapenemases: Systematic review of IMI/NmcA and FRI from a One Health perspective. Sci. Total Environ. 2025, 959, 178300. [Google Scholar] [CrossRef]
- Maina, J.W.; Onyambu, F.G.; Kibet, P.S.; Musyoki, A.M. Multidrug-resistant Gram-negative bacterial infections and associated factors in a Kenyan intensive care unit: A cross-sectional study. Ann. Clin. Microbiol. Antimicrob. 2023, 22, 85. [Google Scholar] [CrossRef]
- Tsachouridou, O.; Pilalas, D.; Nanoudis, S.; Antoniou, A.; Bakaimi, I.; Chrysanthidis, T.; Markakis, K.; Kassomenaki, A.; Mantzana, P.; Protonotariou, E.; et al. Mortality due to Multidrug-Resistant Gram-Negative Bacteremia in an Endemic Region: No Better than a Toss of a Coin. Microorganisms 2023, 11, 1711. [Google Scholar] [CrossRef]
- Martin, S.; Perez, A.; Aldecoa, C. Sepsis and Immunosenescence in the Elderly Patient: A Review. Front. Med. 2017, 4, 20. [Google Scholar] [CrossRef]
- Fernandez-Martinez, N.F.; Carcel-Fernandez, S.; De la Fuente-Martos, C.; Ruiz-Montero, R.; Guzman-Herrador, B.R.; Leon-Lopez, R.; Gomez, F.J.; Guzman-Puche, J.; Martinez-Martinez, L.; Salcedo-Leal, I. Risk Factors for Multidrug-Resistant Gram-Negative Bacteria Carriage upon Admission to the Intensive Care Unit. Int. J. Environ. Res. Public Health 2022, 19, 1039. [Google Scholar] [CrossRef] [PubMed]
- Garcia-Gigorro, R.; de la Cruz Vigo, F.; Andres-Esteban, E.M.; Chacon-Alves, S.; Morales Varas, G.; Sanchez-Izquierdo, J.A.; Montejo Gonzalez, J.C. Impact on patient outcome of emergency department length of stay prior to ICU admission. Med. Intensiva 2017, 41, 201–208. [Google Scholar] [CrossRef] [PubMed]
- Aletreby, W.T.; Brindley, P.G.; Balshi, A.N.; Huwait, B.M.; Alharthy, A.M.; Madi, A.F.; Ramadan, O.E.; Noor, A.S.N.; Alzayer, W.S.; Alodat, M.A.; et al. Delayed intensive care unit admission from the emergency department: Impact on patient outcomes. A retrospective study. Rev. Bras. Ter. Intensiva 2021, 33, 125–137. [Google Scholar] [CrossRef]
- Siwakoti, S.; Subedi, A.; Sharma, A.; Baral, R.; Bhattarai, N.R.; Khanal, B. Incidence and outcomes of multidrug-resistant gram-negative bacteria infections in intensive care unit from Nepal- a prospective cohort study. Antimicrob. Resist. Infect. Control 2018, 7, 114. [Google Scholar] [CrossRef]
- Lin, T.L.; Chang, P.H.; Chen, I.L.; Lai, W.H.; Chen, Y.J.; Li, W.F.; Lee, I.K.; Wang, C.C. Risk factors and mortality associated with multi-drug-resistant Gram-negative bacterial infection in adult patients following abdominal surgery. J. Hosp. Infect. 2022, 119, 22–32. [Google Scholar] [CrossRef] [PubMed]
- Jiang, A.M.; Liu, N.; Zhao, R.; Zheng, H.R.; Chen, X.; Fan, C.X.; Zhang, R.; Zheng, X.Q.; Fu, X.; Yao, Y.; et al. Clinical outcomes and prognostic factors in bloodstream infections due to extended-spectrum beta-lactamase-producing Enterobacteriaceae among patients with malignancy: A meta-analysis. Ann. Clin. Microbiol. Antimicrob. 2020, 19, 53. [Google Scholar] [CrossRef]
