In Vitro Activity of Cefaclor/Beta-Lactamases Inhibitors (Clavulanic Acid and Sulbactam) Combination Against Extended-Spectrum Beta-Lactamase Producing Uropathogenic E. coli
Abstract
:1. Introduction
2. Results
2.1. Antibiogram Susceptibility Analysis of Selected Isolates
2.2. Analysis of CFC Combination with Selected Beta Lactamases Inhibitors
2.2.1. Disk Diffusion Method
2.2.2. MIC Determination of the Combination Strategies Using Broth Microdilution Method
2.2.3. Synergistic Analysis of Selected Combination by Disk Approximation Method
2.2.4. Time Kill Assay Results for Synergy Examination
3. Discussion
4. Materials and Methods
4.1. Isolates Collection
4.2. Phenotypic Confirmatory Testing for ESBL Production by Combination Disk Test (CDT)
4.3. Antimicrobial Susceptibility Testing of the Proposed Combination
4.3.1. Antimicrobial Agent Preparations
4.3.2. Kirby–Bauer Disk Diffusion Method
4.3.3. Broth Microdilution Assay
4.3.4. Disk Approximation Method
4.3.5. Time–Kill Assay
4.3.6. Data Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
ESBL | Extended-spectrum beta-lactamase |
BLI | Beta lactamase inhibitors |
BL | Beta lactamase |
MDR | Multi-drug resistance |
CFC | Cefaclor |
CA | Clavulanic acid |
SUL | Sulbactam |
AMA | Antimicrobial agent |
TZB | Tazobactam |
MIC | Minimum inhibitory concentration |
CLSI | Clinical laboratory Standard Institute |
References
- Willyard, C. The drug-resistant bacteria that pose the greatest health threats. Nature 2017, 543, 15. [Google Scholar] [CrossRef] [PubMed]
- Maczynska, B.; Frej-Madrzak, M.; Sarowska, J.; Woronowicz, K.; Choroszy-Krol, I.; Jama-Kmiecik, A. Evolution of Antibiotic Resistance in Escherichia coli and Klebsiella pneumoniae Clinical Isolates in a Multi-Profile Hospital over 5 Years (2017–2021). J. Clin. Med. 2023, 12, 2414. [Google Scholar] [CrossRef]
- Alameri, M.; Gharaibeh, L.; Alsous, M.; Yaghi, A.; Tanash, A.; Sa’id, S.; Sartawi, H. Antibiotic Prescription Practice and Resistance Patterns of Bacterial Isolates from a Neonatal Intensive Care Unit: A Retrospective Study from Jordan. Antibiotics 2025, 14, 105. [Google Scholar] [CrossRef]
- Castanheira, M.; Simner, P.J.; Bradford, P.A. Extended-spectrum beta-lactamases: An update on their characteristics, epidemiology and detection. JAC-Antimicrob. Resist. 2021, 3, dlab092. [Google Scholar] [CrossRef]
- Sageerabanoo, S.; Malini, A.; Mangaiyarkarasi, T.; Hemalatha, G. Phenotypic detection of extended spectrum beta-lactamase and Amp-C beta-lactamase producing clinical isolates in a Tertiary Care Hospital: A preliminary study. J. Nat. Sci. Biol. Med. 2015, 6, 383–387. [Google Scholar] [CrossRef]
- Bradford, P.A.; Bonomo, R.A.; Bush, K.; Carattoli, A.; Feldgarden, M.; Haft, D.H.; Ishii, Y.; Jacoby, G.A.; Klimke, W.; Palzkill, T.; et al. Consensus on beta-Lactamase Nomenclature. Antimicrob. Agents Chemother. 2022, 66, e0033322. [Google Scholar] [CrossRef]
- Tamma, P.D.; Heil, E.L.; Justo, J.A.; Mathers, A.J.; Satlin, M.J.; Bonomo, R.A. Infectious Diseases Society of America 2024 Guidance on the Treatment of Antimicrobial-Resistant Gram-Negative Infections. Clin. Infect. Dis. 2024, ciae403. [Google Scholar] [CrossRef]
- Rupp, M.E.; Fey, P.D. Extended spectrum beta-lactamase (ESBL)-producing Enterobacteriaceae: Considerations for diagnosis, prevention and drug treatment. Drugs 2003, 63, 353–365. [Google Scholar] [CrossRef]
