Aerobic Uterine Pathogens in Dairy Cattle: Surveillance and Antimicrobial Resistance Profiles in Postpartum Endometritis
Abstract
1. Introduction
2. Results
3. Discussion
4. Materials and Methods
4.1. Study Design
4.2. Sample Collection
4.3. Bioethical Commission Statement
4.4. Pathogen Isolation and Identification
4.5. Antimicrobial Susceptibility Determination
4.6. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- LeBlanc, S.J.; Duffield, T.F.; Leslie, K.E.; Bateman, K.G.; Keefe, G.P.; Walton, J.S.; Johnson, W.H. Defining and diagnosing postpartum clinical endometritis and its impact on reproductive performance in dairy cows. J. Dairy Sci. 2002, 85, 2223–2236. [Google Scholar] [CrossRef] [PubMed]
- Husnain, A.; Arshad, U.; Poindexter, M.B.; Zimpel, R.; Marinho, M.N.; Perdomo, M.C.; Fan, P.; Jeong, K.C.; Nelson, C.D.; Sheldon, I.M.; et al. Induced endometritis in early lactation compromises production and reproduction in dairy cows. J. Dairy Sci. 2023, 106, 4198–4213. [Google Scholar] [CrossRef] [PubMed]
- Ciui, S.; Morar, A.; Tîrziu, E.; Herman, V.; Ban-Cucerzan, A.; Popa, S.A.; Morar, D.; Imre, M.; Olariu-Jurca, A.; Imre, K. Causes of Post-Mortem Carcass and Organ Condemnations and Economic Loss Assessment in a Cattle Slaughterhouse. Animals 2023, 13, 3339. [Google Scholar] [CrossRef] [PubMed]
- Nechifor, F.; Ciornei, Ș.G.; Drugociu, D.G.; Bădioi, D.P.; Bondoc, I.; Roșca, P. The Monitoring of Puerperal Gynecopathies in Cows. Rev. Rom. Med. Vet. 2024, 4, 43–48. [Google Scholar]
- Sanchez, L.; Campos-Chillon, F.; Sargolzaei, M.; Peterson, D.G.; Sprayberry, K.A.; McArthur, G.; Anderson, P.; Golden, B.; Pokharel, S.; Abo-Ismail, M.K. Molecular Mechanisms Associated with the Development of the Metritis Complex in Dairy Cattle. Genes 2024, 15, 439. [Google Scholar] [CrossRef]
- Giuliodori, M.J.; Magnasco, R.P.; Becu-Villalobos, D.; Lacau-Mengido, I.M.; Risco, C.A.; de la Sota, R.L. Metritis in dairy cows: Risk factors and reproductive performance. J. Dairy Sci. 2013, 96, 3621–3631. [Google Scholar] [CrossRef]
- Sheldon, I.M.; Lewis, G.S.; LeBlanc, S.; Gilbert, R.O. Defining postpartum uterine disease in cattle. Theriogenology 2006, 65, 1516–1530. [Google Scholar] [CrossRef]
- Sheldon, I.M.; Cronin, J.; Goetze, L.; Donofrio, G.; Schuberth, H.J. Defining postpartum uterine disease and the mechanisms of infection and immunity in the female reproductive tract in cattle. Biol. Reprod. 2009, 81, 1025–1032. [Google Scholar] [CrossRef]
- Várhidi, Z.; Csikó, G.; Bajcsy, Á.C.; Jurkovich, V. Uterine Disease in Dairy Cows: A Comprehensive Review Highlighting New Research Areas. Vet. Sci. 2024, 11, 66. [Google Scholar] [CrossRef]
- Gilbert, R.O.; Shin, S.T.; Guard, C.L.; Erb, H.N.; Frajblat, M. Prevalence of endometritis and its effects on reproductive performance of dairy cows. Theriogenology 2005, 64, 1879–1888. [Google Scholar] [CrossRef]