- Rodriguez-Bano, J.; Picon, E.; Gijon, P.; Hernandez, J.R.; Cisneros, J.M.; Pena, C.; Almela, M.; Almirante, B.; Grill, F.; Colomina, J.; et al. Risk factors and prognosis of nosocomial bloodstream infections caused by extended-spectrum-beta-lactamase-producing Escherichia coli. J. Clin. Microbiol. 2010, 48, 1726–1731. [Google Scholar] [CrossRef]
- Gualtero, S.; Valderrama, S.; Valencia, M.; Rueda, D.; Munoz-Velandia, O.; Ariza, B.; Cortes, G.; Salgado, D.; Porras, Y.; Nino, A. Factors associated with mortality in Infections caused by Carbapenem-resistant Enterobacteriaceae. J. Infect. Dev. Ctries. 2020, 14, 654–659. [Google Scholar] [CrossRef]
- Mann, E.A.; Baun, M.M.; Meininger, J.C.; Wade, C.E. Comparison of mortality associated with sepsis in the burn, trauma, and general intensive care unit patient: A systematic review of the literature. Shock 2012, 37, 4–16. [Google Scholar] [CrossRef]
- Tertemiz, K.C.; Kömüs, N.; Ellidokuz, H.; Sevinç, C.; Cımrın, A.H. Mortality and factors affecting mortality in chronic obstructive pulmonary disease. Tuberk. Ve Toraks 2012, 60, 114–122. [Google Scholar] [CrossRef]
- Gomez-Simmonds, A.; Nelson, B.; Eiras, D.P.; Loo, A.; Jenkins, S.G.; Whittier, S.; Calfee, D.P.; Satlin, M.J.; Kubin, C.J.; Furuya, E.Y. Combination Regimens for Treatment of Carbapenem-Resistant Klebsiella pneumoniae Bloodstream Infections. Antimicrob. Agents Chemother. 2016, 60, 3601–3607. [Google Scholar] [CrossRef] [PubMed]
- Zarkotou, O.; Pournaras, S.; Tselioti, P.; Dragoumanos, V.; Pitiriga, V.; Ranellou, K.; Prekates, A.; Themeli-Digalaki, K.; Tsakris, A. Predictors of mortality in patients with bloodstream infections caused by KPC-producing Klebsiella pneumoniae and impact of appropriate antimicrobial treatment. Clin. Microbiol. Infect. 2011, 17, 1798–1803. [Google Scholar] [CrossRef] [PubMed]
- Qureshi, Z.A.; Paterson, D.L.; Potoski, B.A.; Kilayko, M.C.; Sandovsky, G.; Sordillo, E.; Polsky, B.; Adams-Haduch, J.M.; Doi, Y. Treatment outcome of bacteremia due to KPC-producing Klebsiella pneumoniae: Superiority of combination antimicrobial regimens. Antimicrob. Agents Chemother. 2012, 56, 2108–2113. [Google Scholar] [CrossRef]
- Tumbarello, M.; Viale, P.; Viscoli, C.; Trecarichi, E.M.; Tumietto, F.; Marchese, A.; Spanu, T.; Ambretti, S.; Ginocchio, F.; Cristini, F.; et al. Predictors of mortality in bloodstream infections caused by Klebsiella pneumoniae carbapenemase-producing K. pneumoniae: Importance of combination therapy. Clin. Infect. Dis. 2012, 55, 943–950. [Google Scholar] [CrossRef]
- Shields, R.K.; Nguyen, M.H.; Chen, L.; Press, E.G.; Potoski, B.A.; Marini, R.V.; Doi, Y.; Kreiswirth, B.N.; Clancy, C.J. Ceftazidime-Avibactam Is Superior to Other Treatment Regimens against Carbapenem-Resistant Klebsiella pneumoniae Bacteremia. Antimicrob. Agents Chemother. 2017, 61, e00883-17. [Google Scholar] [CrossRef]
- van Duin, D.; Lok, J.J.; Earley, M.; Cober, E.; Richter, S.S.; Perez, F.; Salata, R.A.; Kalayjian, R.C.; Watkins, R.R.; Doi, Y.; et al. Colistin Versus Ceftazidime-Avibactam in the Treatment of Infections Due to Carbapenem-Resistant Enterobacteriaceae. Clin. Infect. Dis. 2018, 66, 163–171. [Google Scholar] [CrossRef]
