Physiologically Based Pharmacokinetic Modeling of Antibiotics in Children: Perspectives on Model-Informed Precision Dosing
Abstract
:1. Introduction
2. Pediatric PBPK Modeling
2.1. Pediatric PBPK Modeling Overview
2.2. Applications of Pediatric PBPK Modeling
3. Published Pediatric PBPK Models of Antibiotics
3.1. Literature Search
3.2. Included Articles
3.3. Dose Selection for Children of Different Ages
3.4. DDI Evaluation
3.5. PK/PD Analyses in Targeted Tissues
3.6. PK Prediction in Specific Pediatric Populations
3.7. PK Prediction for Preterm Neonates
3.8. Other Studies
4. Future Perspectives and Current Challenges for PBPK-Facilitated MIPD in Pediatric Antibiotic Therapy
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
ADME | absorption, distribution, metabolism, and excretion |
AUC | area under the curve |
Cmax | peak plasma concentration |
CSF | cranial cerebrospinal fluid |
DDI | drug–drug interaction |
FDA | U.S. Food and Drug Administration |
fT>MIC | time above minimum inhibitory concentration |
GA | gestational age |
GFR | glomerular filtration rate |
MIC | minimum inhibitory concentration |
MIPD | model-informed precision dosing |
MRSA | methicillin-resistant Staphylococcus aureus |
PBPK | physiologically based pharmacokinetic |
PD | pharmacodynamic |
PK | pharmacokinetic |
PMA | postmenstrual age |
PTA | probability of target attainment |
TDM | therapeutic drug monitoring |
References
- Landersdorfer, C.B.; Nation, R.L. Limitations of antibiotic MIC-based PK-PD metrics: Looking back to move forward. Front. Pharmacol. 2021, 12, 770518. [Google Scholar] [CrossRef] [PubMed]
- Berthaud, R.; Benaboud, S.; Hirt, D.; Genuini, M.; Oualha, M.; Castelle, M.; Briand, C.; Artru, S.; Norsa, L.; Boyer, O.; et al. Early Bayesian Dose Adjustment of Vancomycin Continuous Infusion in Children: A Randomized Controlled Trial. Antimicrob. Agents Chemother. 2019, 63, e01102-19. [Google Scholar] [CrossRef]
- Tu, Q.; Cotta, M.; Raman, S.; Graham, N.; Schlapbach, L.; Roberts, J.A. Individualized precision dosing approaches to optimize antimicrobial therapy in pediatric populations. Expert. Rev. Clin. Pharmacol. 2021, 14, 1383–1399. [Google Scholar] [CrossRef]
- Cella, M.; Knibbe, C.; Danhof, M.; Della Pasqua, O. What is the right dose for children? Br. J. Clin. Pharmacol. 2010, 70, 597–603. [Google Scholar] [CrossRef] [PubMed]
- Anderson, B.J.; Holford, N.H. Tips and traps analyzing pediatric PK data. Paediatr. Anaesth. 2011, 21, 222–237. [Google Scholar] [CrossRef]
- Holford, N.H. A size standard for pharmacokinetics. Clin. Pharmacokinet. 1996, 30, 329–332. [Google Scholar] [CrossRef] [PubMed]
- van Valkengoed, D.W.; Krekels, E.H.J.; Knibbe, C.A.J. All you need to know about allometric scaling: An integrative review on the theoretical basis, empirical evidence, and application in human pharmacology. Clin. Pharmacokinet. 2024, 64, 173–192. [Google Scholar] [CrossRef]
- Wu, Q.; Peters, S.A. A retrospective evaluation of allometry, population pharmacokinetics, and physiologically-based pharmacokinetics for pediatric dosing using clearance as a surrogate. CPT Pharmacomet. Syst. Pharmacol. 2019, 8, 220–229. [Google Scholar] [CrossRef]
- Liu, T.; Ghafoori, P.; Gobburu, J.V. Allometry is a reasonable choice in pediatric drug development. J. Clin. Pharmacol. 2017, 57, 469–475. [Google Scholar] [CrossRef]
- Upreti, V.V.; Wahlstrom, J.L. Meta-analysis of hepatic cytochrome P450 ontogeny to underwrite the prediction of pediatric pharmacokinetics using physiologically based pharmacokinetic modeling. J. Clin. Pharmacol. 2016, 56, 266–283. [Google Scholar] [CrossRef]
- Allegaert, K.; van den Anker, J. Ontogeny of phase I metabolism of drugs. J. Clin. Pharmacol. 2019, 59 (Suppl. 1), S33–S41. [Google Scholar] [CrossRef]
- Lu, H.; Rosenbaum, S. Developmental pharmacokinetics in pediatric populations. J. Pediatr. Pharmacol. Ther. 2014, 19, 262–276. [Google Scholar] [CrossRef] [PubMed]