- Sheldon, I.M.; Williams, E.J.; Miller, A.N.; Nash, D.M.; Herath, S. Uterine diseases in cattle after parturition. Vet. J. 2008, 176, 115–121. [Google Scholar] [CrossRef]
- Kern, L.; Fodor, I.; Balogh, O.G.; Ózsvári, L.; Gábor, G. The impact of postpartum uterine diseases on reproductive performance and their economic losses on large Hungarian dairy farms. Magy. Állatorvosok Lapja 2018, 140, 717–726. [Google Scholar]
- Pérez-Báez, J.; Silva, T.V.; Risco, C.A.; Chebel, R.C.; Cunha, F.; De Vries, A.; Santos, J.E.P.; Lima, F.S.; Pinedo, P.; Schuenemann, G.M.; et al. The economic cost of metritis in dairy herds. J. Dairy Sci. 2021, 104, 3158–3168. [Google Scholar] [CrossRef] [PubMed]
- Galvão, K.N. Postpartum uterine diseases in dairy cows. Anim. Reprod. 2012, 9, 290–296. [Google Scholar] [CrossRef]
- Vallejo-Timaran, D.A.; Reyes, J.; Gilbert, R.O.; Lefebvre, R.C.; Palacio-Baena, L.G.; Maldonado-Estrada, J.G. Incidence, clinical patterns, and risk factors of postpartum uterine diseases in dairy cows from high-altitude tropical herds. J. Dairy Sci. 2021, 104, 9016–9026. [Google Scholar] [CrossRef]
- Drillich, M.; Wagener, K. Pathogenesis of uterine diseases in dairy cattle and implications for fertility. Anim. Reprod. 2018, 15 (Suppl. 1), 879. [Google Scholar] [CrossRef]
- Popa, S.A.; Morar, A.; Ban-Cucerzan, A.; Tîrziu, E.; Herman, V.; Imre, M.; Florea, T.; Morar, D.; Pătrînjan, R.-T.; Imre, K. First study in the frequency of isolation and phenotypic antimicrobial resistance profiles of pig and cattle origin Campylobacter strains in Romania. Vet. Res. Commun. 2024, 48, 2621–2627. [Google Scholar] [CrossRef]
- Sheldon, I.M.; Molinari, P.C.C.; Ormsby, T.J.R.; Bromfield, J.J. Preventing postpartum uterine disease in dairy cattle depends on avoiding, tolerating and resisting pathogenic bacteria. Theriogenology 2020, 150, 158–165. [Google Scholar] [CrossRef]
- Iancu, I.; Igna, V.; Popa, S.A.; Imre, K.; Pascu, C.; Costinar, L.; Degi, J.; Gligor, A.; Iorgoni, V.; Badea, C.; et al. Etiology and antimicrobial resistance of subclinical mastitis pathogens Staphylococcus aureus, Streptococcus spp. and Enterococcus spp. in sheep milk. Vet. Res. Commun. 2024, 49, 30. [Google Scholar] [CrossRef]
- Stanga, L.C.; Vaduba, D.M.B.; Grigoras, M.L.; Nussbaum, L.A.; Gurgus, D.; Strat, L.; Zamfir, A.S.; Poroch, V.; Folescu, R. Nosocomial infections distribution and impact in medical units. Rev. Chim. 2019, 70, 2265–2268. [Google Scholar] [CrossRef]
- Popa, I.; Imre, K.; Morar, A.; Iancu, I.; Iorgoni, V.; Bochiș, T.; Pop, C.; Gligor, A.; Florea, T.; Popa, S.A.; et al. Questionnaire-Based Survey Regarding the Rational Usage of Antimicrobial Agents in Food-Producing Animals in Romania. Vet. Sci. 2025, 12, 408. [Google Scholar] [CrossRef]
- Sikra, A.-A.; Popovici, I.; Borș, S.I.; Rîmbu, C.M.; Horhogea, C.; Pavel, G.; Ciornei, Ș.G.; Roșca, P.; Drugociu, D.G. Bacteriological and Cytological Findings in Postpartum Dairy Cows with Subclinical Endometritis. Rev. Rom. Med. Vet. 2023, 33, 17–25. [Google Scholar]
