One Health at Risk: Plasmid-Mediated Spread of mcr-1 Across Clinical, Agricultural, and Environmental Ecosystems
Abstract
1. Introduction
2. Global Dissemination of the mcr Gene
3. Plasmids Harboring the mcr Gene
3.1. Structural and Functional Overview of IncI2 Plasmids
3.2. Structural and Functional Overview of IncHI2 Plasmids
3.3. Structural and Functional Overview of IncX4 Plasmids
3.4. Other Less-Reported Plasmids
3.4.1. Multi-Replicon Plasmids
3.4.2. IncF Plasmids
3.4.3. IncFIB Plasmids
3.4.4. IncFII Plasmids
3.4.5. IncHI1 Plasmids
3.4.6. Phage-like Plasmids
4. Chromosomal Integration of the mcr Gene
5. Insertion Sequences Driving mcr Mobilization
Replicon Type | IS Elements | Tn Elements | Reference |
---|---|---|---|
IncX4 | |||
IS26 | Tn2 | [166] | |
IS26 | None | [167] | |
ΔIS5 | None | [115] | |
ISEc69 | None | [168] | |
ISKpn26 | None | [142] | |
IS26 | None | [169] | |
None | None | [116] | |
IncHI2 | |||
ISApl1 | None | [116] | |
IS26 | None | [150] | |
IS26, ISApl1 | None | [68] | |
None | None | [46] | |
IncI2 | |||
ISApl1 | Tn6330 | [160] | |
ISApl1 | None | [170] | |
IS1, ISApl1 | None | [144] | |
ISEcp1, ISApl1 | None | [80] | |
None | None | [120,171], | |
Hybrid Types | |||
Hybrid (IncHI1A:IncHI1B) | ISApl1 | Tn6330 | [83] |
Hybrid (IncFIB/IncHI1B) | ISApl1, ISEc33 | Tn6330-like | [135] |
Hybrid (IncFIA(HI1), IncHI2) | ISApl1 | Tn6330-like | [135] |
Hybrid (IncR/IncN) | IS903B, ISApl1 | Not specified | [138] |
6. Transposon Dynamics in Resistance Spread
7. Co-Selection of Antibiotic Resistance Determinants
Antibiotic | Resistance Gene | Inc Group(s) | References |
---|---|---|---|
Aminoglycosides | aac(3)-IIb | IncX4, IncHI2A | [125] |
aac(3)-IId | IncX4 | [126] | |
aac(6′)-Ib | IncHI2 | [95] | |
aadA1 | IncHI2, IncI2 | [95,176] | |
aph(3″)-Ib | IncX4, IncHI2A | [126] | |
Beta-lactams | blaTEM1 | IncX4, IncHI2A, IncI2 | [59] |
blaCTX-M-14 | Hybrid (IncFII/IncFIA), IncHI2 | [59,102] | |
blaNDM-1 | IncX4, IncI2 | [76,110] | |
Chloramphenicol | floR | IncX4, IncHI2 | [126] |
cmlA1 | IncHI2, IncI2 | [120] | |
Sulfonamides | sul1 | IncHI2, IncI2 | [95,176] |
sul2 | IncX4, IncHI2A, IncI2 | [125,126] | |
Tetracyclines | Tet(A) | IncHI2, IncI2, IncX4 | [116,165], |
tet(M) | IncHI2, IncX1 | [116,174] | |
Quinolones | qnrS1 | IncHI2, IncI2 | [78,90] |
oqxAB | IncHI2 | [104] | |
Macrolides | mph(A) | IncHI2, IncX4 | [59,126] |
8. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Andrade, F.F.; Silva, D.; Rodrigues, A.; Pina-Vaz, C. Colistin Update on Its Mechanism of Action and Resistance, Present and Future Challenges. Microorganisms 2020, 8, 1716. [Google Scholar] [CrossRef]
- El-Sayed Ahmed, M.A.E.-G.; Zhong, L.-L.; Shen, C.; Yang, Y.; Doi, Y.; Tian, G.-B. Colistin and Its Role in the Era of Antibiotic Resistance: An Extended Review (2000–2019). Emerg. Microbes Infect. 2020, 9, 868–885. [Google Scholar] [CrossRef] [PubMed]
- Horcajada, J.P.; Montero, M.; Oliver, A.; Sorlí, L.; Luque, S.; Gómez-Zorrilla, S.; Benito, N.; Grau, S. Epidemiology and Treatment of Multidrug-Resistant and Extensively Drug-Resistant Pseudomonas aeruginosa Infections. Clin. Microbiol. Rev. 2019, 32, e00031-19. [Google Scholar] [CrossRef] [PubMed]
- Grégoire, N.; Aranzana-Climent, V.; Magréault, S.; Marchand, S.; Couet, W. Clinical Pharmacokinetics and Pharmacodynamics of Colistin. Clin. Pharmacokinet. 2017, 56, 1441–1460. [Google Scholar] [CrossRef] [PubMed]
- Jansen, W.; van Hout, J.; Wiegel, J.; Iatridou, D.; Chantziaras, I.; De Briyne, N. Colistin Use in European Livestock: Veterinary Field Data on Trends and Perspectives for Further Reduction. Vet. Sci. 2022, 9, 650. [Google Scholar] [CrossRef]
- Rhouma, M.; Beaudry, F.; Thériault, W.; Letellier, A. Colistin in Pig Production: Chemistry, Mechanism of Antibacterial Action, Microbial Resistance Emergence, and One Health Perspectives. Front. Microbiol. 2016, 7, 1789. [Google Scholar] [CrossRef]
- Shao, Y.; Wang, Y.; Yuan, Y.; Xie, Y. A Systematic Review on Antibiotics Misuse in Livestock and Aquaculture and Regulation Implications in China. Sci. Total Environ. 2021, 798, 149205. [Google Scholar] [CrossRef]
- Binsker, U.; Käsbohrer, A.; Hammerl, J.A. Global Colistin Use: A Review of the Emergence of Resistant Enterobacterales and the Impact on Their Genetic Basis. FEMS Microbiol. Rev. 2022, 46, fuab049. [Google Scholar] [CrossRef]
- Kumar, H.; Chen, B.-H.; Kuca, K.; Nepovimova, E.; Kaushal, A.; Nagraik, R.; Bhatia, S.K.; Dhanjal, D.S.; Kumar, V.; Kumar, A.; et al. Understanding of Colistin Usage in Food Animals and Available Detection Techniques: A Review. Animals 2020, 10, 1892. [Google Scholar] [CrossRef]
- Yahav, D.; Farbman, L.; Leibovici, L.; Paul, M. Colistin: New Lessons on an Old Antibiotic. Clin. Microbiol. Infect. 2012, 18, 18–29. [Google Scholar] [CrossRef]
- Falagas, M.E.; Kasiakou, S.K.; Saravolatz, L.D. Colistin: The Revival of Polymyxins for the Management of Multidrug-Resistant Gram-Negative Bacterial Infections. Clin. Infect. Dis. 2005, 40, 1333–1341. [Google Scholar] [CrossRef] [PubMed]
- Rychlíčková, J.; Kubíčková, V.; Suk, P.; Urbánek, K. Challenges of Colistin Use in ICU and Therapeutic Drug Monitoring: A Literature Review. Antibiotics 2023, 12, 437. [Google Scholar] [CrossRef]
- Gogry, F.A.; Siddiqui, M.T.; Sultan, I.; Haq, Q.M.R. Current Update on Intrinsic and Acquired Colistin Resistance Mechanisms in Bacteria. Front. Med. 2021, 8, 677720. [Google Scholar] [CrossRef] [PubMed]
- Mondal, A.H.; Khare, K.; Saxena, P.; Debnath, P.; Mukhopadhyay, K.; Yadav, D. A Review on Colistin Resistance: An Antibiotic of Last Resort. Microorganisms 2024, 12, 772. [Google Scholar] [CrossRef]
- Liu, Y.-Y.; Wang, Y.; Walsh, T.R.; Yi, L.-X.; Zhang, R.; Spencer, J.; Doi, Y.; Tian, G.; Dong, B.; Huang, X.; et al. Emergence of Plasmid-Mediated Colistin Resistance Mechanism MCR-1 in Animals and Human Beings in China: A Microbiological and Molecular Biological Study. Lancet Infect. Dis. 2016, 16, 161–168. [Google Scholar] [CrossRef]
- Samantha, A.; Vrielink, A. Lipid A Phosphoethanolamine Transferase: Regulation, Structure and Immune Response. J. Mol. Biol. 2020, 432, 5184–5196. [Google Scholar] [CrossRef]
- Hu, M.; Guo, J.; Cheng, Q.; Yang, Z.; Chan, E.W.C.; Chen, S.; Hao, Q. Crystal Structure of Escherichia coli Originated MCR-1, a Phosphoethanolamine Transferase for Colistin Resistance. Sci. Rep. 2016, 6, 38793. [Google Scholar] [CrossRef]
- Hussein, N.H.; AL-Kadmy, I.M.S.; Taha, B.M.; Hussein, J.D. Mobilized Colistin Resistance (Mcr) Genes from 1 to 10: A Comprehensive Review. Mol. Biol. Rep. 2021, 48, 2897–2907. [Google Scholar] [CrossRef]
- Zhang, Q. Bacteria Carrying Mobile Colistin Resistance Genes and Their Control Measures, an Updated Review. Arch. Microbiol. 2024, 206, 462. [Google Scholar] [CrossRef] [PubMed]