- Zhou, W.; Johnson, T.N.; Bui, K.H.; Cheung, S.Y.A.; Li, J.; Xu, H.; Al-Huniti, N.; Zhou, D. Predictive performance of physiologically based pharmacokinetic (PBPK) modeling of drugs extensively metabolized by major cytochrome P450s in children. Clin. Pharmacol. Ther. 2018, 104, 188–200. [Google Scholar] [CrossRef] [PubMed]
- Mansoor, N.; Ahmad, T.; Alam Khan, R.; Sharib, S.M.; Mahmood, I. Prediction of clearance and dose of midazolam in preterm and term neonates: A comparative study between allometric scaling and physiologically based pharmacokinetic modeling. Am. J. Ther. 2019, 26, e32–e37. [Google Scholar] [CrossRef]
- Leong, R.; Vieira, M.L.; Zhao, P.; Mulugeta, Y.; Lee, C.S.; Huang, S.M.; Burckart, G.J. Regulatory experience with physiologically based pharmacokinetic modeling for pediatric drug trials. Clin. Pharmacol. Ther. 2012, 91, 926–931. [Google Scholar] [CrossRef] [PubMed]
- Yellepeddi, V.; Rower, J.; Liu, X.; Kumar, S.; Rashid, J.; Sherwin, C.M.T. State-of-the-art review on physiologically based pharmacokinetic modeling in pediatric drug development. Clin. Pharmacokinet. 2019, 58, 1–13. [Google Scholar] [CrossRef]
- Wicha, S.G.; Märtson, A.G.; Nielsen, E.I.; Koch, B.C.P.; Friberg, L.E.; Alffenaar, J.W.; Minichmayr, I.K. From therapeutic drug monitoring to model-informed precision dosing for antibiotics. Clin. Pharmacol. Ther. 2021, 109, 928–941. [Google Scholar] [CrossRef]
- Maharaj, A.R.; Barrett, J.S.; Edginton, A.N. A workflow example of PBPK modeling to support pediatric research and development: Case study with lorazepam. AAPS J. 2013, 15, 455–464. [Google Scholar] [CrossRef]
- Maharaj, A.R.; Edginton, A.N. Physiologically based pharmacokinetic modeling and simulation in pediatric drug development. CPT Pharmacomet. Syst. Pharmacol. 2014, 3, e150. [Google Scholar] [CrossRef]
- Verscheijden, L.F.M.; Koenderink, J.B.; Johnson, T.N.; de Wildt, S.N.; Russel, F.G.M. Physiologically-based pharmacokinetic models for children: Starting to reach maturation? Pharmacol. Ther. 2020, 211, 107541. [Google Scholar] [CrossRef]
- Zhou, X.; Dun, J.; Chen, X.; Xiang, B.; Dang, Y.; Cao, D. Predicting the correct dose in children: Role of computational pediatric physiological-based pharmacokinetics modeling tools. CPT Pharmacomet. Syst. Pharmacol. 2023, 12, 13–26. [Google Scholar] [CrossRef] [PubMed]
- Jones, H.; Rowland-Yeo, K. Basic concepts in physiologically based pharmacokinetic modeling in drug discovery and development. CPT Pharmacomet. Syst. Pharmacol. 2013, 2, e63. [Google Scholar] [CrossRef] [PubMed]
- Batchelor, H.K.; Marriott, J.F. Paediatric pharmacokinetics: Key considerations. Br. J. Clin. Pharmacol. 2015, 79, 395–404. [Google Scholar] [CrossRef]
- Wagner, C.; Zhao, P.; Pan, Y.; Hsu, V.; Grillo, J.; Huang, S.M.; Sinha, V. Application of physiologically based pharmacokinetic (PBPK) modeling to support dose selection: Report of an FDA public workshop on PBPK. CPT Pharmacomet. Syst. Pharmacol. 2015, 4, 226–230. [Google Scholar] [CrossRef]
- Small, B.G.; Johnson, T.N.; Rowland Yeo, K. Another step toward qualification of pediatric physiologically based pharmacokinetic models to facilitate inclusivity and diversity in pediatric clinical studies. Clin. Pharmacol. Ther. 2023, 113, 735–745. [Google Scholar] [CrossRef]
- Wang, K.; Jiang, K.; Wei, X.; Li, Y.; Wang, T.; Song, Y. Physiologically based pharmacokinetic models are effective support for pediatric drug development. AAPS PharmSciTech 2021, 22, 208. [Google Scholar] [CrossRef] [PubMed]
- van Hoogdalem, M.W.; Wexelblatt, S.L.; Akinbi, H.T.; Vinks, A.A.; Mizuno, T. A review of pregnancy-induced changes in opioid pharmacokinetics, placental transfer, and fetal exposure: Towards fetomaternal physiologically-based pharmacokinetic modeling to improve the treatment of neonatal opioid withdrawal syndrome. Pharmacol. Ther. 2022, 234, 108045. [Google Scholar] [CrossRef]
- van Hoogdalem, M.W.; Tanaka, R.; Abduljalil, K.; Johnson, T.N.; Wexelblatt, S.L.; Akinbi, H.T.; Vinks, A.A.; Mizuno, T. Forecasting fetal buprenorphine exposure through maternal-fetal physiologically based pharmacokinetic modeling. Pharmaceutics 2024, 16, 375. [Google Scholar] [CrossRef]