- Williams, E.J.; Fischer, D.P.; Noakes, D.E.; England, G.C.W.; Rycroft, A.; Dobson, H.; Sheldon, I.M. The Relationship between Uterine Pathogen Growth Density and Ovarian Function in the Postpartum Dairy Cow. Reprod. Domest. Anim. 2007, 42, 92–99. [Google Scholar] [CrossRef]
- Jeon, S.J.; Galvão, K.N. An Advanced Understanding of Uterine Microbial Ecology Associated with Metritis in Dairy Cows. Genom. Inform. 2018, 16, e21. [Google Scholar] [CrossRef]
- Zhang, K.; Feng, H.; Zhang, J.; Guo, Z.; Yan, Z.; Wang, G.; Wang, X.; Wang, L.; Li, J. Prevalence and molecular characterization of extended-spectrum β-lactamase-producing Escherichia coli isolates from dairy cattle with endometritis in Gansu Province, China. BMC Vet. Res. 2024, 20, 19. [Google Scholar] [CrossRef] [PubMed]
- Shafique, L.; Wu, S.; Aqib, A.I.; Ali, M.M.; Ijaz, M.; Naseer, M.A.; Sarwar, Z.; Ahmed, R.; Saleem, A.; Qudratullah; et al. Evidence-Based Tracking of MDR E. coli from Bovine Endometritis and Its Elimination by Effective Novel Thera-peutics. Antibiotics 2021, 10, 997. [Google Scholar] [CrossRef]
- Yamamura, F.; Sugiura, T.; Munby, M.; Shiokura, Y.; Murata, R.; Nakamura, T.; Fujiki, J.; Iwano, H. Relationship between Escherichia coli Virulence Factors, Notably kpsMTII, and Symptoms of Clinical Metritis and Endometritis in Dairy Cows. J. Vet. Med. Sci. 2022, 84, 420–428. [Google Scholar] [CrossRef]
- Adnane, M.; Chapwanya, A. Microbial Gatekeepers of Fertility in the Female Repro-ductive Microbiome of Cattle. Int. J. Mol. Sci. 2024, 25, 10923. [Google Scholar] [CrossRef] [PubMed]
- Mekibib, B.; Belachew, M.; Asrade, B.; Badada, G.; Abebe, R. Incidence of uterine infections, major bacteria and antimicrobial resistance in postpartum dairy cows in southern Ethiopia. BMC Microbiol. 2024, 24, 4. [Google Scholar] [CrossRef]
- Mahmoud, S.F.; Fayez, M.; Swelum, A.A.; Alswat, A.S.; Alkafafy, M.; Alzahrani, O.M.; Alsunaini, S.J.; Almuslem, A.; Al Amer, A.S.; Yusuf, S. Genetic Diversity, Biofilm Formation, and Antibiotic Resistance of Pseudomonas aeruginosa Isolated from Cow, Camel, and Mare with Clinical Endometritis. Vet. Sci. 2022, 9, 239. [Google Scholar] [CrossRef]
- Ballas, P.; Gabler, C.; Wagener, K.; Drillich, M.; Ehling-Schulz, M. Streptococcus uberis strains originating from bovine uteri provoke upregulation of pro-inflammatory factors mRNA expression of endometrial epithelial cells in vitro. Vet. Microbiol. 2020, 245, 108710. [Google Scholar] [CrossRef] [PubMed]
- Bicalho, M.L.S.; Machado, V.S.; Higgins, C.H.; Lima, F.S.; Bicalho, R.C. Genetic and Functional Analysis of the Bovine Uterine Microbiota. Part I: Metritis versus Healthy Cows. J. Dairy Sci. 2017, 100, 3850–3862. [Google Scholar] [CrossRef]
- Kotzamanidis, C.; Vafeas, G.; Giantzi, V.; Anastasiadou, S.; Mygdalias, S.; Malousi, A.; Loukia, E.; Daniel, S.; Zdragas, A. Staphylococcus aureus Isolated from Ruminants with Mastitis in Northern Greece Dairy Herds: Genetic Relatedness and Phenotypic and Genotypic Characterization. Toxins 2021, 13, 176. [Google Scholar] [CrossRef] [PubMed]