- Carcione, D.; Siracusa, C.; Sulejmani, A.; Leoni, V.; Intra, J. Old and New Beta-Lactamase Inhibitors: Molecular Structure, Mechanism of Action, and Clinical Use. Antibiotics 2021, 10, 995. [Google Scholar] [CrossRef]
- Lee, J.; Pai, H.; Kim, Y.K.; Kim, N.H.; Eun, B.W.; Kang, H.J.; Park, K.H.; Choi, E.H.; Shin, H.Y.; Kim, E.C.; et al. Control of extended-spectrum beta-lactamase-producing Escherichia coli and Klebsiella pneumoniae in a children’s hospital by changing antimicrobial agent usage policy. J. Antimicrob. Chemother. 2007, 60, 629–637. [Google Scholar] [CrossRef]
- Chatzopoulou, M.; Reynolds, L. Role of antimicrobial restrictions in bacterial resistance control: A systematic literature review. J. Hosp. Infect. 2020, 104, 125–136. [Google Scholar] [CrossRef] [PubMed]
- Bingen, E.; Bidet, P.; Birgy, A.; Sobral, E.; Mariani, P.; Cohen, R. In vitro interaction between cefixime and amoxicillin-clavulanate against extended-spectrum-beta-lactamase-producing Escherichia coli causing urinary tract infection. J. Clin. Microbiol. 2012, 50, 2540–2541. [Google Scholar] [CrossRef]
- Campbell, J.D.; Lewis, J.S., II; McElmeel, M.L.; Fulcher, L.C.; Jorgensen, J.H. Detection of favorable oral cephalosporin-clavulanate interactions by in vitro disk approximation susceptibility testing of extended-spectrum-Beta-lactamase-producing members of the enterobacteriaceae. J. Clin. Microbiol. 2012, 50, 1023–1026. [Google Scholar] [CrossRef]
- Al-Tamimi, M.; Abu-Raideh, J.; Albalawi, H.; Shalabi, M.; Saleh, S. Effective Oral Combination Treatment for Extended-Spectrum Beta-Lactamase-Producing Escherichia coli. Microb. Drug Resist. 2019, 25, 1132–1141. [Google Scholar] [CrossRef] [PubMed]
- Stewart, A.G.; Bauer, M.J.; Butkiewicz, D.; Hinton, A.; Henderson, A.; Harris, P.N.A.; Paterson, D.L. In-vitro activity of oral third-generation cephalosporins plus clavulanate against ESBL-producing Enterobacterales isolates from the MERINO trial. Int. J. Antimicrob. Agents 2023, 62, 106858. [Google Scholar] [CrossRef]
- Saleem, T.; Zamir, A.; Rasool, M.F.; Imran, I.; Saeed, H.; Alqahtani, F. Exploring the pharmacokinetics of second-generation cephalosporin, cefaclor: A systematic review in healthy and diseased populations. Xenobiotica 2024, 54, 171–181. [Google Scholar] [CrossRef]
- Stamatiou, K.; Alevizos, A.; Petrakos, G.; Lentzas, I.; Papathanasiou, M.; Mariolis, A.; Panagopoulos, P.; Sofras, F. Study on the efficacy of cefaclor for the treatment of asymptomatic bacteriuria and lower urinary tract infections in pregnant women with a history of hypersensitivity to penicillin. Clin. Exp. Obstet. Gynecol. 2007, 34, 85–87. [Google Scholar]
- Meyers, B.R. Cefaclor revisited. Clin. Ther. 2000, 22, 154–166. [Google Scholar] [CrossRef] [PubMed]
- Koguchi, D.; Murakami, Y.; Ikeda, M.; Dobashi, M.; Ishii, J. Cefaclor as a first-line treatment for acute uncomplicated cystitis: A retrospective single-center study. BMC Urol. 2020, 20, 38. [Google Scholar] [CrossRef]
- Wayne, P. Performance Standards for Antimicrobial Susceptibility Testing, 33rd ed.; CLSI supplement M100; Clinical and Laboratory Standards Institute (CLSI): Malvern, PA, USA, 2023. [Google Scholar]
- Bognar, B.; Spohn, R.; Lazar, V. Drug combinations targeting antibiotic resistance. Npj Antimicrob. Resist. 2024, 2, 29. [Google Scholar] [CrossRef]