- Allegaert, K.; Abbasi, M.Y.; Annaert, P.; Olafuyi, O. Current and future physiologically based pharmacokinetic (PBPK) modeling approaches to optimize pharmacotherapy in preterm neonates. Expert. Opin. Drug Metab. Toxicol. 2022, 18, 301–312. [Google Scholar] [CrossRef]
- Khalid, S.; Rasool, M.F.; Masood, I.; Imran, I.; Saeed, H.; Ahmad, T.; Alqahtani, N.S.; Alshammari, F.A.; Alqahtani, F. Application of a physiologically based pharmacokinetic model in predicting captopril disposition in children with chronic kidney disease. Sci. Rep. 2023, 13, 2697. [Google Scholar] [CrossRef]
- Gerhart, J.G.; Balevic, S.; Sinha, J.; Perrin, E.M.; Wang, J.; Edginton, A.N.; Gonzalez, D. Characterizing pharmacokinetics in children with obesity-physiological, drug, patient, and methodological considerations. Front. Pharmacol. 2022, 13, 818726. [Google Scholar] [CrossRef] [PubMed]
- Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E.; et al. The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. PLoS Med. 2021, 18, e1003583. [Google Scholar] [CrossRef] [PubMed]
- Hornik, C.P.; Wu, H.; Edginton, A.N.; Watt, K.; Cohen-Wolkowiez, M.; Gonzalez, D. Development of a pediatric physiologically-based pharmacokinetic model of clindamycin using opportunistic pharmacokinetic data. Clin. Pharmacokinet. 2017, 56, 1343–1353. [Google Scholar] [CrossRef]
- Thompson, E.J.; Wu, H.; Maharaj, A.; Edginton, A.N.; Balevic, S.J.; Cobbaert, M.; Cunningham, A.P.; Hornik, C.P.; Cohen-Wolkowiez, M. Physiologically based pharmacokinetic modeling for trimethoprim and sulfamethoxazole in children. Clin. Pharmacokinet. 2019, 58, 887–898. [Google Scholar] [CrossRef]
- Willmann, S.; Frei, M.; Sutter, G.; Coboeken, K.; Wendl, T.; Eissing, T.; Lippert, J.; Stass, H. Application of physiologically-based and population pharmacokinetic modeling for dose finding and confirmation during the pediatric development of moxifloxacin. CPT Pharmacomet. Syst. Pharmacol. 2019, 8, 654–663. [Google Scholar] [CrossRef]
- Martins, F.S.; Martins, J.E.S.; Severino, P.; Annaert, P.; Sy, S.K.B. Physiologically based pharmacokinetic modelling to inform combination dosing regimens of ceftaroline and daptomycin in special populations. Br. J. Clin. Pharmacol. 2023, 89, 2726–2738. [Google Scholar] [CrossRef]
- Liang, L.; Li, W.; Zhang, Z.; Li, D.; Pu, S.; Xiang, R.; Zhai, F. Develop adult extrapolation to pediatrics and pediatric dose optimization based on the physiological pharmacokinetic model of azithromycin. Biopharm. Drug Dispos. 2023, 44, 245–258. [Google Scholar] [CrossRef] [PubMed]
- US Food and Drug Administration, Center for Drug Evaluation and Research. Clinical Drug Interaction Studies—Study Design, Data Analysis, and Clinical Implications Guidance for Industry. Available online: https://www.regulations.gov/document/FDA-2017-D-5961-0002 (accessed on 5 December 2024).
- Salem, F.; Rostami-Hodjegan, A.; Johnson, T.N. Do children have the same vulnerability to metabolic drug–drug interactions as adults? A critical analysis of the literature. J. Clin. Pharmacol. 2013, 53, 559–566. [Google Scholar] [CrossRef]
- Salerno, S.N.; Carreño, F.O.; Edginton, A.N.; Cohen-Wolkowiez, M.; Gonzalez, D. Leveraging physiologically based pharmacokinetic modeling and experimental data to guide dosing modification of CYP3A-mediated drug-drug interactions in the pediatric population. Drug Metab. Dispos. 2021, 49, 844–855. [Google Scholar] [CrossRef]
- Litjens, C.H.C.; Verscheijden, L.F.M.; Bolwerk, C.; Greupink, R.; Koenderink, J.B.; van den Broek, P.H.H.; van den Heuvel, J.; Svensson, E.M.; Boeree, M.J.; Magis-Escurra, C.; et al. Prediction of moxifloxacin concentrations in tuberculosis patient populations by physiologically based pharmacokinetic modeling. J. Clin. Pharmacol. 2022, 62, 385–396. [Google Scholar] [CrossRef]
- Tachibana, M.; Tanaka, M.; Masubuchi, Y.; Horie, T. Acyl glucuronidation of fluoroquinolone antibiotics by the UDP-glucuronosyltransferase 1A subfamily in human liver microsomes. Drug Metab. Dispos. 2005, 33, 803–811. [Google Scholar] [CrossRef] [PubMed]