- Ballas, P.; Pothmann, H.; Pothmann, I.; Drillich, M.; Ehling-Schulz, M.; Wagener, K. Dynamics and Diversity of Intrauterine Anaerobic Microbiota in Dairy Cows with Clinical and Subclinical Endometritis. Animals 2023, 13, 82. [Google Scholar] [CrossRef] [PubMed]
- Tadesse, N. Prevalence and Multidrug Resistance Profiles of Escherichia coli in Dairy Farms. Int. J. Vet. Sci. Res. 2020, 6, 142–147. [Google Scholar] [CrossRef]
- Prestinaci, F.; Pezzotti, P.; Pantosti, A. Antimicrobial resistance: A global multifaceted phenomenon. Pathog. Glob. Health 2015, 109, 309–318. [Google Scholar] [CrossRef]
- Javed, M.U.; Hayat, M.T.; Mukhtar, H.; Imre, K. CRISPR-Cas9 system: A prospective pathway toward combatting antibiotic resistance. Antibiotics 2023, 12, 1075. [Google Scholar] [CrossRef]
- Schauer, B.; Wald, R.; Urbantke, V.; Loncaric, I.; Baumgartner, M. Tracing Mastitis Pathogens—Epidemiological Investigations of a Pseudomonas aeruginosa Mastitis Outbreak in an Austrian Dairy Herd. Animals 2021, 11, 279. [Google Scholar] [CrossRef]
- Bakht, P.; Ijaz, M.; Iqbal, M.Z.; Aslam, H.B.; Rehman, A. On-farm epidemiology and phylogenetic evaluation of methicillin and beta-lactam-resistant Staphylococcus aureus isolated from dairy cattle and buffaloes with endometritis. Iran. J. Vet. Res. 2024, 25, 98. [Google Scholar]
- Zouharova, M.; Nedbalcova, K.; Matiaskova, K.; Slama, P.; Matiasovic, J. Antimicrobial Susceptibility and Resistance Genes in Streptococcus uberis Isolated from Bovine Mastitis in the Czech Republic. Antibiotics 2023, 12, 1527. [Google Scholar] [CrossRef]
- Clinical and Laboratory Standard Institute (CLSI). Performance Standards for Antimicrobial Susceptibility Testing, 30th ed.; CLSI supplement M100; Clinical Laboratory Standard Institute: Wayne, PA, USA, 2020. [Google Scholar]
- Dotmatics®. Available online: https://www.graphpad.com/quickcalcs/contingency1/ (accessed on 28 March 2025).
Breed | Bacterial Isolates (n = 387) | ||||
---|---|---|---|---|---|
Escherichia coli (%) | Staphylococcus spp. (%) | Klebsiella spp. (%) | Streptococcus spp. (%) | Pseudomonas spp. (%) | |
Romanian Spotted | 56 (14.5) | 27 (7.0) | 21 (5.4) | 22 (5.7) | 15 (3.9) |
Simmental | 61 (15.8) | 19 (4.9) | 17 (4.4) | 17 (4.4) | 12 (3.1) |
Crossbreed | 57 (14.6) | 21 (5.4) | 18 (4.7) | 14 (3.6) | 10 (2.6) |
Total | 174 (44.9) | 67 (17.3) | 56 (14.5) | 53 (13.7) | 37 (9.6) |
Combination Type | Identified Pathogens | No. of Samples | Prevalence (No. of Samples/Total Isolated) | Total Isolated Strains |
---|---|---|---|---|
I | E. coli | 126 | 32.5% | 206 |
Staphylococcus spp. | 20 | 5.2% | ||
Klebsiella spp. | 15 | 3.9% | ||
Streptococcus spp. | 26 | 6.7% | ||
Pseudomonas spp. | 19 | 4.9% | ||
II | E. coli + Staphylococcus spp. | 21 | 5.4% | 75 × 2 a = 150 |