- Abavisani, M.; Bostanghadiri, N.; Ghahramanpour, H.; Kodori, M.; Akrami, F.; Fathizadeh, H.; Hashemi, A.; Rastegari-Pouyani, M. Colistin Resistance Mechanisms in Gram-Negative Bacteria: A Focus on Escherichia coli. Lett. Appl. Microbiol. 2023, 76, ovad023. [Google Scholar] [CrossRef]
- Lakshmanan, D.; Ramasamy, D.; Subramanyam, V.; Saravanan, S.K. Mobile Colistin Resistance (Mcr) Genes and Recent Developments in Colistin Resistance Detection. Lett. Appl. Microbiol. 2023, 76, ovad102. [Google Scholar] [CrossRef] [PubMed]
- Anyanwu, M.U.; Jaja, I.F.; Nwobi, O.C. Occurrence and Characteristics of Mobile Colistin Resistance (Mcr) Gene-Containing Isolates from the Environment: A Review. Int. J. Environ. Res. Public Health 2020, 17, 1028. [Google Scholar] [CrossRef]
- Feng, Y. Transferability of MCR-1/2 Polymyxin Resistance: Complex Dissemination and Genetic Mechanism. ACS Infect. Dis. 2018, 4, 291–300. [Google Scholar] [CrossRef]
- Barlaam, A.; Parisi, A.; Spinelli, E.; Caruso, M.; Taranto, P.D.; Normanno, G. Global Emergence of Colistin-Resistant Escherichia coli in Food Chains and Associated Food Safety Implications: A Review. J. Food Prot. 2019, 82, 1440–1448. [Google Scholar] [CrossRef] [PubMed]
- Nang, S.C.; Li, J.; Velkov, T. The Rise and Spread of Mcr Plasmid-Mediated Polymyxin Resistance. Crit. Rev. Microbiol. 2019, 45, 131–161. [Google Scholar] [CrossRef]
- Mmatli, M.; Mbelle, N.M.; Osei Sekyere, J. Global Epidemiology, Genetic Environment, Risk Factors and Therapeutic Prospects of Mcr Genes: A Current and Emerging Update. Front. Cell. Infect. Microbiol. 2022, 12, 941358. [Google Scholar] [CrossRef]
- Xiaomin, S.; Yiming, L.; Yuying, Y.; Zhangqi, S.; Yongning, W.; Shaolin, W. Global Impact of Mcr-1-Positive Enterobacteriaceae Bacteria on “One Health”. Crit. Rev. Microbiol. 2020, 46, 565–577. [Google Scholar] [CrossRef]
- Mthembu, T.P.; Zishiri, O.T.; El Zowalaty, M.E. Genomic Characterization of Antimicrobial Resistance in Food Chain and Livestock-Associated Salmonella Species. Animals 2021, 11, 872. [Google Scholar] [CrossRef]
- Rhouma, M.; Madec, J.-Y.; Laxminarayan, R. Colistin: From the Shadows to a One Health Approach for Addressing Antimicrobial Resistance. Int. J. Antimicrob. Agents 2023, 61, 106713. [Google Scholar] [CrossRef]
- Al-Tawfiq, J.A.; Laxminarayan, R.; Mendelson, M. How Should We Respond to the Emergence of Plasmid-Mediated Colistin Resistance in Humans and Animals? Int. J. Infect. Dis. IJID Off. Publ. Int. Soc. Infect. Dis. 2017, 54, 77–84. [Google Scholar] [CrossRef]
- Martino, F.; Petroni, A.; Menocal, M.A.; Corso, A.; Melano, R.; Faccone, D. New Insights on Mcr-1-Harboring Plasmids from Human Clinical Escherichia coli Isolates. PLoS ONE 2024, 19, e0294820. [Google Scholar] [CrossRef]
- Aslam, B.; Siddique, M.H.; Siddique, A.B.; Shafique, M.; Muzammil, S.; Khurshid, M.; Rasool, M.H.; Ahmad, M.; Chaudhry, T.H.; Amir, A.; et al. Distribution of Mcr-1 Harboring Hypervirulent Klebsiella pneumoniae in Clinical Specimens and Lytic Activity of Bacteriophage KpnM Against Isolates. Infect. Drug Resist. 2022, 15, 5795–5811. [Google Scholar] [CrossRef]
- Liu, Y.; Wang, Q.; Qi, T.; Zhang, M.; Chen, R.; Si, Z.; Li, J.; Jin, Y.; Xu, Q.; Li, P.; et al. Molecular Epidemiology of mcr-1-Positive Polymyxin B-Resistant Escherichia coli Producing Extended-Spectrum β-Lactamase (ESBL) in a Tertiary Hospital in Shandong, China. Pol. J. Microbiol. 2024, 73, 363–375. [Google Scholar] [CrossRef]
- Karki, D.; Dhungel, B.; Bhandari, S.; Kunwar, A.; Joshi, P.R.; Shrestha, B.; Rijal, K.R.; Ghimire, P.; Banjara, M.R. Antibiotic Resistance and Detection of Plasmid Mediated Colistin Resistance Mcr-1 Gene Among Escherichia coli and Klebsiella pneumoniae Isolated from Clinical Samples. Gut Pathog. 2021, 13, 45. [Google Scholar] [CrossRef]
- Zurfluh, K.; Stephan, R.; Widmer, A.; Poirel, L.; Nordmann, P.; Nüesch, H.-J.; Hächler, H.; Nüesch-Inderbinen, M. Screening for Fecal Carriage of MCR-Producing Enterobacteriaceae in Healthy Humans and Primary Care Patients. Antimicrob. Resist. Infect. Control 2017, 6, 28. [Google Scholar] [CrossRef]
- Giani, T.; Sennati, S.; Antonelli, A.; Di Pilato, V.; di Maggio, T.; Mantella, A.; Niccolai, C.; Spinicci, M.; Monasterio, J.; Castellanos, P.; et al. High Prevalence of Carriage of Mcr-1-Positive Enteric Bacteria Among Healthy Children from Rural Communities in the Chaco Region, Bolivia, September to October 2016. Euro Surveill. Bull. Eur. Sur Mal. Transm. Eur. Commun. Dis. Bull. 2018, 23, 1800115. [Google Scholar] [CrossRef]
- Liu, X.; Li, X.; Yang, A.-W.; Tang, B.; Jian, Z.-J.; Zhong, Y.-M.; Li, H.-L.; Li, Y.-M.; Yan, Q.; Liang, X.-H.; et al. Community Fecal Carriage and Molecular Epidemiology of Extended-Spectrum β-Lactamase- and Carbapenemase-Producing Escherichia coli from Healthy Children in the Central South China. Infect. Drug Resist. 2022, 15, 1601–1611. [Google Scholar] [CrossRef]
- van Dulm, E.; Klok, S.; Boyd, A.; Joore, I.K.; Prins, M.; van Dam, A.P.; Tramper-Stranders, G.A.; van Duijnhoven, Y.T.H.P. Nasal Carriage of Methicillin-Resistant Staphylococcus aureus (MRSA) among Undocumented Migrants and Uninsured Legal Residents in Amsterdam, the Netherlands: A Cross-Sectional Study. Antimicrob. Resist. Infect. Control 2020, 9, 118. [Google Scholar] [CrossRef]
- Huang, J.; Deng, S.; Ren, J.; Tu, J.; Ye, M.; Wang, M. Characterization of a blaNDM-1-harboring Plasmid from a Salmonella enterica Clinical Isolate in China. Mol. Med. Rep. 2017, 16, 1087–1092. [Google Scholar] [CrossRef] [PubMed]
- Kieffer, N.; Aires-de-Sousa, M.; Nordmann, P.; Poirel, L. High Rate of MCR-1-Producing Escherichia coli and Klebsiella pneumoniae Among Pigs, Portugal. Emerg. Infect. Dis. 2017, 23, 2023–2029. [Google Scholar] [CrossRef] [PubMed]
- Benavides, J.A.; Godreuil, S.; Opazo-Capurro, A.; Mahamat, O.O.; Falcon, N.; Oravcova, K.; Streicker, D.G.; Shiva, C. Long-Term Maintenance of Multidrug-Resistant Escherichia coli Carried by Vampire Bats and Shared with Livestock in Peru. Sci. Total Environ. 2022, 810, 152045. [Google Scholar] [CrossRef] [PubMed]
- Lu, X.; Xiao, X.; Liu, Y.; Huang, S.; Li, R.; Wang, Z. Widespread Prevalence of Plasmid-Mediated Colistin Resistance Gene Mcr-1 in Escherichia coli from Père David’s Deer in China. mSphere 2020, 5, e01221-20. [Google Scholar] [CrossRef]
- Bachiri, T.; Lalaoui, R.; Bakour, S.; Allouache, M.; Belkebla, N.; Rolain, J.M.; Touati, A. First Report of the Plasmid-Mediated Colistin Resistance Gene Mcr-1 in Escherichia coli ST405 Isolated from Wildlife in Bejaia, Algeria. Microb. Drug Resist. 2018, 24, 890–895. [Google Scholar] [CrossRef]
- Barbieri, N.L.; Pimenta, R.L.; de Melo, D.A.; Nolan, L.K.; de Souza, M.M.S.; Logue, C.M. Mcr-1 Identified in Fecal Escherichia coli and Avian Pathogenic E. coli (APEC) From Brazil. Front. Microbiol. 2021, 12, 659613. [Google Scholar] [CrossRef]
- Mikhayel, M.; Leclercq, S.O.; Sarkis, D.K.; Doublet, B. Occurrence of the Colistin Resistance Gene Mcr-1 and Additional Antibiotic Resistance Genes in ESBL/AmpC-Producing Escherichia coli from Poultry in Lebanon: A Nationwide Survey. Microbiol. Spectr. 2021, 9, e0002521. [Google Scholar] [CrossRef]