- Senggunprai, L.; Yoshinari, K.; Yamazoe, Y. Selective role of sulfotransferase 2A1 (SULT2A1) in the N-sulfoconjugation of quinolone drugs in humans. Drug Metab. Dispos. 2009, 37, 1711–1717. [Google Scholar] [CrossRef] [PubMed]
- Brillault, J.; De Castro, W.V.; Harnois, T.; Kitzis, A.; Olivier, J.C.; Couet, W. P-glycoprotein-mediated transport of moxifloxacin in a Calu-3 lung epithelial cell model. Antimicrob. Agents Chemother. 2009, 53, 1457–1462. [Google Scholar] [CrossRef]
- Wenning, L.A.; Hanley, W.D.; Brainard, D.M.; Petry, A.S.; Ghosh, K.; Jin, B.; Mangin, E.; Marbury, T.C.; Berg, J.K.; Chodakewitz, J.A.; et al. Effect of rifampin, a potent inducer of drug-metabolizing enzymes, on the pharmacokinetics of raltegravir. Antimicrob. Agents Chemother. 2009, 53, 2852–2856. [Google Scholar] [CrossRef]
- Greiner, B.; Eichelbaum, M.; Fritz, P.; Kreichgauer, H.P.; von Richter, O.; Zundler, J.; Kroemer, H.K. The role of intestinal P-glycoprotein in the interaction of digoxin and rifampin. J. Clin. Investig. 1999, 104, 147–153. [Google Scholar] [CrossRef] [PubMed]
- Jager, N.G.L.; van Hest, R.M.; Lipman, J.; Roberts, J.A.; Cotta, M.O. Antibiotic exposure at the site of infection: Principles and assessment of tissue penetration. Expert. Rev. Clin. Pharmacol. 2019, 12, 623–634. [Google Scholar] [CrossRef]
- Finazzi, S.; Luci, G.; Olivieri, C.; Langer, M.; Mandelli, G.; Corona, A.; Viaggi, B.; Di Paolo, A. Tissue penetration of antimicrobials in intensive care unit patients: A systematic review-part I. Antibiotics 2022, 11, 1164. [Google Scholar] [CrossRef]
- van Os, W.; Pham, A.D.; Eberl, S.; Minichmayr, I.K.; van Hasselt, J.G.C.; Zeitlinger, M. Integrative model-based comparison of target site-specific antimicrobial effects: A case study with ceftaroline and lefamulin. Int. J. Antimicrob. Agents 2024, 63, 107148. [Google Scholar] [CrossRef]
- Balbas-Martinez, V.; Michelet, R.; Edginton, A.N.; Meesters, K.; Trocóniz, I.F.; Vermeulen, A. Physiologically-based pharmacokinetic model for ciprofloxacin in children with complicated urinary tract infection. Eur. J. Pharm. Sci. 2019, 128, 171–179. [Google Scholar] [CrossRef]
- Zhu, S.; Zhang, J.; Lv, Z.; Zhu, P.; Oo, C.; Yu, M.; Sy, S.K.B. Prediction of tissue exposures of meropenem, colistin, and sulbactam in pediatrics using physiologically based pharmacokinetic modeling. Clin. Pharmacokinet. 2022, 61, 1427–1441. [Google Scholar] [CrossRef]
- Litjens, C.H.C.; Verscheijden, L.F.M.; Svensson, E.M.; van den Broek, P.H.H.; van Hove, H.; Koenderink, J.B.; Russel, F.G.M.; Aarnoutse, R.E.; Te Brake, L.H.M. Physiologically-based pharmacokinetic modelling to predict the pharmacokinetics and pharmacodynamics of linezolid in adults and children with tuberculous meningitis. Antibiotics 2023, 12, 702. [Google Scholar] [CrossRef] [PubMed]
- Wu, M.; Feng, K.; Wu, X.; Liu, C.; Zhu, S.; Martins, F.S.; Yu, M.; Lv, Z.; Yan, M.; Sy, S.K.B. Prediction of tissue exposures of polymyxin-B, amikacin and sulbactam using physiologically-based pharmacokinetic modeling. Front. Microbiol. 2024, 15, 1435906. [Google Scholar] [CrossRef] [PubMed]
- Zhu, S.; Song, C.; Zhang, J.; Diao, S.; Heinrichs, T.M.; Martins, F.S.; Lv, Z.; Zhu, Y.; Yu, M.; Sy, S.K.B. Effects of amikacin, polymyxin-B, and sulbactam combination on the pharmacodynamic indices of mutant selection against multi-drug resistant Acinetobacter baumannii. Front. Microbiol. 2022, 13, 1013939. [Google Scholar] [CrossRef] [PubMed]
- Singh, B.; Cocker, D.; Ryan, H.; Sloan, D.J. Linezolid for drug-resistant pulmonary tuberculosis. Cochrane Database Syst. Rev. 2019, 3, Cd012836. [Google Scholar] [CrossRef]
- Verscheijden, L.F.M.; Koenderink, J.B.; de Wildt, S.N.; Russel, F.G.M. Development of a physiologically-based pharmacokinetic pediatric brain model for prediction of cerebrospinal fluid drug concentrations and the influence of meningitis. PLoS Comput. Biol. 2019, 15, e1007117. [Google Scholar] [CrossRef]
- Emoto, C.; Johnson, T.N.; McPhail, B.T.; Vinks, A.A.; Fukuda, T. Using a vancomycin PBPK model in special populations to elucidate case-based clinical PK observations. CPT Pharmacomet. Syst. Pharmacol. 2018, 7, 237–250. [Google Scholar] [CrossRef]