- Flores-Mireles, A.L.; Walker, J.N.; Caparon, M.; Hultgren, S.J. Urinary tract infections: Epidemiology, mechanisms of infection and treatment options. Nat. Rev. Microbiol. 2015, 13, 269–284. [Google Scholar] [CrossRef] [PubMed]
- Giske, C.G. Contemporary resistance trends and mechanisms for the old antibiotics colistin, temocillin, fosfomycin, mecillinam and nitrofurantoin. Clin. Microbiol. Infect. 2015, 21, 899–905. [Google Scholar] [CrossRef] [PubMed]
- Carter, M.W.; Oakton, K.J.; Warner, M.; Livermore, D.M. Detection of extended-spectrum beta-lactamases in klebsiellae with the Oxoid combination disk method. J. Clin. Microbiol. 2000, 38, 4228–4232. [Google Scholar] [CrossRef]
- Jacoby, G.A. AmpC beta-lactamases. Clin. Microbiol. Rev. 2009, 22, 161–182. [Google Scholar] [CrossRef]
- Manoharan, A.; Sugumar, M.; Kumar, A.; Jose, H.; Mathai, D.; Khilnani, G.C.; Kapil, A.; Francis, G.; Radhakrishnan, K.; Dutta, T.K.; et al. Phenotypic & molecular characterization of AmpC beta-lactamases among Escherichia coli, Klebsiella spp. & Enterobacter spp. from five Indian Medical Centers. Indian J. Med. Res. 2012, 135, 359–364. [Google Scholar]
- Peter-Getzlaff, S.; Polsfuss, S.; Poledica, M.; Hombach, M.; Giger, J.; Bottger, E.C.; Zbinden, R.; Bloemberg, G.V. Detection of AmpC beta-lactamase in Escherichia coli: Comparison of three phenotypic confirmation assays and genetic analysis. J. Clin. Microbiol. 2011, 49, 2924–2932. [Google Scholar] [CrossRef]
- Rodriguez-Bano, J.; Navarro, M.D.; Retamar, P.; Picon, E.; Pascual, A.; the Extended-Spectrum Beta-Lactamases–Red Española de Investigación en Patología Infecciosa/Grupo de Estudio de Infección Hospitalaria Group. Beta-Lactam/beta-lactam inhibitor combinations for the treatment of bacteremia due to extended-spectrum beta-lactamase-producing Escherichia coli: A post hoc analysis of prospective cohorts. Clin. Infect. Dis. 2012, 54, 167–174. [Google Scholar] [CrossRef] [PubMed]
- Tamma, P.D.; Han, J.H.; Rock, C.; Harris, A.D.; Lautenbach, E.; Hsu, A.J.; Avdic, E.; Cosgrove, S.E. Carbapenem therapy is associated with improved survival compared with piperacillin-tazobactam for patients with extended-spectrum beta-lactamase bacteremia. Clin. Infect. Dis. 2015, 60, 1319–1325. [Google Scholar] [CrossRef]
- Ng, T.M.; Khong, W.X.; Harris, P.N.; De, P.P.; Chow, A.; Tambyah, P.A.; Lye, D.C. Empiric Piperacillin-Tazobactam versus Carbapenems in the Treatment of Bacteraemia Due to Extended-Spectrum Beta-Lactamase-Producing Enterobacteriaceae. PLoS ONE 2016, 11, e0153696. [Google Scholar] [CrossRef]
- Strich, J.R.; Lawandi, A.; Warner, S.; Demirkale, C.Y.; Sarzynski, S.; Babiker, A.; Dekker, J.P.; Kadri, S.S. Association between piperacillin/tazobactam MIC and survival among hospitalized patients with Enterobacterales infections: Retrospective cohort analysis of electronic health records from 161 US hospitals. JAC-Antimicrob. Resist. 2023, 5, dlad041. [Google Scholar] [CrossRef]
- Susan, M.; Hariharan, T.S.; Sonya, J. A comparative in vitro study of cephalosporin/beta-lactamase inhibitor combinations against gram negative bacilli. Indian J. Physiol. Pharmacol. 2013, 57, 425–431. [Google Scholar]