E. coli + Klebsiella spp. | 13 | 3.4% | ||
E. coli + Streptococcus spp. | 7 | 1.8% | ||
Staphylococcus spp. + Klebsiella spp. | 19 | 4.9% | ||
Streptococcus spp. + Pseudomonas spp. | 15 | 3.8% | ||
III | E. coli + Staphylococcus spp. + Klebsiella spp. | 4 | 1.2% | 6 × 3 b = 18 |
Streptococcus spp. + Klebsiella spp. + Pseudomonas spp. | 2 | 0.5% | ||
IV | E. coli + Staphylococcus spp. + Klebsiella spp. + Streptococcus spp. | 2 | 0.5% | 2 × 4 c = 8 |
V | E. coli + Staphylococcus spp. + Klebsiella spp. + Streptococcus spp. + Pseudomonas spp. | 1 | 0.3% | 1 × 5 d = 5 |
Antimicrobial | Species (No. Tested Strains) | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
Escherichia coli (n = 174) | Klebsiella spp. (n = 56) | Pseudomonas spp. (n = 37) | ||||||||
Class | Substance | S (%) | I (%) | R (%) | S (%) | I (%) | R (%) | S (%) | I (%) | R (%) |
β-lactams | AMC | 143 (82.2) | 13 (7.5) | 18 (10.3) | 45 (80.3) | 5 (8.8) | 6 (10.9) | 2 (5.4) | 1 (2.7) | 34 (91.9) |
AMP | 49 (28.0) | 11 (6.5) | 114 (65.5) | - | - | 56 (100) | - | - | 37 (100.0) | |
CN | 123 (70.7) | 13 (7.6) | 38 (21.7) | 27 (48.2) | 11 (19.6) | 18 (32.1) | 2 (5.4) | 2 (5.4) | 33 (89.2) | |
CFL | 119 (68.4) | 16 (9.0) | 39 (22.6) | 30 (53.6) | 10 (17.9) | 16 (28.6) | 3 (8.1) | 2 (5.4) | 32 (86.5) | |
CFP | 136 (78.3) | 10 (5.7) | 28 (16.0) | 33 (58.9) | 8 (14.3) | 15 (26.8) | 6 (16.2) | 3 (8.1) | 28 (75.7) | |
CEQ | 133 (76.4) | 13 (7.6) | 28 (16.0) | 39 (69.6) | 7 (12.5) | 10 (17.9) | 5 (13.5) | 3 (8.1) | 29 (78.4) | |
CEF | 149 (85.4) | 4 (2.5) | 21 (12.1) | 41 (73.2) | 5 (8.9) | 10 (17.4) | 31 (83.8) | 2 (5.4) | 4 (10.8) | |
TIC | 145 (83.2) | 11 (6.4) | 18 (10.4) | 36 (64.3) | 9 (16.1) | 11 (19.6) | 32 (86.5) | 2 (5.4) | 3 (8.1) | |
aminoglycosides | GEN | 135 (77.5) | 10 (5.8) | 29 (16.7) | 42 (75.0) | 2 (3.6) | 12 (21.4) | 26 (70.3) | 1 (2.7) | 10 (27.0) |
NEO | 94 (54.2) | 12 (7.1) | 67 (38.7) | 38 (67.9) | 6 (10.7) | 12 (21.4) | 15 (40.5) | 2 (5.4) | 20 (54.1) | |
fluoroquinolones | ENR | 87 (49.8) | 6 (3.7) | 81 (46.5) | 31 (55.4) | 1 (1.8) | 24 (43.5) | 15 (40.5) | 2 (5.4) | 20 (54.1) |
MAR | 107 (61.4) | 15 (8.4) | 53 (30.2) | 36 (64.3) | 1 (1.8) | 19 (33.9) | 17 (45.9) | 2 (5.4) | 18 (48.7) | |
FLU | 36 (20.5) | 10 (5.9) | 128 (73.6) | 23 (41.1) | 3 (5.4) | 30 (53.6) | 6 (16.2) | 3 (8.1) | 28 (75.7) | |
phenicols | FFC | 103 (59.1) | 17 (9.9) | 54 (31.0) | 35 (62.5) | 4 (7.1) | 17 (30.4) | 9 (24.3) | 3 (8.1) | 25 (67.6) |
polymyxins | PMB | 155 (89.0) | 6 (3.5) | 13 (7.5) | 54 (96.4) | 2 (3.6) | - | 33 (89.2) | 2 (5.4) | 2 (5.4) |
carbapenems | IPM | 171 (98.5) | 3 (1.5) | - | 56 (100) | - | - | 34 (91.9) | 1 (2.7) | 2 (5.4) |
tetracyclines | TET | 32 (18.4) | 9 (5.2) | 133 (76.4) | 20 (35.7) | 3 (5.4) | 33 (58.9) | 11 (29.7) | 4 (10.8) | 22 (59.5) |
sulfonamides | SXT | 50 (28.6) | 11 (6.3) | 113 (65.1) | 38 (67.9) | 5 (8.9) | 13 (23.2) | 3 (8.1) | 2 (5.4) | 32 (86.5) |