- Chou, E.H.; Mann, S.; Hsu, T.C.; Hsu, W.T.; Liu, C.C.; Bhakta, T.; Hassani, D.M.; Lee, C.C. Incidence, trends, and outcomes of infection sites among hospitalizations of sepsis: A nationwide study. PLoS ONE 2020, 15, e0227752. [Google Scholar] [CrossRef]
- Park, S.Y.; Choo, J.W.; Kwon, S.H.; Yu, S.N.; Lee, E.J.; Kim, T.H.; Choo, E.J.; Jeon, M.H. Risk Factors for Mortality in Patients with Acinetobacter baumannii Bacteremia. Infect. Chemother. 2013, 45, 325–330. [Google Scholar] [CrossRef] [PubMed]
- Ayan, M.; Celik, A.K. Klebsiella pneumoniae infections in the intensive care unit: Risk factors related to carbapenem resistance and mortality. J. Infect. Dev. Ctries. 2025, 19, 248–257. [Google Scholar] [CrossRef]
- Khalili, Y.; Omidnia, P.; Goli, H.R.; Zamanlou, S.; Babaie, F.; Bialvaei, A.Z. Risk factors for mortality in hospitalized patients infected with carbapenem-resistant Pseudomonas aeruginosa in Iran. Germs 2022, 12, 344–351. [Google Scholar] [CrossRef]
- Du, X.; Xu, X.; Yao, J.; Deng, K.; Chen, S.; Shen, Z.; Yang, L.; Feng, G. Predictors of mortality in patients infected with carbapenem-resistant Acinetobacter baumannii: A systematic review and meta-analysis. Am. J. Infect. Control 2019, 47, 1140–1145. [Google Scholar] [CrossRef] [PubMed]
- Jonsson, A.B.; Rygard, S.L.; Hildebrandt, T.; Perner, A.; Moller, M.H.; Russell, L. Thrombocytopenia in intensive care unit patients: A scoping review. Acta Anaesthesiol. Scand. 2021, 65, 2–14. [Google Scholar] [CrossRef] [PubMed]
- Baddal, B.; Bağkur, C.; Arman, B. Early Prediction of Mortality due to Carbapenem-Resistant Gram-Negative Bacterial Infection in Intensive Care Units Using Machine Learning. Cyprus J. Med. Sci. 2025, 10, 46–49. [Google Scholar] [CrossRef]
- de Macedo, V.; Dos Santos, G.S.; da Silva, R.N.; Couto, C.N.M.; Bastos, C.; Viecelli, E.; Mateus, M.D.N.; Graf, M.E.; Goncalves, R.B.; da Silva, M.A.; et al. The health facility as a risk factor for multidrug-resistant gram-negative bacteria in critically ill patients with COVID-19. Clinics 2022, 77, 100130. [Google Scholar] [CrossRef]
- Azimzadeh, M.; Bahador, A.; Shiralizadeh, S.; Mahshouri, P.; Akbari, L.; Makari, S.; Rezaei, A.; Alikhani, M.S.; Alikhani, M.Y. A single-center analysis of clonal transmission of carbapenem-resistant Acinetobacter baumannii among intensive care unit patients during the COVID-19 pandemic. Sci. Rep. 2024, 14, 25897. [Google Scholar] [CrossRef]
- Scharer, V.; Meier, M.T.; Schuepbach, R.A.; Zinkernagel, A.S.; Boumasmoud, M.; Chakrakodi, B.; Brugger, S.D.; Frohlich, M.R.; Wolfensberger, A.; Sax, H.; et al. An intensive care unit outbreak with multi-drug-resistant Pseudomonas aeruginosa–spotlight on sinks. J. Hosp. Infect. 2023, 139, 161–167. [Google Scholar] [CrossRef]
- Zhang, X.; Li, F.; Awan, F.; Jiang, H.; Zeng, Z.; Lv, W. Molecular Epidemiology and Clone Transmission of Carbapenem-Resistant Acinetobacter baumannii in ICU Rooms. Front. Cell Infect. Microbiol. 2021, 11, 633817. [Google Scholar] [CrossRef] [PubMed]