- Abdelraouf, K.; Stainton, S.M.; Nicolau, D.P. In Vivo Pharmacodynamic Profile of Ceftibuten-Clavulanate Combination against Extended-Spectrum-beta-Lactamase-Producing Enterobacteriaceae in the Murine Thigh Infection Model. Antimicrob. Agents Chemother. 2019, 63, e00145-19. [Google Scholar] [CrossRef] [PubMed]
- Stewart, A.G.; Harris, P.N.A.; Henderson, A.; Schembri, M.A.; Paterson, D.L. Oral cephalosporin and beta-lactamase inhibitor combinations for ESBL-producing Enterobacteriaceae urinary tract infections. J. Antimicrob. Chemother. 2020, 75, 2384–2393. [Google Scholar] [CrossRef] [PubMed]
- Grupper, M.; Stainton, S.M.; Nicolau, D.P.; Kuti, J.L. In Vitro Pharmacodynamics of a Novel Ceftibuten-Clavulanate Combination Antibiotic against Enterobacteriaceae. Antimicrob. Agents Chemother. 2019, 63, e00144-19. [Google Scholar] [CrossRef] [PubMed]
- Pal, R.B.; Pal, P.; Jain, S.; Kulkarni, K.P. In vitro study to compare sensitivity of amoxicillin+clavulanic acid and cefpodoxime+clavulanic acid among beta-lactamase positive clinical isolates of gram-positive and gram-negative pathogens. J. Indian Med. Assoc. 2008, 106, 545–548. [Google Scholar]
- Rawat, D.; Hasan, A.S.; Capoor, M.R.; Sarma, S.; Nair, D.; Deb, M.; Pillai, P.; Aggarwal, P. In vitro evaluation of a new cefixime-clavulanic acid combination for gram-negative bacteria. Southeast Asian J. Trop. Med. Public Health 2009, 40, 131–139. [Google Scholar]
- Lai, C.C.; Chen, C.C.; Lu, Y.C.; Lin, T.P.; Chuang, Y.C.; Tang, H.J. Appropriate composites of cefoperazone-sulbactam against multidrug-resistant organisms. Infect. Drug Resist. 2018, 11, 1441–1445. [Google Scholar] [CrossRef]
- Chang, P.C.; Chen, C.C.; Lu, Y.C.; Lai, C.C.; Huang, H.L.; Chuang, Y.C.; Tang, H.J. The impact of inoculum size on the activity of cefoperazone-sulbactam against multidrug resistant organisms. J. Microbiol. Immunol. Infect. 2018, 51, 207–213. [Google Scholar] [CrossRef]
- Lee, N.; Yuen, K.Y.; Kumana, C.R. Clinical role of beta-lactam/beta-lactamase inhibitor combinations. Drugs 2003, 63, 1511–1524. [Google Scholar] [CrossRef]
- Drawz, S.M.; Bonomo, R.A. Three decades of beta-lactamase inhibitors. Clin. Microbiol. Rev. 2010, 23, 160–201. [Google Scholar] [CrossRef]
- Etani, T.; Naiki, T.; Yamaguchi, S.; Mori, S.; Nagai, T.; Iida, K.; Ando, R.; Kawai, N.; Tozawa, K.; Mogami, T.; et al. Antimicrobial susceptibility of pathogens in acute uncomplicated cystitis cases in the urology department of a community hospital in Japan: Comparison with treatment outcome and hospital-wide antibiogram. J. Infect. Chemother. 2017, 23, 692–697. [Google Scholar] [CrossRef] [PubMed]
- Kowalski, R.P.; Yates, K.A.; Romanowski, E.G.; Karenchak, L.M.; Mah, F.S.; Gordon, Y.J. An ophthalmologist’s guide to understanding antibiotic susceptibility and minimum inhibitory concentration data. Ophthalmology 2005, 112, 1987. [Google Scholar] [CrossRef] [PubMed]
- Gaudereto, J.J.; Neto, L.V.P.; Leite, G.C.; Espinoza, E.P.S.; Martins, R.C.R.; Villas Boa Prado, G.; Rossi, F.; Guimaraes, T.; Levin, A.S.; Costa, S.F. Comparison of methods for the detection of in vitro synergy in multidrug-resistant gram-negative bacteria. BMC Microbiol. 2020, 20, 97. [Google Scholar] [CrossRef]
- CLSI M26-A; Methods for Determining Bactericidal Activity of Antimicrobial Agents: Approved Guideline. National Committee for Clinical Laboratory Standards: Malvern, PA, USA, 1999.