Antimicrobial | Species (No. Tested Strains) | ||||||
---|---|---|---|---|---|---|---|
Staphylococcus spp. (n = 67) | Streptococcus spp. (n = 53) | ||||||
Class | Substance | S (%) | I (%) | R (%) | S (%) | I (%) | R (%) |
β-lactams | AMP | 24 (35.8) | - | 43 (64.2) | 47 (88.7) | 3 (5.7) | 2 (4.7) |
PEN | 17 (25.9) | 7 (10.0) | 43 (64.1) | 48 (90.6) | 4 (7.5) | 1 (2.3) | |
CFL | 51 (76.1) | 5 (7.5) | 11 (16.4) | 40 (75.5) | 8 (15.1) | 5 (9.0) | |
CEQ | 52 (77.6) | 6 (9.0) | 9 (13.4) | n.a. | n.a. | n.a. | |
CEF | 56 (83.6) | 4 (6.0) | 7 (10.4) | 43 (81.1) | 6 (11.3) | 4 (7.0) | |
OXA | 55 (82.1) | 4 (6.0) | 8 (11.9) | n.a. | n.a. | n.a. | |
aminoglycosides | GEN | 53 (79.1) | 4 (6.0) | 10 (14.9) | 41 (77.4) | 7 (13.2) | 5 (9.3) |
KAN | 49 (73.1) | 5 (7.5) | 13 (19.4) | n.a. | n.a. | n.a. | |
NEO | 47 (70.1) | 6 (9.0) | 14 (20.9) | n.a. | n.a. | n.a. | |
macrolides | ERY | 45 (67.2) | 5 (7.5) | 17 (25.4) | 30 (56.6) | 7 (13.2) | 16 (30.2) |
TIL | 52 (77.6) | 5 (7.5) | 10 (14.9) | n.a. | n.a. | n.a. | |
TYL | 50 (74.6) | 6 (9.0) | 11 (16.4) | n.a. | n.a. | n.a. | |
lincosamides | CLI | 47 (70.1) | 6 (9.0) | 14 (20.9) | 39 (73.6) | 10 (18.9) | 4 (8.0) |
fluoroquinolones | ENR | 50 (74.6) | 7 (10.4) | 10 (14.9) | 38 (71.7) | 12 (22.6) | 4 (7.5) |
phenicols | FFC | 48 (71.6) | 6 (9.0) | 13 (19.4) | 42 (79.2) | 7 (13.2) | 4 (7.0) |
tetracyclines | TET | 29 (43.3) | 5 (7.5) | 33 (49.2) | 18 (34.0) | 6 (11.3) | 28 (53.5) |
sulfonamides | SXT | 33 (49.2) | 6 (9.0) | 28 (41.8) | 40 (75.5) | 9 (17.0) | 4 (8.0) |
Cefoxitin (MRSA) | 45 (67.2) | 8 (11.9) | 14 (20.9) | n.a. | n.a. | n.a. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Iancu, I.; Popa, S.A.; Degi, J.; Gligor, A.; Popa, I.; Iorgoni, V.; Nistor, P.; Imre, K.; Nichita, I.; Herman, V. Aerobic Uterine Pathogens in Dairy Cattle: Surveillance and Antimicrobial Resistance Profiles in Postpartum Endometritis. Antibiotics 2025, 14, 650. https://doi.org/10.3390/antibiotics14070650
Iancu I, Popa SA, Degi J, Gligor A, Popa I, Iorgoni V, Nistor P, Imre K, Nichita I, Herman V. Aerobic Uterine Pathogens in Dairy Cattle: Surveillance and Antimicrobial Resistance Profiles in Postpartum Endometritis. Antibiotics. 2025; 14(7):650. https://doi.org/10.3390/antibiotics14070650
Chicago/Turabian StyleIancu, Ionica, Sebastian Alexandru Popa, Janos Degi, Alexandru Gligor, Ionela Popa, Vlad Iorgoni, Paula Nistor, Kálmán Imre, Ileana Nichita, and Viorel Herman. 2025. "Aerobic Uterine Pathogens in Dairy Cattle: Surveillance and Antimicrobial Resistance Profiles in Postpartum Endometritis" Antibiotics 14, no. 7: 650. https://doi.org/10.3390/antibiotics14070650
APA StyleIancu, I., Popa, S. A., Degi, J., Gligor, A., Popa, I., Iorgoni, V., Nistor, P., Imre, K., Nichita, I., & Herman, V. (2025). Aerobic Uterine Pathogens in Dairy Cattle: Surveillance and Antimicrobial Resistance Profiles in Postpartum Endometritis. Antibiotics, 14(7), 650. https://doi.org/10.3390/antibiotics14070650