- Ye, L.; Ke, M.; You, X.; Huang, P.; Lin, C. A physiologically based pharmacokinetic model of ertapenem in pediatric patients with renal impairment. J. Pharm. Sci. 2020, 109, 2909–2918. [Google Scholar] [CrossRef]
- Zhou, J.; You, X.; Ke, M.; Ye, L.; Wu, W.; Huang, P.; Lin, C. Dosage adjustment for ceftazidime in pediatric patients with renal impairment using physiologically based pharmacokinetic modeling. J. Pharm. Sci. 2021, 110, 1853–1862. [Google Scholar] [CrossRef]
- Zhou, J.; You, X.; Guo, G.; Ke, M.; Xu, J.; Ye, L.; Wu, W.; Huang, P.; Lin, C. Ceftaroline dosage optimized for pediatric patients with renal impairment using physiologically based pharmacokinetic modeling. J. Clin. Pharmacol. 2021, 61, 1646–1656. [Google Scholar] [CrossRef]
- Xu, J.; Lin, R.; Chen, Y.; You, X.; Huang, P.; Lin, C. Physiologically based pharmacokinetic modeling and dose adjustment of teicoplanin in pediatric patients with renal impairment. J. Clin. Pharmacol. 2022, 62, 620–630. [Google Scholar] [CrossRef]
- Gerhart, J.G.; Carreño, F.O.; Edginton, A.N.; Sinha, J.; Perrin, E.M.; Kumar, K.R.; Rikhi, A.; Hornik, C.P.; Harris, V.; Ganguly, S.; et al. Development and evaluation of a virtual population of children with obesity for physiologically based pharmacokinetic modeling. Clin. Pharmacokinet. 2022, 61, 307–320. [Google Scholar] [CrossRef] [PubMed]
- Li, S.; Xie, F. Foetal and neonatal exposure prediction and dosing evaluation for ampicillin using a physiologically-based pharmacokinetic modelling approach. Br. J. Clin. Pharmacol. 2023, 89, 1402–1412. [Google Scholar] [CrossRef]
- NCD Risk Factor Collaboration (NCD-RisC). Worldwide trends in underweight and obesity from 1990 to 2022: A pooled analysis of 3663 population-representative studies with 222 million children, adolescents, and adults. Lancet 2024, 403, 1027–1050. [Google Scholar] [CrossRef]
- Hanley, M.J.; Abernethy, D.R.; Greenblatt, D.J. Effect of obesity on the pharmacokinetics of drugs in humans. Clin. Pharmacokinet. 2010, 49, 71–87. [Google Scholar] [CrossRef] [PubMed]
- Brill, M.J.; Diepstraten, J.; van Rongen, A.; van Kralingen, S.; van den Anker, J.N.; Knibbe, C.A. Impact of obesity on drug metabolism and elimination in adults and children. Clin. Pharmacokinet. 2012, 51, 277–304. [Google Scholar] [CrossRef]
- Lim, S.Y.; Miller, J.L. Ampicillin dose for early and late-onset Group B Streptococcal disease in neonates. Am. J. Perinatol. 2022, 39, 717–725. [Google Scholar] [CrossRef] [PubMed]
- Schrag, S.J.; Verani, J.R. Intrapartum antibiotic prophylaxis for the prevention of perinatal group B streptococcal disease: Experience in the United States and implications for a potential group B streptococcal vaccine. Vaccine 2013, 31 (Suppl. 4), D20–D26. [Google Scholar] [CrossRef]
- Abduljalil, K.; Ning, J.; Pansari, A.; Pan, X.; Jamei, M. Prediction of maternal and fetoplacental concentrations of cefazolin, cefuroxime, and amoxicillin during pregnancy using bottom-up physiologically based pharmacokinetic models. Drug Metab. Dispos. 2022, 50, 386–400. [Google Scholar] [CrossRef]
- Neeli, H.; Hanna, N.; Abduljalil, K.; Cusumano, J.; Taft, D.R. Application of physiologically based pharmacokinetic-pharmacodynamic modeling in preterm neonates to guide gentamicin dosing decisions and predict antibacterial effect. J. Clin. Pharmacol. 2021, 61, 1356–1365. [Google Scholar] [CrossRef]
- Youn, T.E.; Mangum, O.B. Neofax: A Manual of Drugs Used in Neonatal Care; Thomson Reuters: Toronto, ON, Canada, 2011. [Google Scholar]
- Ganguly, S.; Edginton, A.N.; Gerhart, J.G.; Cohen-Wolkowiez, M.; Greenberg, R.G.; Gonzalez, D. Physiologically based pharmacokinetic modeling of meropenem in preterm and term infants. Clin. Pharmacokinet. 2021, 60, 1591–1604. [Google Scholar] [CrossRef]
- Li, Q.; Guan, Y.; Xia, C.; Wu, L.; Zhang, H.; Wang, Y. Physiologically-based pharmacokinetic modeling and dosing optimization of cefotaxime in preterm and term neonates. J. Pharm. Sci. 2024, 113, 2605–2615. [Google Scholar] [CrossRef] [PubMed]