- Sadek, M.; Ortiz de la Rosa, J.M.; Abdelfattah Maky, M.; Korashe Dandrawy, M.; Nordmann, P.; Poirel, L. Genomic Features of MCR-1 and Extended-Spectrum β-Lactamase-Producing Enterobacterales from Retail Raw Chicken in Egypt. Microorganisms 2021, 9, 195. [Google Scholar] [CrossRef]
- Odoi, J.O.; Takayanagi, S.; Sugiyama, M.; Usui, M.; Tamura, Y.; Asai, T. Prevalence of Colistin-Resistant Bacteria Among Retail Meats in Japan. Food Saf. 2021, 9, 48–56. [Google Scholar] [CrossRef]
- Schrauwen, E.J.A.; Huizinga, P.; van Spreuwel, N.; Verhulst, C.; Kluytmans-van den Bergh, M.F.Q.; Kluytmans, J.A.J.W. High Prevalence of the Mcr-1 Gene in Retail Chicken Meat in the Netherlands in 2015. Antimicrob. Resist. Infect. Control 2017, 6, 83. [Google Scholar] [CrossRef]
- Díaz-Gavidia, C.; Barría, C.; Rivas, L.; García, P.; Alvarez, F.P.; González-Rocha, G.; Opazo-Capurro, A.; Araos, R.; Munita, J.M.; Cortes, S.; et al. Isolation of Ciprofloxacin and Ceftazidime-Resistant Enterobacterales From Vegetables and River Water Is Strongly Associated With the Season and the Sample Type. Front. Microbiol. 2021, 12, 604567. [Google Scholar] [CrossRef]
- Chelaghma, W.; Loucif, L.; Bendjama, E.; Cherak, Z.; Bendahou, M.; Rolain, J.-M. Occurrence of Extended Spectrum Cephalosporin-, Carbapenem- and Colistin-Resistant Gram-Negative Bacteria in Fresh Vegetables, an Increasing Human Health Concern in Algeria. Antibiotics 2022, 11, 988. [Google Scholar] [CrossRef]
- Abioye, O.E.; Nontongana, N.; Osunla, C.A.; Okoh, A.I. Antibiotic Resistance and Virulence Genes Profiling of Vibrio cholerae and Vibrio mimicus Isolates from Some Seafood Collected at the Aquatic Environment and Wet Markets in Eastern Cape Province, South Africa. PLoS ONE 2023, 18, e0290356. [Google Scholar] [CrossRef]
- Wang, C.-Z.; Li, X.-P.; Zhang, Y.-J.; Zhong, W.-C.; Liu, Y.-H.; Liao, X.-P.; Sun, J.; Zhou, Y.-F. Molecular Characteristic of Mcr-1 Gene in Escherichia coli from Aquatic Products in Guangdong, China. J. Glob. Antimicrob. Resist. 2024, 36, 36–40. [Google Scholar] [CrossRef]
- Savin, M.; Bierbaum, G.; Hammerl, J.A.; Heinemann, C.; Parcina, M.; Sib, E.; Voigt, A.; Kreyenschmidt, J. ESKAPE Bacteria and Extended-Spectrum-β-Lactamase-Producing Escherichia coli Isolated from Wastewater and Process Water from German Poultry Slaughterhouses. Appl. Environ. Microbiol. 2020, 86, e02748-19. [Google Scholar] [CrossRef]
- Yang, D.; Qiu, Z.; Shen, Z.; Zhao, H.; Jin, M.; Li, H.; Liu, W.; Li, J.-W. The Occurrence of the Colistin Resistance Gene Mcr-1 in the Haihe River (China). Int. J. Environ. Res. Public Health 2017, 14, 576. [Google Scholar] [CrossRef]
- Mavrici, D.; Yambao, J.C.; Lee, B.G.; Quiñones, B.; He, X. Screening for the Presence of Mcr-1/Mcr-2 Genes in Shiga Toxin-Producing Escherichia coli Recovered from a Major Produce-Production Region in California. PLoS ONE 2017, 12, e0187827. [Google Scholar] [CrossRef]
- Zhong, L.-L.; Phan, H.T.T.; Shen, C.; Vihta, K.-D.; Sheppard, A.E.; Huang, X.; Zeng, K.-J.; Li, H.-Y.; Zhang, X.-F.; Patil, S.; et al. High Rates of Human Fecal Carriage of Mcr-1-Positive Multidrug-Resistant Enterobacteriaceae Emerge in China in Association With Successful Plasmid Families. Clin. Infect. Dis. Off. Publ. Infect. Dis. Soc. Am. 2018, 66, 676–685. [Google Scholar] [CrossRef]
- Bilal, H.; Rehman, T.U.; Khan, M.A.; Hameed, F.; Jian, Z.G.; Han, J.; Yang, X. Molecular Epidemiology of Mcr-1, blaKPC-2, and blaNDM-1 Harboring Clinically Isolated Escherichia coli from Pakistan. Infect. Drug Resist. 2021, 14, 1467–1479. [Google Scholar] [CrossRef]
- Strepis, N.; Voor In ’t Holt, A.F.; Vos, M.C.; Zandijk, W.H.A.; Heikema, A.P.; Hays, J.P.; Severin, J.A.; Klaassen, C.H.W. Genetic Analysis of Mcr-1-Carrying Plasmids From Gram-Negative Bacteria in a Dutch Tertiary Care Hospital: Evidence for Intrapatient and Interspecies Transmission Events. Front. Microbiol. 2021, 12, 727435. [Google Scholar] [CrossRef]
- Xie, J.; Liang, B.; Xu, X.; Yang, L.; Li, H.; Li, P.; Qiu, S.; Song, H. Identification of Mcr-1-Positive Multidrug-Resistant Escherichia coli Isolates from Clinical Samples in Shanghai, China. J. Glob. Antimicrob. Resist. 2022, 29, 88–96. [Google Scholar] [CrossRef]
- Avgere, E.; Zafeiridis, C.; Procter, K.A.; Beloukas, A.; Giakkoupi, P. Molecular Characterization of Escherichia coli Producing Extended-Spectrum ß-Lactamase and MCR-1 from Sick Pigs in a Greek Slaughterhouse. Antibiotics 2023, 12, 1625. [Google Scholar] [CrossRef]
- Binsker, U.; Jäckel, C.; Rau, J.; Borowiak, M.; Salzinger, C.; García-Meniño, I.; Käsbohrer, A.; Hammerl, J.A. Klebsiella pneumoniae Arms Itself: Poultry Food Chain Drives Spread and Evolution of Mcr-1.26-IncX4 Plasmids. Microbiol. Spectr. 2024, 12, e04210-23. [Google Scholar] [CrossRef]
- Shanmugakani, R.K.; Akeda, Y.; Sugawara, Y.; Laolerd, W.; Chaihongsa, N.; Sirichot, S.; Yamamoto, N.; Hagiya, H.; Morii, D.; Fujiya, Y.; et al. PCR-Dipstick-Oriented Surveillance and Characterization of Mcr-1- and Carbapenemase-Carrying Enterobacteriaceae in a Thai Hospital. Front. Microbiol. 2019, 10, 149. [Google Scholar] [CrossRef]
- Vilela, F.P.; Rodrigues, D.D.P.; Ferreira, J.C.; Darini, A.L.D.C.; Allard, M.W.; Falcão, J.P. Genomic Characterization of Salmonella enterica Serovar Choleraesuis from Brazil Reveals a Swine Gallbladder Isolate Harboring Colistin Resistance Gene Mcr-1.1. Braz. J. Microbiol. 2022, 53, 1799–1806. [Google Scholar] [CrossRef]
- Vlad, M.-A.; Lixandru, B.-E.; Muntean, A.-A.; Trandafir, I.; Luncă, C.; Tuchiluş, C. The First Report of Mcr-1-Carrying Escherichia coli, Isolated from a Clinical Sample in the North-East of Romania. Microorganisms 2024, 12, 2461. [Google Scholar] [CrossRef]
- Grami, R.; Mansour, W.; Mehri, W.; Bouallègue, O.; Boujaâfar, N.; Madec, J.-Y.; Haenni, M. Impact of Food Animal Trade on the Spread of Mcr-1-Mediated Colistin Resistance, Tunisia, July 2015. Eurosurveillance 2016, 21, 30144. [Google Scholar] [CrossRef]
- Zając, M.; Sztromwasser, P.; Bortolaia, V.; Leekitcharoenphon, P.; Cavaco, L.M.; Ziȩtek-Barszcz, A.; Hendriksen, R.S.; Wasyl, D. Occurrence and Characterization of Mcr-1-Positive Escherichia coli Isolated From Food-Producing Animals in Poland, 2011–2016. Front. Microbiol. 2019, 10, 1753. [Google Scholar] [CrossRef]
- Liu, Z.; Liu, Y.; Xi, W.; Liu, S.; Liu, J.; Mu, H.; Chen, B.; He, H.; Fan, Y.; Ma, W.; et al. Genetic Features of Plasmid- and Chromosome-Mediated Mcr-1 in Escherichia coli Isolates From Animal Organs With Lesions. Front. Microbiol. 2021, 12, 707332. [Google Scholar] [CrossRef]
- Wang, Z.; Jiang, Z.; Xu, H.; Jiao, X.; Li, Q. Prevalence and Molecular Characterization of Mcr-1-Positive Foodborne ST34-Salmonella Isolates in China. Microbiol. Res. 2023, 274, 127441. [Google Scholar] [CrossRef]