- Katchanov, J.; Asar, L.; Klupp, E.M.; Both, A.; Rothe, C.; Konig, C.; Rohde, H.; Kluge, S.; Maurer, F.P. Carbapenem-resistant Gram-negative pathogens in a German university medical center: Prevalence, clinical implications and the role of novel beta-lactam/beta-lactamase inhibitor combinations. PLoS ONE 2018, 13, e0195757. [Google Scholar] [CrossRef] [PubMed]
Antimicrobial Agent | Total Isolates (n = 52) | |||
---|---|---|---|---|
S% | I% | R% | SDD% | |
Amoxicillin/Clavulanic acid | 28 | 22 | 50 | - |
Piperacillin/Tazobactam | 64 | 8 | 28 | - |
Cefuroxime | - | - | 100 | - |
Ceftazidime | 11 | 8 | 81 | - |
Ceftriaxone | 6 | - | 94 | - |
Cefepime | 14 | - | 72 | 14 |
Ertapenem | 100 | - | - | - |
Imipenem | 97 | - | 3 | - |
Meropenem | 97 | - | 3 | - |
Amikacin | 100 | - | - | - |
Gentamicin | 67 | - | 33 | - |
Ciprofloxacin | 11 | 17 | 72 | - |
Trimethoprim/Sulfamethoxazole | 25 | - | 75 | - |
Cefazolin | - | - | 100 | - |
Nitrofurantoin | 76 | 10 | 14 | - |
Fosfomycin | 92 | - | 8 | - |
AMAs | Total Isolates (n = 52) | ||
---|---|---|---|
Inhibition Zone Range (mm) * | Mean of Inhibition Zone (mm) † | Percent of Susceptibility Restoration (Number of Restored Isolates) ‡ | |
CFC | 0–18 | 6.6 | - |
CFC/CA | 0–27 | 16.4 | 54.0 (28) |
CFC/SUL | 0–28 | 18.3 | 56.0 (29) |
CFC/CA/SUL | 0–30 | 19.6 | 69.2 (36) |
CA | 0–12 | 1.7 | 0 (0) |
SUL | 0–14 | 8.7 | 0 (0) |
CA/SUL | 0–14 | 11.9 | 0 (0) |
AMAs | Total Isolates (n = 52) | |||
---|---|---|---|---|
MIC Range (µg/mL) * | MIC50 (µg/mL) † | MIC90 (µg/mL) † | % of CFC Susceptibility Restoration (Number of Restored Isolates) ‡ | |
CFC | 8–>128 | >128 | >128 | - |
CFC/CA | 4/2–128/64 | 8/4 | 128/64 | 56.0 (29) |
CFC/SUL | 8/4–128/64 | 8/4 | 128/64 | 56.0 (29) |
CFC/CA/SUL | 4/2–128/64 | 8/4/4 | 64/32/32 | 58.0 (30) |
CA/SUL | >64/>64 | >64/>64 | >64/>64 | 0.0 (0) |
CA | >64 | >64 | >64 | 0.0 (0) |
SUL | >64 | >64 | >64 | 0.0 (0) |
Interpretation Criteria | CFC/CA | CFC/SUL | CFC/CA/SUL |
---|---|---|---|
No synergy | 23 | 23 | 22 |
Partial synergy | 3 | 3 | 2 |
Full synergy | 26 | 26 | 28 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Atoom, A.; Alzubi, B.; Barakat, D.; Abu-Gheyab, R.; Ismail-Agha, D.; Al-Kaabneh, A.; Numan, N. In Vitro Activity of Cefaclor/Beta-Lactamases Inhibitors (Clavulanic Acid and Sulbactam) Combination Against Extended-Spectrum Beta-Lactamase Producing Uropathogenic E. coli. Antibiotics 2025, 14, 603. https://doi.org/10.3390/antibiotics14060603
Atoom A, Alzubi B, Barakat D, Abu-Gheyab R, Ismail-Agha D, Al-Kaabneh A, Numan N. In Vitro Activity of Cefaclor/Beta-Lactamases Inhibitors (Clavulanic Acid and Sulbactam) Combination Against Extended-Spectrum Beta-Lactamase Producing Uropathogenic E. coli. Antibiotics. 2025; 14(6):603. https://doi.org/10.3390/antibiotics14060603
Chicago/Turabian StyleAtoom, Ali, Bayan Alzubi, Dana Barakat, Rana Abu-Gheyab, Dalia Ismail-Agha, Awatef Al-Kaabneh, and Nawfal Numan. 2025. "In Vitro Activity of Cefaclor/Beta-Lactamases Inhibitors (Clavulanic Acid and Sulbactam) Combination Against Extended-Spectrum Beta-Lactamase Producing Uropathogenic E. coli" Antibiotics 14, no. 6: 603. https://doi.org/10.3390/antibiotics14060603
APA StyleAtoom, A., Alzubi, B., Barakat, D., Abu-Gheyab, R., Ismail-Agha, D., Al-Kaabneh, A., & Numan, N. (2025). In Vitro Activity of Cefaclor/Beta-Lactamases Inhibitors (Clavulanic Acid and Sulbactam) Combination Against Extended-Spectrum Beta-Lactamase Producing Uropathogenic E. coli. Antibiotics, 14(6), 603. https://doi.org/10.3390/antibiotics14060603