- Kim, N.; Ko, S.Y.; Park, S.Y.; Kim, S.Y.; Lee, D.E.; Kwon, K.T.; Kim, Y.K.; Lee, J.C. Clonal Distribution and Its Association With the Carbapenem Resistance Mechanisms of Carbapenem-Non-Susceptible Pseudomonas aeruginosa Isolates From Korean Hospitals. Ann. Lab. Med. 2024, 44, 410–417. [Google Scholar] [CrossRef]
- Zeng, L.; Yang, C.; Zhang, J.; Hu, K.; Zou, J.; Li, J.; Wang, J.; Huang, W.; Yin, L.; Zhang, X. An Outbreak of Carbapenem-Resistant Klebsiella pneumoniae in an Intensive Care Unit of a Major Teaching Hospital in Chongqing, China. Front. Cell Infect. Microbiol. 2021, 11, 656070. [Google Scholar] [CrossRef]
- Charlson, M.E.; Pompei, P.; Ales, K.L.; MacKenzie, C.R. A new method of classifying prognostic comorbidity in longitudinal studies: Development and validation. J. Chronic Dis. 1987, 40, 373–383. [Google Scholar] [CrossRef]
- Huang, Y.Q.; Gou, R.; Diao, Y.S.; Yin, Q.H.; Fan, W.X.; Liang, Y.P.; Chen, Y.; Wu, M.; Zang, L.; Li, L.; et al. Charlson comorbidity index helps predict the risk of mortality for patients with type 2 diabetic nephropathy. J. Zhejiang Univ. Sci. B 2014, 15, 58–66. [Google Scholar] [CrossRef] [PubMed]
- Centers for Disease Control and Prevention (CDC). National Healthcare Safety Network (NHSN) Patient Safety Component Manual. 2022. Available online: https://www.cdc.gov/nhsn/pdfs/pscmanual/pcsmanual_current.pdf (accessed on 11 July 2025).
- Evans, L.; Rhodes, A.; Alhazzani, W.; Antonelli, M.; Coopersmith, C.M.; French, C.; Machado, F.R.; McIntyre, L.; Ostermann, M.; Prescott, H.C.; et al. Surviving sepsis campaign: International guidelines for management of sepsis and septic shock 2021. Intensive Care Med. 2021, 47, 1181–1247. [Google Scholar] [CrossRef] [PubMed]
- The European Committee on Antimicrobial Susceptibility Testing (EUCAST). Breakpoint Tables for Interpretation of MICs and Zone Diameters, Version 2024. Available online: https://www.eucast.org/clinical_breakpoints/ (accessed on 11 July 2025).
Group 1 (Survivor) n = 42 | Group 2 (Deceased) n = 53 | p | |
---|---|---|---|
Age, year | 66.7 ± 21.8 | 76.6 ± 10.5 | 0.078 |
Gender, female/male (n, %) | 20 (48)/22 (52) | 26 (49)/27 (51) | 0.889 |
Comorbidity (n, %) | |||
Diabetes mellitus | 15 (36) | 13 (25) | 0.264 |
Malignancy | 4 (9) | 13 (24) | 0.066 |
Cardiovascular disease | 10 (24) | 19 (36) | 0.264 |
Neurological disease | 11 (26) | 14 (26) | 0.999 |
Chronic pulmonary disease | 7 (17) | 22 (23) | 0.607 |
Chronic kidney disease | 1 (2) | 2 (4) | 0.999 |
Charlson Comorbidity Index | 4 (1–6) | 5 (3–8) | 0.024 |
Mild (n, %) | 8 (19) | 0 | |
Moderate (n, %) | 15 (36) | 24 (45) | 0.004 |
Severe (n, %) | 19 (45) | 29 (55) | |
Reason for intensive care admission (n, %) | 0.041 | ||
Sepsis, septic shock | 3 (7) | 11 (21) | |
Respiratory failure | 23 (55) | 34 (64) | |
Trauma | 11 (26) | 5 (9) | |
Cardiovascular arrest | 5 (12) | 3 (6) | |
Length of pre-intensive care hospitalization, days | 1 (1–40) | 1 (1–30) | 0.664 |
Length of intensive care stay before CR-GNB isolation, days | 11 (3–40) | 11 (1–65) | 0.652 |
Type of infection (n, %) | 0.326 | ||
Urinary tract infection | 10 (24) | 7 (13) | |