- Li, Q.; Qian, C.; Zhang, X.; Zhu, T.; Shi, W.; Gao, M.; Feng, C.; Xu, M.; Lin, H.; Lin, L.; et al. Colistin Resistance and Molecular Characterization of the Genomes of Mcr-1-Positive Escherichia coli Clinical Isolates. Front. Cell. Infect. Microbiol. 2022, 12, 854534. [Google Scholar] [CrossRef]
- Zhang, X.; Peng, L.; Ke, Y.; Zhao, D.; Yu, G.; Zhou, Y.; Li, X.; Weng, X. Emergence of a Clinical Isolate of E. coli ST297 Co-Carrying blaNDM-13 and Mcr-1.1 in China. J. Infect. Public Health 2023, 16, 1813–1820. [Google Scholar] [CrossRef]
- Liu, R.; Xu, H.; Guo, X.; Liu, S.; Qiao, J.; Ge, H.; Zheng, B.; Gou, J. Genomic Characterization of Two Escherichia Fergusonii Isolates Harboring Mcr-1 Gene From Farm Environment. Front. Cell. Infect. Microbiol. 2022, 12, 774494. [Google Scholar] [CrossRef] [PubMed]
- Ali, A.; Fontana, H.; Sano, E.; Li, R.; Humayon, M.; Lincopan, N.; Mohsin, M. Genomic Features of a High-Risk Mcr-1.1-Positive Escherichia coli ST10 Isolated from Cattle Farm Environment. Environ. Sci. Pollut. Res. 2021, 28, 54147–54152. [Google Scholar] [CrossRef]
- Liu, K.-D.; Jin, W.-J.; Li, R.-B.; Zhang, R.-M.; Sun, J.; Liu, Y.-H.; Wang, M.-G.; Liao, X.-P. Prevalence and Molecular Characteristics of Mcr-1-Positive Escherichia coli Isolated from Duck Farms and the Surrounding Environments in Coastal China. Microbiol. Res. 2023, 270, 127348. [Google Scholar] [CrossRef]
- Anyanwu, M.U.; Marrollo, R.; Paolucci, M.; Brovarone, F.; Nardini, P.; Chah, K.F.; Shoyinka, S.V.O.; Carretto, E. Isolation and Characterisation of Colistin-Resistant Enterobacterales from Chickens in Southeast Nigeria. J. Glob. Antimicrob. Resist. 2021, 26, 93–100. [Google Scholar] [CrossRef] [PubMed]
- Boueroy, P.; Wongsurawat, T.; Jenjaroenpun, P.; Chopjitt, P.; Hatrongjit, R.; Jittapalapong, S.; Kerdsin, A. Plasmidome in Mcr-1 Harboring Carbapenem-Resistant Enterobacterales Isolates from Human in Thailand. Sci. Rep. 2022, 12, 19051. [Google Scholar] [CrossRef] [PubMed]
- Han, S.; Kim, J.S.; Hong, C.-K.; Park, S.-H.; Kim, H.S.; Yu, J.K.; Park, J.; Kim, J.; Lee, S.-M.; Oh, Y.-H. Identification of an Extensively Drug-Resistant Escherichia coli Clinical Strain Harboring Mcr-1 and blaNDM-1 in Korea. J. Antibiot. 2020, 73, 852–858. [Google Scholar] [CrossRef]
- Zelendova, M.; Papagiannitsis, C.C.; Sismova, P.; Medvecky, M.; Pomorska, K.; Palkovicova, J.; Nesporova, K.; Jakubu, V.; Jamborova, I.; Zemlickova, H.; et al. Plasmid-Mediated Colistin Resistance Among Human Clinical Enterobacterales Isolates: National Surveillance in the Czech Republic. Front. Microbiol. 2023, 14, 1147846. [Google Scholar] [CrossRef]
- Feng, J.; Zhuang, Y.; Luo, J.; Xiao, Q.; Wu, Y.; Chen, Y.; Chen, M.; Zhang, X. Prevalence of Colistin-Resistant Mcr-1-Positive Escherichia coli Isolated from Children Patients with Diarrhoea in Shanghai, 2016-2021. J. Glob. Antimicrob. Resist. 2023, 34, 166–175. [Google Scholar] [CrossRef]
- Papa-Ezdra, R.; Grill Diaz, F.; Vieytes, M.; García-Fulgueiras, V.; Caiata, L.; Ávila, P.; Brasesco, M.; Christophersen, I.; Cordeiro, N.F.; Algorta, G.; et al. First Three Escherichia coli Isolates Harbouring Mcr-1 in Uruguay. J. Glob. Antimicrob. Resist. 2020, 20, 187–190. [Google Scholar] [CrossRef]
- Mei, C.-Y.; Jiang, Y.; Ma, Q.-C.; Lu, M.-J.; Wu, H.; Wang, Z.-Y.; Jiao, X.; Wang, J. Low Prevalence of Mcr-1 in Escherichia coli from Food-Producing Animals and Food Products in China. BMC Vet. Res. 2024, 20, 40. [Google Scholar] [CrossRef]
- Sun, L.; Sun, G.-Z.; Jiang, Y.; Mei, C.-Y.; Wang, Z.-Y.; Wang, H.-Y.; Kong, G.-M.; Jiao, X.; Wang, J. Low Prevalence of Mobilized Resistance Genes blaNDM, Mcr-1, and Tet(X4) in Escherichia coli from a Hospital in China. Front. Microbiol. 2023, 14, 1181940. [Google Scholar] [CrossRef] [PubMed]
- Al Mana, H.; Johar, A.A.; Kassem, I.I.; Eltai, N.O. Transmissibility and Persistence of the Plasmid-Borne Mobile Colistin Resistance Gene, Mcr-1, Harbored in Poultry-Associated E. Coli. Antibiotics 2022, 11, 774. [Google Scholar] [CrossRef] [PubMed]
- Carhuaricra, D.; Duran Gonzales, C.G.; Rodríguez Cueva, C.L.; Ignacion León, Y.; Silvestre Espejo, T.; Marcelo Monge, G.; Rosadio Alcántara, R.H.; Lincopan, N.; Espinoza, L.L.; Maturrano Hernández, L. Occurrence and Genomic Characterization of Mcr-1-Harboring Escherichia coli Isolates from Chicken and Pig Farms in Lima, Peru. Antibiotics 2022, 11, 1781. [Google Scholar] [CrossRef]
- Lu, X.; Zhang, P.; Du, P.; Zhang, X.; Wang, J.; Yang, Y.; Sun, H.; Wang, Z.; Cui, S.; Li, R.; et al. Prevalence and Genomic Characteristics of Mcr-Positive Escherichia coli Strains Isolated from Humans, Pigs, and Foods in China. Microbiol. Spectr. 2023, 11, e0456922. [Google Scholar] [CrossRef] [PubMed]
- Yang, C.; Chen, K.; Ye, L.; Heng, H.; Chan, E.W.C.; Chen, S. Genetic and Drug Susceptibility Profiles of Mcr-1-Bearing Foodborne Salmonella Strains Collected in Shenzhen, China during the Period 2014-2017. Microbiol. Res. 2022, 265, 127211. [Google Scholar] [CrossRef]
- Stefaniuk, E.M.; Tyski, S. Colistin Resistance in Enterobacterales Strains—A Current View. Pol. J. Microbiol. 2019, 68, 417–427. [Google Scholar] [CrossRef]
- Zhang, Y.; Chen, J.; Yang, X.; Wu, Y.; Wang, Z.; Xu, Y.; Zhou, L.; Wang, J.; Jiao, X.; Sun, L. Emerging Mobile Colistin Resistance Gene Mcr-1 and Mcr-10 in Enterobacteriaceae Isolates From Urban Sewage in China. Infect. Drug Resist. 2025, 18, 1035–1048. [Google Scholar] [CrossRef]
- Quiroga, C.; Nastro, M.; Di Conza, J. Current Scenario of Plasmid-Mediated Colistin Resistance in Latin America. Rev. Argent. Microbiol. 2019, 51, 93–100. [Google Scholar] [CrossRef]
- Li, W.; Li, Y.; Jia, Y.; Sun, H.; Zhang, C.; Hu, G.; Yuan, L. Genomic Characteristics of Mcr-1 and blaCTX-M-Type in a Single Multidrug-Resistant Escherichia coli ST93 from Chicken in China. Poult. Sci. 2021, 100, 101074. [Google Scholar] [CrossRef]
- Tang, B.; Wang, J.; Zheng, X.; Chang, J.; Ma, J.; Wang, J.; Ji, X.; Yang, H.; Ding, B. Antimicrobial Resistance Surveillance of Escherichia coli from Chickens in the Qinghai Plateau of China. Front. Microbiol. 2022, 13, 885132. [Google Scholar] [CrossRef]
- Kim, Y.-J.; Seo, K.-H.; Kim, S.; Bae, S. Phylogenetic Comparison and Characterization of an Mcr-1-Harboring Complete Plasmid Genome Isolated from Enterobacteriaceae. Microb. Drug Resist. 2022, 28, 492–497. [Google Scholar] [CrossRef] [PubMed]
- Velasco, J.M.S.; Valderama, M.T.G.; Margulieux, K.R.; Diones, P.C.S.; Reyes, A.M.B.; Leonardia, S.G.; Liao, C.P.; Chua, D.A.; Navarro, F.C.S.; Ruekit, S.; et al. First Report of the Mcr-1 Colistin Resistance Gene Identified in Two Escherichia coli Isolates from Clinical Samples, Philippines, 2018. J. Glob. Antimicrob. Resist. 2020, 21, 291–293. [Google Scholar] [CrossRef]
- Algarni, S.; Gudeta, D.D.; Han, J.; Nayak, R.; Foley, S.L. Genotypic Analyses of IncHI2 Plasmids from Enteric Bacteria. Sci. Rep. 2024, 14, 9802. [Google Scholar] [CrossRef] [PubMed]