- Duan, P.; Fisher, J.W.; Yoshida, K.; Zhang, L.; Burckart, G.J.; Wang, J. Physiologically based pharmacokinetic prediction of linezolid and emtricitabine in neonates and infants. Clin. Pharmacokinet. 2017, 56, 383–394. [Google Scholar] [CrossRef]
- Nguyen, P.T.T.; Parvez, M.M.; Kim, M.J.; Ho Lee, J.; Ahn, S.; Ghim, J.L.; Shin, J.G. Development of a physiologically based pharmacokinetic model of ethionamide in the pediatric population by integrating flavin-containing monooxygenase 3 maturational changes over time. J. Clin. Pharmacol. 2018, 58, 1347–1360. [Google Scholar] [CrossRef] [PubMed]
- Martins, F.S.; Zhu, P.; Heinrichs, M.T.; Sy, S.K.B. Physiologically based pharmacokinetic-pharmacodynamic evaluation of meropenem plus fosfomycin in paediatrics. Br. J. Clin. Pharmacol. 2021, 87, 1012–1023. [Google Scholar] [CrossRef] [PubMed]
- Idkaidek, N.; Hamadi, S.; Bani-Domi, R.; Al-Adham, I.; Alsmadi, M.; Awaysheh, F.; Aqrabawi, H.; Al-Ghazawi, A.; Rabayah, A. Saliva versus plasma therapeutic drug monitoring of gentamicin in Jordanian preterm infants. Development of a physiologically-based pharmacokinetic (PBPK) model and validation of class II drugs of salivary excretion classification system. Drug Res. 2020, 70, 455–462. [Google Scholar] [CrossRef]
- Guimarães, M.; Somville, P.; Vertzoni, M.; Fotaki, N. Investigating the critical variables of azithromycin oral absorption using in vitro tests and PBPK modeling. J. Pharm. Sci. 2021, 110, 3874–3888. [Google Scholar] [CrossRef]
- Darlow, C.A.; Parrott, N.; Peck, R.W.; Hope, W. Development and application of neonatal physiology-based pharmacokinetic models of amikacin and fosfomycin to assess pharmacodynamic target attainment. CPT Pharmacomet. Syst. Pharmacol. 2024, 13, 464–475. [Google Scholar] [CrossRef]
- Ritz, N.; Bielicki, J.; Pfister, M.; van den Anker, J. Therapeutic Drug Monitoring for Anti-infective Agents in Pediatrics: The Way Forward. Pediatr. Infect. Dis. J. 2016, 35, 570–572. [Google Scholar] [CrossRef] [PubMed]
- Meibohm, B.; Läer, S.; Panetta, J.C.; Barrett, J.S. Population pharmacokinetic studies in pediatrics: Issues in design and analysis. AAPS J. 2005, 7, E475–E487. [Google Scholar] [CrossRef]
- Guo, Y.; Chu, X.; Parrott, N.J.; Brouwer, K.L.R.; Hsu, V.; Nagar, S.; Matsson, P.; Sharma, P.; Snoeys, J.; Sugiyama, Y.; et al. Advancing predictions of tissue and intracellular drug concentrations using in vitro, imaging and physiologically based pharmacokinetic modeling approaches. Clin. Pharmacol. Ther. 2018, 104, 865–889. [Google Scholar] [CrossRef]
- Bordeau, B.M.; Polli, J.R.; Schweser, F.; Grimm, H.P.; Richter, W.F.; Balthasar, J.P. Dynamic contrast-enhanced magnetic resonance imaging for the prediction of monoclonal antibody tumor disposition. Int. J. Mol. Sci. 2022, 23, 679. [Google Scholar] [CrossRef]
- Tucker, G.T. Personalized drug dosage—Closing the loop. Pharm. Res. 2017, 34, 1539–1543. [Google Scholar] [CrossRef] [PubMed]
- Polasek, T.M.; Tucker, G.T.; Sorich, M.J.; Wiese, M.D.; Mohan, T.; Rostami-Hodjegan, A.; Korprasertthaworn, P.; Perera, V.; Rowland, A. Prediction of olanzapine exposure in individual patients using physiologically based pharmacokinetic modelling and simulation. Br. J. Clin. Pharmacol. 2018, 84, 462–476. [Google Scholar] [CrossRef] [PubMed]
- Fendt, R.; Hofmann, U.; Schneider, A.R.P.; Schaeffeler, E.; Burghaus, R.; Yilmaz, A.; Blank, L.M.; Kerb, R.; Lippert, J.; Schlender, J.F.; et al. Data-driven personalization of a physiologically based pharmacokinetic model for caffeine: A systematic assessment. CPT Pharmacomet. Syst. Pharmacol. 2021, 10, 782–793. [Google Scholar] [CrossRef]
- Gerhart, J.G.; Carreño, F.O.; Loop, M.S.; Lee, C.R.; Edginton, A.N.; Sinha, J.; Kumar, K.R.; Kirkpatrick, C.M.; Hornik, C.P.; Gonzalez, D. Use of real-world data and physiologically-based pharmacokinetic modeling to characterize enoxaparin disposition in children With obesity. Clin. Pharmacol. Ther. 2022, 112, 391–403. [Google Scholar] [CrossRef]