Ventilator-associated pneumonia | 18 (43) | 29 (55) | |
Bloodstream and catheter-related bloodstream infection | 9 (21) | 14 (26) | |
Wound site infection | 5 (12) | 3 (6) | |
Mechanical ventilator (n, %) | 34 (81) | 39 (74) | 0.398 |
Central venous catheterization (n, %) | 23 (55) | 32 (60) | 0.582 |
Urinary catheterization (n, %) | 38 (90) | 46 (87) | 0.577 |
Percutaneous endoscopic gastrostomy tube (n, %) | 12 (29) | 8 (15) | 0.110 |
Isolated Gram-negative bacteria (n, %) | 0.243 | ||
Pseudomonas aeruginosa | 2 (5) | 6 (11) | |
Acinetobacter baumanii | 24 (57) | 22 (42) | |
Klebsiella pnemonia | 16 (38) | 25 (47) | |
Antibiotics administered in treatment (n, %) | 0.227 | ||
Carbapenem | 15 (36) | 16 (30) | |
Beta-lactam/beta-lactamase inhibitor | 7 (17) | 17 (32) | |
Combination therapy | 20 (48) | 20 (38) | |
Duration of treatment, days | 14 (5–26) | 6 (1–14) | <0.001 |
WBC, cells/mm3 | 11,530 (2320–42,000) | 13,710 (680–33,370) | 0.173 |
Leukocytes, cells/mm3 | 9095 (1800–38,000) | 12,110 (590–32,401) | 0.085 |
Platelets, cells/mm3 | 223,000 (54,000–552,000) | 141,000 (12,000–415,000) | 0.001 |
CRP, mg/dL | 107.5 (7–335) | 149 (9–468) | 0.037 |
Steroid use in the last 30 days (n, %) | 27 (64) | 26 (49) | 0.138 |
Antibiotic use in the last 30 days (n, %) | 0.461 | ||
Combination therapy | 22 (52) | 22 (42) | |
Carbapenem | 1 (2) | 6 (11) | |
Quinolone | 3 (7) | 4 (8) | |
Beta-lactam/beta-lactamase inhibitor | 11 (26) | 11 (21) | |
Cephalosporin | 3 (7) | 4 (8) | |
No history of antibiotics | 2 (5) | 6 (11) | |
Surgery in the last 30 days (n, %) | 21 (50) | 16 (30) | 0.079 |
Exp (β) (%95 CI) | p | Model Significance | ||
---|---|---|---|---|
χ2 | p | |||
Age | 1.020 (1.002–1.038) | 0.032 | 4.690 | 0.030 |
Gender (ref: female) | 0.942 (0.550–1.615) | 0.828 | 0.047 | 0.828 |
Comorbidity (n, %) | ||||
Diabetes mellitus | 0.651 (0.334–1.272) | 0.209 | 1.602 | 0.206 |
Malignancy | 2.232 (1.180–4.220) | 0.014 | 6.431 | 0.011 |
Cardiovascular disease | 1.210 (0.685–2.136) | 0.511 | 0.432 | 0.510 |
Neurological disease | 0.836 (0.445–1.572) | 0.579 | 0.309 | 0.578 |
Chronic pulmonary disease | 1.116 (0.583–2.137) | 0.739 | 0.111 | 0.739 |
Chronic kidney disease | 1.171 (0.284–4.833) | 0.827 | 0.048 | 0.824 |
Charlson Comorbidity Index | 1.217 (1.028–1.440) | 0.023 | 5.183 | 0.023 |
Reason for intensive care admission (ref: sepsis) | 5.638 | 0.131 | ||
Respiratory failure | 0.762 (0.386–1.505) | 0.434 | ||
Trauma | 0.330 (0.114–1.052) | 0.060 | ||
Cardiovascular arrest | 0.405 (0.113–1.453) | 0.166 | ||
Duration of pre-intensive care hospitalization | 1.001 (0.962–1.042) | 0.953 | 0.003 | 0.953 |
Duration of intensive care before isolation | 0.997 (0.973–1.022) | 0.822 | 0.051 | 0.822 |
Type of infection (ref: urinary tract infection) | 0.913 | 0.822 | ||
Ventilator-associated pneumonia | 1.316 (0.572–3.028) | 0.519 | ||
Bloodstream and catheter-related bloodstream infection | 1.474 (0.591–3.678) | 0.406 | ||
Wound infection | 0.993 (0.256–3.846) | 0.991 | ||
Ventilator use (ref: none) | 0.667 (0.361–1.230) | 0.195 | 1.705 | 0.192 |