- Rozwandowicz, M.; Brouwer, M.S.M.; Fischer, J.; Wagenaar, J.A.; Gonzalez-Zorn, B.; Guerra, B.; Mevius, D.J.; Hordijk, J. Plasmids Carrying Antimicrobial Resistance Genes in Enterobacteriaceae. J. Antimicrob. Chemother. 2018, 73, 1121–1137. [Google Scholar] [CrossRef]
- Lin, Y.-C.; Kuroda, M.; Suzuki, S.; Mu, J.-J. Emergence of the Mcr-1 Colistin Resistance Gene in Extended-Spectrum β-Lactamase-Producing Klebsiella pneumoniae in Taiwan. J. Glob. Antimicrob. Resist. 2021, 24, 278–284. [Google Scholar] [CrossRef]
- Li, L.; Wan, X.; Olsen, R.H.; Xiao, J.; Wang, C.; Xu, X.; Meng, H.; Shi, L. Genomic Characterization of Mcr-1-Carrying Foodborne Salmonella enterica Serovar Typhimurium and Identification of a Transferable Plasmid Carrying Mcr-1, Bla CTX-M-14, qnrS2, and oqxAB Genes From Ready-to-Eat Pork Product in China. Front. Microbiol. 2022, 13, 903268. [Google Scholar] [CrossRef]
- Lu, J.; Quan, J.; Zhao, D.; Wang, Y.; Yu, Y.; Zhu, J. Prevalence and Molecular Characteristics of Mcr-1 Gene in Salmonella Typhimurium in a Tertiary Hospital of Zhejiang Province. Infect. Drug Resist. 2019, 12, 105–110. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Chen, L.; Zhang, X.; Wang, Q.; Quan, J.; He, J.; Pan, H.; Li, X. Emergence of Coexistence of a Novel blaNDM-5-Harbouring IncI1-I Plasmid and an Mcr-1.1-Harbouring IncHI2 Plasmid in a Clinical Escherichia coli Isolate in China. J. Infect. Public Health 2022, 15, 1363–1369. [Google Scholar] [CrossRef]
- Manageiro, V.; Jones-Dias, D.; Ferreira, E.; Caniça, M. Plasmid-Mediated Colistin Resistance (Mcr-1) in Escherichia coli from Non-Imported Fresh Vegetables for Human Consumption in Portugal. Microorganisms 2020, 8, 429. [Google Scholar] [CrossRef]
- Zakaria, A.S.; Edward, E.A.; Mohamed, N.M. Genomic Insights into a Colistin-Resistant Uropathogenic Escherichia coli Strain of O23:H4-ST641 Lineage Harboring Mcr-1.1 on a Conjugative IncHI2 Plasmid from Egypt. Microorganisms 2021, 9, 799. [Google Scholar] [CrossRef]
- Rodríguez-Santiago, J.; Rodríguez-Medina, N.; Tamayo-Legorreta, E.M.; Silva-Sánchez, J.; Téllez-Sosa, J.; Duran-Bedolla, J.; Aguilar-Vera, A.; Lecona-Valera, A.N.; Garza-Ramos, U.; Alpuche-Aranda, C. Molecular and Genomic Insights of Mcr-1-Producing Escherichia coli Isolates from Piglets. Antibiotics 2022, 11, 157. [Google Scholar] [CrossRef] [PubMed]
- Xia, S.; Wang, W.; Cheng, J.; Zhang, T.; Xia, Z.; Zhao, X.; Han, Y.; Li, Y.; Shi, X.; Qin, S. Emergence of a Novel Hybrid Mcr-1-Bearing Plasmid in an NDM-7-Producing ST167 Escherichia coli Strain of Clinical Origin. Front. Microbiol. 2022, 13, 950087. [Google Scholar] [CrossRef]
- Nakayama, T.; Yamamoto, S.; Ohata, N.; Yamaguchi, T.; Jinnai, M.; Minh, D.T.N.; Hoang, O.N.; Thi, H.L.; Thanh, P.N.; Hoai, P.H.; et al. IncHI2 Plasmid Encoding blaCTX-M-55 and Mcr-1.1 in Salmonella enterica SE20-C72-2 and Escherichia coli EC20-C72-1 Isolates from the Edible River Fish Anabas Testudineus. Microbiol. Resour. Announc. 2023, 12, e0014923. [Google Scholar] [CrossRef] [PubMed]
- Sun, R.-Y.; Fang, L.-X.; Ke, B.-X.; Sun, J.; Wu, Z.-W.; Feng, Y.-J.; Liu, Y.-H.; Ke, C.-W.; Liao, X.-P. Carriage and Transmission of Mcr-1 in Salmonella Typhimurium and Its Monophasic 1,4,[5],12:I:- Variants from Diarrheal Outpatients: A 10-Year Genomic Epidemiology in Guangdong, Southern China. Microbiol. Spectr. 2023, 11, e0311922. [Google Scholar] [CrossRef] [PubMed]
- Zheng, Z.; Lei, Y.; Wang, Y.; Lin, C.; Lin, J. Occurrence of Mcr Positive Strains and Molecular Characteristics of Two Mcr-1 Positive Salmonella Typhimurium and Escherichia coli from a Chinese Women’s and Children’s Hospital. Infect. Drug Resist. 2021, 14, 2925–2932. [Google Scholar] [CrossRef]
- Liang, Z.; Pang, J.; Hu, X.; Nie, T.; Lu, X.; Li, X.; Wang, X.; Li, C.; Yang, X.; You, X. Low Prevalence of Mcr-1 Among Clinical Enterobacteriaceae Isolates and Co-Transfer of Mcr-1 and blaNDM-1 from Separate Donors. Microb. Drug Resist. 2021, 27, 476–484. [Google Scholar] [CrossRef]
- Patil, S.; Pai, L.; Chen, X.; Francisco, N.M.; Chen, H.; Chen, Y.; Dong, S.; Liu, S.; Wen, F. Genomic Characterisation of Multi-Drug Resistant Escherichia coli and Klebsiella pneumoniae Co-Harbouring Mcr-1 and Mcr-3 Genes on a Single Plasmid from Paediatric Clinical Cases. J. Glob. Antimicrob. Resist. 2023, 34, 134–140. [Google Scholar] [CrossRef]
- Chatzidimitriou, M.; Kavvada, A.; Kavvadas, D.; Kyriazidi, M.A.; Meletis, G.; Chatzopoulou, F.; Chatzidimitriou, D. Mcr Genes Conferring Colistin Resistance in Enterobacterales; a Five Year Overview. Acta Medica Acad. 2022, 50, 365. [Google Scholar] [CrossRef]
- Kai, J.; Wang, S. Recent Progress on Elucidating the Molecular Mechanism of Plasmid-Mediated Colistin Resistance and Drug Design. Int. Microbiol. Off. J. Span. Soc. Microbiol. 2020, 23, 355–366. [Google Scholar] [CrossRef]
- Chen, H.; Mai, H.; Lopes, B.; Wen, F.; Patil, S. Novel Pseudomonas aeruginosa Strains Co-Harbouring Bla NDM-1 Metallo β-Lactamase and Mcr-1 Isolated from Immunocompromised Paediatric Patients. Infect. Drug Resist. 2022, 15, 2929–2936. [Google Scholar] [CrossRef]
- Szmolka, A.; Gellért, Á.; Szemerits, D.; Rapcsák, F.; Spisák, S.; Adorján, A. Emergence and Genomic Features of a Mcr-1 Escherichia coli from Duck in Hungary. Antibiot. Basel Switz. 2023, 12, 1519. [Google Scholar] [CrossRef] [PubMed]
- Zamparette, C.P.; Schorner, M.; Campos, E.; Moura, Q.; Cerdeira, L.; Tartari, D.C.; Sereia, A.F.R.; Cunha, P.; Fontana, H.; de Oliveira, L.F.V.; et al. IncX4 Plasmid-Mediated Mcr-1.1 in Polymyxin-Resistant Escherichia coli from Outpatients in Santa Catarina, Southern Brazil. Microb. Drug Resist. 2020, 26, 1326–1333. [Google Scholar] [CrossRef] [PubMed]
- Tang, B.; Chang, J.; Zhang, L.; Liu, L.; Xia, X.; Hassan, B.H.; Jia, X.; Yang, H.; Feng, Y. Carriage of Distinct Mcr-1-Harboring Plasmids by Unusual Serotypes of Salmonella. Adv. Biosyst. 2020, 4, e1900219. [Google Scholar] [CrossRef]
- Majewski, P.; Gutowska, A.; Smith, D.G.E.; Hauschild, T.; Majewska, P.; Hryszko, T.; Gizycka, D.; Kedra, B.; Kochanowicz, J.; Glowiński, J.; et al. Plasmid Mediated Mcr-1.1 Colistin-Resistance in Clinical Extraintestinal Escherichia coli Strains Isolated in Poland. Front. Microbiol. 2021, 12, 547020. [Google Scholar] [CrossRef]
- Furlan, J.P.R.; Lopes, R.; Ramos, M.S.; Dos Santos, L.D.R.; da Silva Rosa, R.; Savazzi, E.A.; Stehling, E.G. Colistin-Resistant Mcr-1-Positive Escherichia coli ST1775-H137 Co-Harboring blaCTX-M-2 and blaCMY-2 Recovered from an Urban Stream. Infect. Genet. Evol. J. Mol. Epidemiol. Evol. Genet. Infect. Dis. 2021, 96, 105156. [Google Scholar] [CrossRef] [PubMed]
- Macori, G.; Nguyen, S.V.; Naithani, A.; Hurley, D.; Bai, L.; El Garch, F.; Woehrlé, F.; Miossec, C.; Roques, B.; O’Gaora, P.; et al. Characterisation of Early Positive Mcr-1 Resistance Gene and Plasmidome in Escherichia coli Pathogenic Strains Associated with Variable Phylogroups under Colistin Selection. Antibiotics 2021, 10, 1041. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.; An, J.-U.; Kim, W.-H.; Yi, S.; Lee, J.; Cho, S. Different Threats Posed by Two Major Mobilized Colistin Resistance Genes-Mcr-1.1 and Mcr-3.1-Revealed through Comparative Genomic Analysis. J. Glob. Antimicrob. Resist. 2023, 32, 50–57. [Google Scholar] [CrossRef] [PubMed]