- Mostafa, S.; Rafizadeh, R.; Polasek, T.M.; Bousman, C.A.; Rostami-Hodjegan, A.; Stowe, R.; Carrion, P.; Sheffield, L.J.; Kirkpatrick, C.M.J. Virtual twins for model-informed precision dosing of clozapine in patients with treatment-resistant schizophrenia. CPT Pharmacomet. Syst. Pharmacol. 2024, 13, 424–436. [Google Scholar] [CrossRef]
- Samei, E.; Abadi, E.; Bakic, P.; Bliznakova, K.; Bosmans, H.; Carton, A.K.; Frangi, A.F.; Glick, S.; Lo, J.Y.; Kinahan, P.; et al. Virtual imaging trials in medicine: A brief takeaway of the lessons from the first international summit. Med. Phys. 2025, 52, 1950–1959. [Google Scholar] [CrossRef] [PubMed]
- Cheng, Y.H.; Thomas, S.; Tsang, Y.C.; Almeida, S.; Ashraf, M.; Fotaki, N.; Heimbach, T.; Patel, N.; Shah, H.; Jiang, X.; et al. Advances in Physiologically Based Pharmacokinetic (PBPK) Modeling and its Regulatory Utility to Support Oral Drug Product Development and Harmonization. Pharm. Res. 2025. [Google Scholar] [CrossRef]
- Dinh, J.; Johnson, T.N.; Grimstein, M.; Lewis, T. Physiologically Based Pharmacokinetics Modeling in the Neonatal Population-Current Advances, Challenges, and Opportunities. Pharmaceutics 2023, 15, 2579. [Google Scholar] [CrossRef]
Study Drug | Age | Optimized Dosing Regimen | Reference | Current Pediatric Dosing Regimen | Adult Dosing Regimen |
---|---|---|---|---|---|
Clindamycin | 0–5 months | 9 mg/kg every 8 h *1 | Hornik CP et al., Clin Pharmacokinet. 2017 [33] | 20–40 mg/kg/day divided into 6–8 h | 600 mg every 8 or 12 h |
>5 months–1 year | 12 mg/kg every 8 h *1 | ||||
>1–6 years | |||||
>6–12 years | 10 mg/kg every 8 h *1 | ||||
>12–18 years | |||||
Trimethoprim (sulfamethoxazole) | >2–5 months | 30 mg/kg (6 mg/kg) every 12 h *2 | Thompson EJ et al., Clin Pharmacokinet. 2019 [34] | 8–12 mg/kg/day (40–60 mg/kg/day) divided into 12 h | 160 mg (800 mg) every 12 h |
>5 months–1 year | |||||
>1–6 years | |||||
>6–12 years | |||||
>12–18 years | 20 mg/kg (4 mg/kg) every 12 h *2 | ||||
Moxifloxacin | 3 months–<2 years | 9–10 mg/kg every 12 h | Willmann S et al., CPT Pharmacometrics Syst Pharmacol. 2019 [35] | 7.5–10 mg/kg every 24 h | 400 mg every 24 h |
2–<6 years | 7–8 mg/kg every 12 h | ||||
6–<12 years | 5–6 mg/kg every 12 h | ||||
12–<18 years | 200 mg every 12 h (>45 kg) | ||||
Daptomycin Ceftaroline | 2–<6 years | 7 mg/kg every 24 h *3 12 mg/kg every 8 h *3 | Martins FS et al., Br J Clin Pharmacol. 2023 [36] | 5–9 mg/kg every 24 h 12 mg/kg every 8 h | 4–6 mg/kg every 24 h 600 mg every 24 h |
6–<12 years | |||||
12–<18 years | |||||
Azithromycin | 0.5–2 years | Day 1: 8.8 mg/kg; Days 2–5: 4.4 mg/kg *4 | Liang L et al., Biopharm Drug Dispos. 2023 [37] | 10 mg/kg every 24 h | 500 mg every 24 h |
3–6 years | Day 1: 9.2 mg/kg; Days 2–5: 4.6 mg/kg *4 | ||||
7–12 years | Day 1: 9.4 mg/kg; Days 2–5: 4.7 mg/kg *4 | ||||
13–18 years | Day 1: 8.2 mg/kg; Days 2–5: 4.1 mg/kg *4 |
Study Drug | Tissue | Age (Years) | Dose | AUC Ratio (Plasma/Tissue) | PK/PD Indices | PK/PD Breakpoint or Reaching Threshold | Reference |
---|---|---|---|---|---|---|---|
Colistin | Plasma | 2–<6 | 5 mg/kg q8h | 1 | fAUC/MIC ≥ 7.4 | 1 µg/mL | Zhu S et al., Clin Pharmacokinet. 2022 [51] |
6–<12 | 1 | 2 µg/mL | |||||
12–<18 | 1 | 2 µg/mL | |||||
Heart | 2–<6 | 0.15 | 0.5 µg/mL | ||||
6–<12 | 0.15 | 1 µg/mL | |||||
12–<18 | 0.15 | 1 µg/mL | |||||
Lung | 2–<6 | 0.56 | 1 µg/mL | ||||
6–<12 | 0.56 | 1 µg/mL | |||||
12–<18 | 0.56 | 1 µg/mL | |||||
Skin | 2–<6 | 0.42 | 2 µg/mL | ||||
6–<12 | 0.42 | 2 µg/mL | |||||
12–<18 | 0.42 | 4 µg/mL | |||||
Meropenem | Plasma | 2–<6 | 30 mg/kg q8h | 1 | fT > MIC ≥ 40% | 8 µg/mL | |
6–<12 | 1 | 8 µg/mL | |||||
12–<18 | 1 | 8 µg/mL | |||||
Heart | 2–<6 | 0.21 | 1 µg/mL | ||||
6–<12 | 0.2 | 2 µg/mL | |||||
12–<18 | 0.2 | 2 µg/mL | |||||
Lung | 2–<6 | 0.37 | 2 µg/mL | ||||
6–<12 | 0.37 | 2 µg/mL | |||||
12–<18 | 0.37 | 4 µg/mL | |||||
Skin | 2–<6 | 0.63 | 4 µg/mL | ||||
6–<12 | 0.63 | 4 µg/mL | |||||
12–<18 | 0.63 | 8 µg/mL | |||||
Sulbactam | Plasma | 2–<6 | 40 mg/kg q8h | 1 | fT > MIC ≥ 60% | 4 µg/mL | |
6–<12 | 1 | 4 µg/mL | |||||
12–<18 | 1 | 8 µg/mL | |||||
Heart | 2–<6 | 0.51 | 2 µg/mL | ||||
6–<12 | 0.51 | 2 µg/mL | |||||
12–<18 | 0.51 | 4 µg/mL | |||||