Central venous catheterization (ref: yes) | 1.165 (0.671–2.022) | 0.587 | 0.295 | 0.587 |
Urinary catheter (ref: yes) | 0.917 (0.414–2.033) | 0.832 | 0.045 | 0.832 |
Percutaneous endoscopic gastrostomy (ref: none) | 0.543 (0.256–1.153) | 0.112 | 2.608 | 0.106 |
Isolated Gram-negative bacteria (ref: Pseudomonas aeruginosa) | 3.106 | 0.212 | ||
Acinetobacter baumanii | 0.527 (0.214–1.302) | 0.165 | ||
Klebsiella pnemonia | 0.811 (0.332–1.980) | 0.645 | ||
Antibiotics administered in treatment (ref: carbapenem) | 1.767 | 0.413 | ||
Beta-lactam/beta-lactamase inhibitor | 1.296 (0.652–2.577) | 0.459 | ||
Combination therapy | 0.839 (0.433–1.625) | 0.603 | ||
WBC | 1.000 (0.999–1.001) | 0.792 | 0.070 | 0.792 |
Leukocyte | 1.000 (0.999–1.001) | 0.594 | 0.284 | 0.594 |
Platelets | 0.998 (0.997–0.999) | 0.001 | 12.074 | 0.001 |
CRP | 1.003 (1.001–1.005) | 0.049 | 3.891 | 0.049 |
Use of steroids in the last 30 days (ref: none) | 1.591 (0.928–2.729) | 0.091 | 2.899 | 0.089 |
Antibiotic history (ref: combination) | 9.111 | 0.105 | ||
Carbapenem | 2.459 (0.993–6.085) | 0.052 | ||
Quinolone | 1.283 (0.442–3.727) | 0.647 | ||
Beta-lactam/beta-lactamase inhibitor | 0.947 (0.459–1.953) | 0.882 | ||
Cephalosporin | 1.094 (0.377–3.175) | 0.869 | ||
No history of antibiotics | 2.793 (0.924–6.936) | 0.057 | ||
Diabetes (ref: none) | 0.75 (0.401–1.402) | 0.367 | 0.821 | 0.365 |
Surgical history in the last 30 days (ref: none) | 0.552 (0.306–1.095) | 0.058 | 4.027 | 0.051 |
Culture | Isolated Gram-Negative Bacteria | p | ||
---|---|---|---|---|
Pseudomonas aeruginosa | Acinetobacter baumanii | Klebsiella pnemonia | ||
Urine culture | 1 (13) | 5 (11) | 11 (27) | |
Tracheal aspirate culture | 3 (38) | 28 (61) | 16 (39) | 0.193 |
Bloodstream and catheter culture | 2 (25) | 10 (22) | 11 (27) | |
Wound site culture | 2 (25) | 3 (7) | 3 (7) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kerimoglu, E.; Catak, T.; Kilinc, A. Evaluation of Infections Caused by Carbapenem-Resistant Pseudomonas aeruginosa, Acinetobacter baumannii, and Klebsiella pneumoniae in an Intensive Care Unit: A Retrospective Study. Antibiotics 2025, 14, 700. https://doi.org/10.3390/antibiotics14070700
Kerimoglu E, Catak T, Kilinc A. Evaluation of Infections Caused by Carbapenem-Resistant Pseudomonas aeruginosa, Acinetobacter baumannii, and Klebsiella pneumoniae in an Intensive Care Unit: A Retrospective Study. Antibiotics. 2025; 14(7):700. https://doi.org/10.3390/antibiotics14070700
Chicago/Turabian StyleKerimoglu, Elif, Tuba Catak, and Anil Kilinc. 2025. "Evaluation of Infections Caused by Carbapenem-Resistant Pseudomonas aeruginosa, Acinetobacter baumannii, and Klebsiella pneumoniae in an Intensive Care Unit: A Retrospective Study" Antibiotics 14, no. 7: 700. https://doi.org/10.3390/antibiotics14070700
APA StyleKerimoglu, E., Catak, T., & Kilinc, A. (2025). Evaluation of Infections Caused by Carbapenem-Resistant Pseudomonas aeruginosa, Acinetobacter baumannii, and Klebsiella pneumoniae in an Intensive Care Unit: A Retrospective Study. Antibiotics, 14(7), 700. https://doi.org/10.3390/antibiotics14070700