- Nobili, G.; La Bella, G.; Basanisi, M.G.; Damato, A.M.; Coppola, R.; Migliorelli, R.; Rondinone, V.; Leekitcharoenphon, P.; Bortolaia, V.; La Salandra, G. Occurrence and Characterisation of Colistin-Resistant Escherichia coli in Raw Meat in Southern Italy in 2018–2020. Microorganisms 2022, 10, 1805. [Google Scholar] [CrossRef]
- Sun, J.; Fang, L.-X.; Wu, Z.; Deng, H.; Yang, R.-S.; Li, X.-P.; Li, S.-M.; Liao, X.-P.; Feng, Y.; Liu, Y.-H. Genetic Analysis of the IncX4 Plasmids: Implications for a Unique Pattern in the Mcr-1 Acquisition. Sci. Rep. 2017, 7, 424. [Google Scholar] [CrossRef]
- Tkadlec, J.; Kalova, A.; Brajerova, M.; Gelbicova, T.; Karpiskova, R.; Smelikova, E.; Nyc, O.; Drevinek, P.; Krutova, M. The Intestinal Carriage of Plasmid-Mediated Colistin-Resistant Enterobacteriaceae in Tertiary Care Settings. Antibiotics 2021, 10, 258. [Google Scholar] [CrossRef]
- Cheng, P.; Yang, Y.; Cao, S.; Liu, H.; Li, X.; Sun, J.; Li, F.; Ishfaq, M.; Zhang, X. Prevalence and Characteristic of Swine-Origin Mcr-1-Positive Escherichia coli in Northeastern China. Front. Microbiol. 2021, 12, 712707. [Google Scholar] [CrossRef] [PubMed]
- Treilles, M.; Châtre, P.; Drapeau, A.; Madec, J.-Y.; Haenni, M. Spread of the Mcr-1 Colistin-Resistance Gene in Escherichia coli through Plasmid Transmission and Chromosomal Transposition in French Goats. Front. Microbiol. 2022, 13, 1023403. [Google Scholar] [CrossRef] [PubMed]
- Guo, L.; Wang, J.; Wang, S.; Su, J.; Wang, X.; Zhu, Y. Genome Characterization of Mcr-1–Positive Escherichia coli Isolated From Pigs With Postweaning Diarrhea in China. Front. Vet. Sci. 2020, 7, 503. [Google Scholar] [CrossRef]
- Tu, Z.; Gu, J.; Zhang, H.; Liu, J.; Shui, J.; Zhang, A. Withdrawal of Colistin Reduces Incidence of Mcr-1-Harboring IncX4-Type Plasmids but Has Limited Effects on Unrelated Antibiotic Resistance. Pathogens 2021, 10, 1019. [Google Scholar] [CrossRef]
- Girardello, R.; Piroupo, C.M.; Martins, J.; Maffucci, M.H.; Cury, A.P.; Franco, M.R.G.; Malta, F.d.M.; Rocha, N.C.; Pinho, J.R.R.; Rossi, F.; et al. Genomic Characterization of Mcr-1.1-Producing Escherichia coli Recovered From Human Infections in São Paulo, Brazil. Front. Microbiol. 2021, 12, 663414. [Google Scholar] [CrossRef]
- Hassan, J.; Eddine, R.Z.; Mann, D.; Li, S.; Deng, X.; Saoud, I.P.; Kassem, I.I. The Mobile Colistin Resistance Gene, Mcr-1.1, Is Carried on IncX4 Plasmids in Multidrug Resistant E. Coli Isolated from Rainbow Trout Aquaculture. Microorganisms 2020, 8, 1636. [Google Scholar] [CrossRef]
- Kompes, G.; Duvnjak, S.; Reil, I.; Hendriksen, R.S.; Sørensen, L.H.; Zdelar-Tuk, M.; Habrun, B.; Cvetnić, L.; Bagarić, A.; Špičić, S. First Report and Characterization of the Mcr-1 Positive Multidrug-Resistant Escherichia coli Strain Isolated from Pigs in Croatia. Microorganisms 2023, 11, 2442. [Google Scholar] [CrossRef] [PubMed]
- Paveenkittiporn, W.; Kamjumphol, W.; Kerdsin, A. Draft Genome Sequence of Invasive Salmonella enterica Serovar Cannstatt Harboring Mcr-1.1, Isolated from a Fatal Sepsis Case. Microbiol. Resour. Announc. 2021, 10, e01270-20. [Google Scholar] [CrossRef] [PubMed]
- Casagrande Proietti, P.; Musa, L.; Stefanetti, V.; Orsini, M.; Toppi, V.; Branciari, R.; Blasi, F.; Magistrali, C.F.; Capomaccio, S.; Kika, T.S.; et al. Mcr-1-Mediated Colistin Resistance and Genomic Characterization of Antimicrobial Resistance in ESBL-Producing Salmonella Infantis Strains from a Broiler Meat Production Chain in Italy. Antibiotics 2022, 11, 728. [Google Scholar] [CrossRef]
- Zhang, H.; Xiang, Y.; Huang, Y.; Liang, B.; Xu, X.; Xie, J.; Du, X.; Yang, C.; Liu, H.; Liu, H.; et al. Genetic Characterization of Mcr-1-Positive Multidrug-Resistant Salmonella enterica Serotype Typhimurium Isolated from Intestinal Infection in Children and Pork Offal in China. Front. Microbiol. 2021, 12, 774797. [Google Scholar] [CrossRef]
- Yi, L.; Yu, K.; Gao, G.; Zhang, R.; Lv, L.; Yu, D.; Yang, J.; Liu, J.-H. Successful Spread of Mcr-1-Bearing IncX4 Plasmids Is Associated with Variant in Replication Protein of IncX4 Plasmids. J. Glob. Antimicrob. Resist. 2024, 36, 365–370. [Google Scholar] [CrossRef] [PubMed]
- Cheng, Y.-H.; Chou, S.-H.; Huang, P.-H.; Yang, T.-C.; Juan, Y.-F.; Kreiswirth, B.N.; Lin, Y.-T.; Chen, L. Characterization of a Mcr-1 and CRISPR-Cas System Co-Harboring Plasmid in a Carbapenemase-Producing High-Risk ST11 Klebsiella pneumoniae Strain. Front. Microbiol. 2021, 12, 762947. [Google Scholar] [CrossRef]
- Li, R.; Zhang, P.; Yang, X.; Wang, Z.; Fanning, S.; Wang, J.; Du, P.; Bai, L. Identification of a Novel Hybrid Plasmid Coproducing MCR-1 and MCR-3 Variant from an Escherichia coli Strain. J. Antimicrob. Chemother. 2019, 74, 1517–1520. [Google Scholar] [CrossRef] [PubMed]
- Lu, X.; Xiao, X.; Liu, Y.; Li, R.; Wang, Z. Emerging Opportunity and Destiny of Mcr-1- and Tet(X4)-Coharboring Plasmids in Escherichia coli. Microbiol. Spectr. 2021, 9, e0152021. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Y.; Qian, C.; Ye, J.; Li, Q.; Zhao, R.; Qin, L.; Mao, Q. Convergence of Plasmid-Mediated Colistin and Tigecycline Resistance in Klebsiella pneumoniae. Front. Microbiol. 2023, 14, 1221428. [Google Scholar] [CrossRef]
- Singh, S.; Pathak, A.; Rahman, M.; Singh, A.; Nag, S.; Sahu, C.; Prasad, K.N. Genetic Characterisation of Colistin Resistant Klebsiella pneumoniae Clinical Isolates From North India. Front. Cell. Infect. Microbiol. 2021, 11, 666030. [Google Scholar] [CrossRef]
- Hamame, A.; Davoust, B.; Rolain, J.-M.; Diene, S.M. Genomic Characterisation of an Mcr-1 and Mcr-3-Producing Escherichia coli Strain Isolated from Pigs in France. J. Glob. Antimicrob. Resist. 2022, 28, 174–179. [Google Scholar] [CrossRef]
- Wang, Y.; Zhou, J.; Liu, H.; Wang, Q.; Zhang, P.; Zhu, J.; Zhao, D.; Wu, X.; Yu, Y.; Jiang, Y. Emergence of High-Level Colistin Resistance Mediated by Multiple Determinants, Including Mcr-1.1, Mcr-8.2 and crrB Mutations, Combined with Tigecycline Resistance in an ST656 Klebsiella pneumoniae. Front. Cell. Infect. Microbiol. 2023, 13, 1122532. [Google Scholar] [CrossRef]
- Sun, X.; Zhang, L.; Meng, J.; Peng, K.; Huang, W.; Lei, G.; Wang, Z.; Li, R.; Yang, X. The Characteristics of Mcr-Bearing Plasmids in Clinical Salmonella enterica in Sichuan, China, 2014 to 2017. Front. Cell. Infect. Microbiol. 2023, 13, 1240580. [Google Scholar] [CrossRef]
- Tian, X.; Fang, R.; Wu, Q.; Zheng, X.; Zhao, Y.; Dong, G.; Wang, C.; Zhou, T.; Cao, J. Emergence of a Multidrug-Resistant ST 27 Escherichia coli Co-Harboring blaNDM-1, Mcr-1, and fosA3 from a Patient in China. J. Antibiot. 2020, 73, 636–641. [Google Scholar] [CrossRef]