Lung | 2–<6 | 0.51 | 4 µg/mL | ||||
6–<12 | 0.52 | 4 µg/mL | |||||
12–<18 | 0.5 | 8 µg/mL | |||||
Skin | 2–<6 | 0.28 | 2 µg/mL | ||||
6–<12 | 0.29 | 2 µg/mL | |||||
12–<18 | 0.27 | 2 µg/mL | |||||
Polymyxin-B | Plasma | 2–<18 | 1.25 mg/kg q12h | 1 | fAUC0–24/MIC ≥ 8.2 | 2 µg/mL | Wu M et al., Front Microbiol. 2024 [53] |
Heart | 1.07 | 4 µg/mL | |||||
Lung | 2.99 | 4 µg/mL | |||||
Skin | 1.56 | 8 µg/mL | |||||
Amikacin | Plasma | 15 mg/kg q12h | 1 | fAUC0–24/MIC ≥ 80 | 4 µg/mL *1 | ||
Heart | 1.1 | 4 µg/mL *1 | |||||
Lung | 0.51 | 1 µg/mL *1 | |||||
Skin | 0.42 | 1 µg/mL *1 | |||||
Sulbactam | Plasma | 1.5 g q6h | 1 | fT > MIC ≥ 40% | 8 µg/mL *1 | ||
Heart | 0.51 | 4 µg/mL *1 | |||||
Lung | 0.51 | 4 µg/mL *1 | |||||
Skin | 0.29–0.31 | 4 µg/mL *1 | |||||
Linezolid | Plasma | 0.25–<21 | 10 mg/kg q12h | 1 | AUC/MIC > 119 | 93% *2 | Litjens CHC et al., Antibiotics (Basel). 2023 [52] |
T > MIC > 80% | 100% *2 | ||||||
Cranial CSF | 0.67 | AUC/MIC > 119 | 56% *2 | ||||
T > MIC > 80% | 100% *2 |
Study Drug | Age | eGFR (mL/min/1.73 m2) | Optimized Dosing Regimen | Reference |
---|---|---|---|---|
Ertapenem | ≤12 years | 60–89 | 13 mg/kg every 2 h *2 | Ye L et al., J Pharm Sci. 2020 [58] |
30–59 | 9 mg/kg every 2 h *2 | |||
15–29 | 6 mg/kg every 2 h *2 | |||
<15 | 5 mg/kg every 2 h *2 | |||
Ceftazidime | 1 month–12 years *1 | 60–89 | 50 mg/kg every 8 h *2 | Zhou J et al., J Pharm Sci. 2021 [59] |
30–59 | 28 mg/kg every 8 h *2 | |||
15–29 | 15 mg/kg every 8 h *2 | |||
<15 | 8 mg/kg every 8 h *2 | |||
Ceftaroline | 2–<18 years | 60–89 | 12 mg/kg every 8 h *2 | Zhou J et al., J Clin Pharmacol. 2021 [60] |
30–59 | 8 mg/kg every 8 h *2 | |||
15–29 | 6 mg/kg every 8 h *2 | |||
<15 | 5 mg/kg every 8 h *2 | |||
2 months–<2 years | 60–89 | 8 mg/kg every 8 h *2 | ||
30–59 | 5 mg/kg every 8 h *2 | |||
15–29 | 4 mg/kg every 8 h *2 | |||
<15 | 3 mg/kg every 8 h *2 | |||
0–<2 months | 60–89 | 6 mg/kg every 8 h *2 | ||
30–59 | 4 mg/kg every 8 h *2 | |||
15–29 | 3.5 mg/kg every 8 h *2 | |||
<15 | 2.5 mg/kg every 8 h *2 | |||
Teicoplanin | 2–12 years | 60–89 | 12 mg/kg every 12 h *3 | Xu J et al., J Clin Pharmacol. 2022 [61] |
30–59 | 9.5 mg/kg every 12 h *3 | |||
15–29 | 6 mg/kg every 12 h *3 | |||
<15 | 4 mg/kg every 12 h *3 |
Study Drug | GA or PMA | PNA | Optimized Dosing Regimen | Reference |
---|---|---|---|---|
Gentamicin | PMA 30–34 weeks | 0–7 days | 4.5 mg/kg every 36 h *1 | Neeli H et al., J Clin Pharmacol. 2021 [70] |
8–28 days | 5 mg/kg every 36 h | |||
PMA ≥ 35 weeks | 0–7 days | 5 mg/kg every 36 h | ||
8–28 days | 4 mg/kg every 24 h *1 | |||
Meropenem | GA < 32 weeks | <14 days | 20 mg/kg every 12 h | Ganguly S et al., Clin Pharmacokinet. 2021 [72] |
>=14 days | 20 mg/kg every 8 h | |||
GA ≥ 32 weeks | <14 days | 20 mg/kg every 8 h | ||
>=14 days | 30 mg/kg every 8 h | |||
Cefotaxime | GA < 36 weeks | 0–6 days *2 | 25 mg/kg every 8 h | Li Q et al., J Pharm Sci. 2024 [73] |
7–28 days *3 | 25 mg/kg every 6 h | |||
GA ≥ 36 weeks | 0–6 days *2 | 33 mg/kg every 8 h | ||
7–28 days *3 | 33 mg/kg every 6 h |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tanaka, R.; Irie, K.; Mizuno, T. Physiologically Based Pharmacokinetic Modeling of Antibiotics in Children: Perspectives on Model-Informed Precision Dosing. Antibiotics 2025, 14, 541. https://doi.org/10.3390/antibiotics14060541
Tanaka R, Irie K, Mizuno T. Physiologically Based Pharmacokinetic Modeling of Antibiotics in Children: Perspectives on Model-Informed Precision Dosing. Antibiotics. 2025; 14(6):541. https://doi.org/10.3390/antibiotics14060541
Chicago/Turabian StyleTanaka, Ryota, Kei Irie, and Tomoyuki Mizuno. 2025. "Physiologically Based Pharmacokinetic Modeling of Antibiotics in Children: Perspectives on Model-Informed Precision Dosing" Antibiotics 14, no. 6: 541. https://doi.org/10.3390/antibiotics14060541
APA StyleTanaka, R., Irie, K., & Mizuno, T. (2025). Physiologically Based Pharmacokinetic Modeling of Antibiotics in Children: Perspectives on Model-Informed Precision Dosing. Antibiotics, 14(6), 541. https://doi.org/10.3390/antibiotics14060541