- Chopjitt, P.; Boueroy, P.; Morita, M.; Iida, T.; Akeda, Y.; Hamada, S.; Kerdsin, A. Genetic Characterization of Multidrug-Resistant Escherichia coli Harboring Colistin-Resistant Gene Isolated from Food Animals in Food Supply Chain. Front. Cell. Infect. Microbiol. 2024, 14, 1289134. [Google Scholar] [CrossRef]
- Wu, S.; Cui, L.; Han, Y.; Lin, F.; Huang, J.; Song, M.; Lan, Z.; Sun, S. Characteristics, Whole-Genome Sequencing and Pathogenicity Analysis of Escherichia coli from a White Feather Broiler Farm. Microorganisms 2023, 11, 2939. [Google Scholar] [CrossRef]
- Leangapichart, T.; Stosic, M.S.; Hickman, R.A.; Lunha, K.; Jiwakanon, J.; Angkititrakul, S.; Magnusson, U.; Van Boeckel, T.P.; Järhult, J.D.; Sunde, M. Exploring the Epidemiology of Mcr Genes, Genetic Context and Plasmids in Enterobacteriaceae Originating from Pigs and Humans on Farms in Thailand. J. Antimicrob. Chemother. 2023, 78, 1395–1405. [Google Scholar] [CrossRef] [PubMed]
- Li, X.-P.; Sun, R.-Y.; Song, J.-Q.; Fang, L.-X.; Zhang, R.-M.; Lian, X.-L.; Liao, X.-P.; Liu, Y.-H.; Lin, J.; Sun, J. Within-Host Heterogeneity and Flexibility of Mcr-1 Transmission in Chicken Gut. Int. J. Antimicrob. Agents 2020, 55, 105806. [Google Scholar] [CrossRef] [PubMed]
- Jiang, L.; Zhu, H.; Wei, J.; Jiang, L.; Li, Y.; Li, R.; Wang, Z.; Wang, M. Enterobacteriaceae Genome-Wide Analysis Reveals Roles for P1-like Phage-Plasmids in Transmission of Mcr-1, tetX4 and Other Antibiotic Resistance Genes. Genomics 2023, 115, 110572. [Google Scholar] [CrossRef] [PubMed]
- Pfeifer, E.; Bonnin, R.A.; Rocha, E.P.C. Phage-Plasmids Spread Antibiotic Resistance Genes through Infection and Lysogenic Conversion. mBio 2022, 13, e0185122. [Google Scholar] [CrossRef]
- Shen, C.; Zhong, L.-L.; Ma, F.; El-Sayed Ahmed, M.A.E.-G.; Doi, Y.; Zhang, G.; Liu, Y.; Huang, S.; Li, H.-Y.; Zhang, L.; et al. Genomic Patterns and Characterizations of Chromosomally-Encoded Mcr-1 in Escherichia coli Populations. Gut Pathog. 2020, 12, 55. [Google Scholar] [CrossRef]
- Yamaguchi, T.; Kawahara, R.; Hamamoto, K.; Hirai, I.; Khong, D.T.; Nguyen, T.N.; Tran, H.T.; Motooka, D.; Nakamura, S.; Yamamoto, Y. High Prevalence of Colistin-Resistant Escherichia coli with Chromosomally Carried Mcr-1 in Healthy Residents in Vietnam. mSphere 2020, 5, e00117-20. [Google Scholar] [CrossRef]
- Ragupathi, N.K.D.; Sethuvel, D.P.M.; Anandan, S.; Murugan, D.; Asokan, K.; Neethi Mohan, R.G.; Vasudevan, K.; D, T.K.; C, G.P.D.; Veeraraghavan, B. First Hybrid Complete Genome of Aeromonas Veronii Reveals Chromosome-Mediated Novel Structural Variant Mcr-3.30 from a Human Clinical Sample. Access Microbiol. 2020, 2, e000103. [Google Scholar] [CrossRef]
- Fan, J.; Zhang, L.; He, J.; Zhao, M.; Loh, B.; Leptihn, S.; Yu, Y.; Hua, X. Plasmid Dynamics of Mcr-1-Positive Salmonella Spp. in a General Hospital in China. Front. Microbiol. 2020, 11, 604710. [Google Scholar] [CrossRef]
- Ghafur, A.; Shankar, C.; GnanaSoundari, P.; Venkatesan, M.; Mani, D.; Thirunarayanan, M.A.; Veeraraghavan, B. Detection of Chromosomal and Plasmid-Mediated Mechanisms of Colistin Resistance in Escherichia coli and Klebsiella pneumoniae from Indian Food Samples. J. Glob. Antimicrob. Resist. 2019, 16, 48–52. [Google Scholar] [CrossRef]
- Sun, J.; Li, X.-P.; Fang, L.-X.; Sun, R.-Y.; He, Y.-Z.; Lin, J.; Liao, X.-P.; Feng, Y.; Liu, Y.-H. Co-Occurrence of Mcr-1 in the Chromosome and on an IncHI2 Plasmid: Persistence of Colistin Resistance in Escherichia coli. Int. J. Antimicrob. Agents 2018, 51, 842–847. [Google Scholar] [CrossRef]
- Peng, Z.; Hu, Z.; Li, Z.; Li, X.; Jia, C.; Zhang, X.; Wu, B.; Chen, H.; Wang, A.X. Characteristics of a Colistin-Resistant Escherichia coli ST695 Harboring the Chromosomally-Encoded Mcr-1 Gene. Microorganisms 2019, 7, 558. [Google Scholar] [CrossRef] [PubMed]
- Lu, X.; Du, Y.; Peng, K.; Zhang, W.; Li, J.; Wang, Z.; Li, R. Coexistence of Tet(X4), Mcr-1, and blaNDM-5 in ST6775 Escherichia coli Isolates of Animal Origin in China. Microbiol. Spectr. 2022, 10, e0019622. [Google Scholar] [CrossRef]
- Li, R.; Yu, H.; Xie, M.; Chen, K.; Dong, N.; Lin, D.; Chan, E.W.-C.; Chen, S. Genetic Basis of Chromosomally-Encoded Mcr-1 Gene. Int. J. Antimicrob. Agents 2018, 51, 578–585. [Google Scholar] [CrossRef] [PubMed]
- Vu Thi Ngoc, B.; Le Viet, T.; Nguyen Thi Tuyet, M.; Nguyen Thi Hong, T.; Nguyen Thi Ngoc, D.; Le Van, D.; Chu Thi, L.; Tran Huy, H.; Penders, J.; Wertheim, H.; et al. Characterization of Genetic Elements Carrying Mcr-1 Gene in Escherichia coli from the Community and Hospital Settings in Vietnam. Microbiol. Spectr. 2022, 10, e0135621. [Google Scholar] [CrossRef] [PubMed]
- Snesrud, E.; He, S.; Chandler, M.; Dekker, J.P.; Hickman, A.B.; McGann, P.; Dyda, F. A Model for Transposition of the Colistin Resistance Gene Mcr-1 by ISApl1. Antimicrob. Agents Chemother. 2016, 60, 6973–6976. [Google Scholar] [CrossRef]
- Snesrud, E.; McGann, P.; Chandler, M. The Birth and Demise of the ISApl1-Mcr-1-ISApl1 Composite Transposon: The Vehicle for Transferable Colistin Resistance. mBio 2018, 9, e02381-17. [Google Scholar] [CrossRef]
- Sismova, P.; Sukkar, I.; Kolidentsev, N.; Palkovicova, J.; Chytilova, I.; Bardon, J.; Dolejska, M.; Nesporova, K. Plasmid-Mediated Colistin Resistance from Fresh Meat and Slaughtered Animals in the Czech Republic: Nation-Wide Surveillance 2020–2021. Microbiol. Spectr. 2023, 11, e00609-23. [Google Scholar] [CrossRef]
- Long, X.; Li, J.; Yang, H.; Gao, Y.; Ma, J.; Zeng, X.; Tang, B. The Bla NDM-1 and Mcr-1 Genes Coexist in Escherichia coli Strain Isolated from Public Trash Cans. JAC-Antimicrob. Resist. 2024, 6, dlae132. [Google Scholar] [CrossRef]
- Jamin, C.; Sanders, B.K.; Zhou, M.; Costessi, A.; Duijsings, D.; Kluytmans, J.A.J.W.; van Alphen, L.B.; Schrauwen, E.J.A. Genetic Analysis of Plasmid-Encoded Mcr-1 Resistance in Enterobacteriaceae Derived from Poultry Meat in the Netherlands. JAC-Antimicrob. Resist. 2021, 3, dlab156. [Google Scholar] [CrossRef] [PubMed]
- Maciuca, I.E.; Cummins, M.L.; Cozma, A.P.; Rimbu, C.M.; Guguianu, E.; Panzaru, C.; Licker, M.; Szekely, E.; Flonta, M.; Djordjevic, S.P.; et al. Genetic Features of Mcr-1 Mediated Colistin Resistance in CMY-2-Producing Escherichia coli From Romanian Poultry. Front. Microbiol. 2019, 10, 2267. [Google Scholar] [CrossRef] [PubMed]
- Anyanwu, M.U.; Jaja, I.F.; Nwobi, O.C.; Mgbeahuruike, A.C.; Ikpendu, C.N.; Okafor, N.A.; Oguttu, J.W. Epidemiology and Traits of Mobile Colistin Resistance (Mcr) Gene-Bearing Organisms from Horses. Microorganisms 2022, 10, 1499. [Google Scholar] [CrossRef]
- Anyanwu, M.U.; Jaja, I.F.; Okpala, C.O.R.; Njoga, E.O.; Okafor, N.A.; Oguttu, J.W. Mobile Colistin Resistance (Mcr) Gene-Containing Organisms in Poultry Sector in Low- and Middle-Income Countries: Epidemiology, Characteristics, and One Health Control Strategies. Antibiotics 2023, 12, 1117. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Fu, Y.; Schwarz, S.; Yin, W.; Walsh, T.R.; Zhou, Y.; He, J.; Jiang, H.; Wang, Y.; Wang, S. Genetic Environment of Colistin Resistance Genes Mcr-1 and Mcr-3 in Escherichia coli from One Pig Farm in China. Vet. Microbiol. 2019, 230, 56–61. [Google Scholar] [CrossRef]
- Binsker, U.; Oelgeschläger, K.; Neumann, B.; Werner, G.; Käsbohrer, A.; Hammerl, J.A. Genomic Evidence of Mcr-1.26 IncX4 Plasmid Transmission between Poultry and Humans. Microbiol. Spectr. 2023, 11, e0101523. [Google Scholar] [CrossRef]
- Dantas Palmeira, J.; Cunha, M.V.; Ferreira, H.; Fonseca, C.; Tinoco Torres, R. Worldwide Disseminated IncX4 Plasmid Carrying Mcr-1 Arrives to Wild Mammal in Portugal. Microbiol. Spectr. 2022, 10, e0124522. [Google Scholar] [CrossRef]
- Ewers, C.; Göpel, L.; Prenger-Berninghoff, E.; Semmler, T.; Kerner, K.; Bauerfeind, R. Occurrence of Mcr-1 and Mcr-2 Colistin Resistance Genes in Porcine Escherichia coli Isolates (2010–2020) and Genomic Characterization of Mcr-2-Positive E. coli. Front. Microbiol. 2022, 13, 1076315. [Google Scholar] [CrossRef]
- Rau, R.B.; de Lima-Morales, D.; Wink, P.L.; Ribeiro, A.R.; Barth, A.L. Salmonella enterica Mcr-1 Positive from Food in Brazil: Detection and Characterization. Foodborne Pathog. Dis. 2020, 17, 202–208. [Google Scholar] [CrossRef]
- Ma, X.; Lv, X.; Feng, S.; Liu, R.; Fu, H.; Gao, F.; Xu, H. Genetic Characterization of an ST5571 Hypervirulent Klebsiella pneumoniae Strain Co-Producing NDM-1, MCR-1, and OXA-10 Causing Bacteremia. Infect. Drug Resist. 2022, 15, 2293–2299. [Google Scholar] [CrossRef]
- Kim, J.; Hwang, B.K.; Choi, H.; Wang, Y.; Choi, S.H.; Ryu, S.; Jeon, B. Characterization of Mcr-1-Harboring Plasmids from Pan Drug-Resistant Escherichia coli Strains Isolated from Retail Raw Chicken in South Korea. Microorganisms 2019, 7, 344. [Google Scholar] [CrossRef] [PubMed]
- Goodman, R.N.; Tansirichaiya, S.; Brouwer, M.S.M.; Roberts, A.P. Intracellular Transposition of Mobile Genetic Elements Associated with the Colistin Resistance Gene Mcr-1. Microbiol. Spectr. 2023, 11, e0327822. [Google Scholar] [CrossRef] [PubMed]
- Teng, C.-H.; Wu, P.-C.; Tang, S.-L.; Chen, Y.-C.; Cheng, M.-F.; Huang, P.-C.; Ko, W.-C.; Wang, J.-L. A Large Spatial Survey of Colistin-Resistant Gene Mcr-1-Carrying E. coli in Rivers across Taiwan. Microorganisms 2021, 9, 722. [Google Scholar] [CrossRef] [PubMed]
- Zając, M.; Iwan, E.; Skarżyńska, M.; Kwit, R.; Skóra, M.; Lalak, A.; Śmiałowska-Węglińska, A.; Kamińska, E.; Pietruk, M.; Wasyl, D. The First Description of the Complete Genome Sequence of Multidrug-Resistant Salmonella enterica Serovar Monophasic Typhimurium (1,4,[5],12:I:-) Isolate with the Mcr-1.1 Gene on IncHI2 Found in Pig in Poland. J. Glob. Antimicrob. Resist. 2023, 33, 218–220. [Google Scholar] [CrossRef]
- Liu, G.; Qian, H.; Lv, J.; Tian, B.; Bao, C.; Yan, H.; Gu, B. Emergence of Mcr-1-Harboring Salmonella enterica Serovar Sinstorf Type ST155 Isolated From Patients With Diarrhea in Jiangsu, China. Front. Microbiol. 2021, 12, 723697. [Google Scholar] [CrossRef]
- Li, C.; Gu, X.; Zhang, L.; Liu, Y.; Li, Y.; Zou, M.; Liu, B. The Occurrence and Genomic Characteristics of Mcr-1-Harboring Salmonella from Retail Meats and Eggs in Qingdao, China. Foods 2022, 11, 3854. [Google Scholar] [CrossRef]
Replicon | Sources | Countries (Continents) | References |
---|---|---|---|
IncI2 | Clinical, poultry, wastewater, pigs, meat | China (Asia), Pakistan (Asia), Brazil (South America), Europe (Greece, Poland, Netherlands), Africa (Nigeria, Tunisia) | [44,57,58,59] |
IncX4 | Clinical, poultry, pigs, meat, environment, water | China (Asia), Brazil (South America), Europe (Greece, Netherlands, Germany, Romania), Thailand (Asia), Africa (Egypt) | [46,54,58,59,60,61,62,63,64] |
IncHI2 | Clinical, animals (poultry, pigs), food, environment | China (Asia), Tunisia (Africa), Poland (Europe), Egypt (Africa), Brazil (South America) | [46,59,63,65,66] |
Host Source | Bacterial Species | Geographic Location | Chromosomal Integration Site/Mechanism | Associated Mobile Genetic Elements | Reference |
---|---|---|---|---|---|
Animal (goats) | E. coli | France | Integration via Tn6330 (composite transposon) at multiple chromosomal sites | Tn6330, ISApl1 | [122] |
Animal (organs) | E. coli | China | Integration via Tn6330 | Tn6330 | [67] |
Animal (pig stool) | E. coli | Avignon, France | Integration near tRNA-Met gene via phage integrase and IS30 transposases | IS30, phage integrase | [137] |
Animal (pig) | E. coli | China | Triplication via Tn6330 in chromosomal regions | Tn6330, ISApl1 | [152] |
Animal (pig) | E. coli | China | Transposition via ISApl1 into AT-rich regions with target site duplication | ISApl1 | [153] |
Animal (pig), food (meat) | E. coli | Thailand | Chromosomal insertion via ISApl1 | ISApl1 | [141] |
Animal (pigeons) | E. coli | China | Integration via Tn6330 | Tn6330, ISApl1 | [154] |
Food (poultry, mutton) | E. coli | India | Transposition via ISApl1 into AT-rich regions | ISApl1 | [151] |
Human (clinical) | A. veronii | India | Chromosomal integration disrupted by ISAs18 | ISAs18, ISAs19, ISAs20 | [149] |
Human (clinical) | K. pneumoniae | Nethelands | Integration via multiple ISApl1 elements | ISApl1 | [58] |
Human (clinical) | S. Indiana | China | Recombination event involving ISApl1 and pap2, disrupted by ISVsa5 | ISApl1, ISVsa5 | [150] |
Human (fecal) | E. coli | Vietnam | Integration via Tn6330 (ISApl1-mcr-1-pap2-ISApl1) at random chromosomal sites | Tn6330, ISApl1 | [148] |
Human, animal, food | E. coli | China | Integration via Tn6330 (ISApl1-mcr-1-orf-ISApl1 structure) into AT-rich regions | Tn6330, ISApl1 | [155] |
Human, animal, food, water | E. coli | Vietnam | Integration via Tn6330 and ISApl1 | Tn6330, ISApl1 | [156] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Touati, A.; Ibrahim, N.A.; Mairi, A.; Kirat, H.; Basher, N.S.; Idres, T. One Health at Risk: Plasmid-Mediated Spread of mcr-1 Across Clinical, Agricultural, and Environmental Ecosystems. Antibiotics 2025, 14, 506. https://doi.org/10.3390/antibiotics14050506
Touati A, Ibrahim NA, Mairi A, Kirat H, Basher NS, Idres T. One Health at Risk: Plasmid-Mediated Spread of mcr-1 Across Clinical, Agricultural, and Environmental Ecosystems. Antibiotics. 2025; 14(5):506. https://doi.org/10.3390/antibiotics14050506
Chicago/Turabian StyleTouati, Abdelaziz, Nasir Adam Ibrahim, Assia Mairi, Hassina Kirat, Nosiba S. Basher, and Takfarinas Idres. 2025. "One Health at Risk: Plasmid-Mediated Spread of mcr-1 Across Clinical, Agricultural, and Environmental Ecosystems" Antibiotics 14, no. 5: 506. https://doi.org/10.3390/antibiotics14050506
APA StyleTouati, A., Ibrahim, N. A., Mairi, A., Kirat, H., Basher, N. S., & Idres, T. (2025). One Health at Risk: Plasmid-Mediated Spread of mcr-1 Across Clinical, Agricultural, and Environmental Ecosystems. Antibiotics, 14(5), 506. https://doi.org/10.3390/antibiotics14050506