A Scoping Review Unveiling Antimicrobial Resistance Patterns in the Environment of Dairy Farms Across Asia
Abstract
:1. Introduction
2. Results
2.1. Selection of Evidence Source
2.2. Overall Characteristics and Results of Sources of Evidence
2.3. Bacteria Analysis
2.4. Methods of Antimicrobial Susceptibility Testing
2.5. Antimicrobial Resistance Patterns
2.6. Antibiotic Resistance Genes (ARGs) Detection
2.7. Comparative Analysis of AMR Patterns Across Environmental Samples Based on Country
2.8. Comparative Analysis of AMR Patterns Across Environmental Samples Between Countries
3. Discussion
4. Materials and Methods
4.1. Search Terms and Strategy
4.2. Eligibility Criteria
4.3. Study Selection Process
4.4. Data Management and Charting
4.5. Data Extraction and Synthesis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
AMR | Antimicrobial resistance |
FAO | Food and Agriculture Organization |
ARGs | Antibiotic resistance genes |
LMICs | Low- and middle-income countries |
E. coli | Escherichia coli |
S. aureus | Staphylococcus aureus |
MIC | Minimum inhibitory concentration |
WHO | World Health Organization |
ESBL | Extended-spectrum beta-lactamases |
PRISMA-ScR | Prisma Extension for Scoping Review |
References
- Gasmalla, M.A.A.; Tessema, H.A.; Salaheldin, A.; Alahmad, K.; Hassanin, H.A.; Aboshora, W. Health Benefits of Milk and Functional Dairy Products. MOJ Food Process. Technol. 2017, 4, 108–111. [Google Scholar] [CrossRef]
- Özer, B.H.; Kirmaci, H.A. Functional Milks and Dairy Beverages. Int. J. Dairy Technol. 2010, 63, 1–15. [Google Scholar] [CrossRef]
- Givens, D.I. MILK Symposium Review: The Importance of Milk and Dairy Foods in the Diets of Infants, Adolescents, Pregnant Women, Adults, and the Elderly*. J. Dairy Sci. 2020, 103, 9681–9699. [Google Scholar] [CrossRef] [PubMed]
- Claeys, W.L.; Verraes, C.; Cardoen, S.; De Block, J.; Huyghebaert, A.; Raes, K.; Dewettinck, K.; Herman, L. Consumption of Raw or Heated Milk from Different Species: An Evaluation of the Nutritional and Potential Health Benefits. Food Control 2014, 42, 188–201. [Google Scholar] [CrossRef]
- Cuong, N.V.; Padungtod, P.; Thwaites, G.; Carrique-Mas, J.J. Antimicrobial Usage in Animal Production: A Review of the Literature with a Focus on Low- and Middle-Income Countries. Antibiotics 2018, 7, 75. [Google Scholar] [CrossRef]
- Morgan, N. Introduction: Dairy Development in Asia. Available online: https://www.fao.org/4/i0588e/I0588E02.htm (accessed on 31 January 2025).
- FAO. Dairy Market Review 2019. Available online: https://openknowledge.fao.org/server/api/core/bitstreams/ca99822d-2fac-4096-b9e8-f9ff0602faaa/content (accessed on 14 November 2022).
- Sadiq, M.B.; Syed-Hussain, S.S.; Ramanoon, S.Z.; Saharee, A.A.; Ahmad, N.I.; Mohd Zin, N.; Khalid, S.F.; Naseeha, D.S.; Syahirah, A.A.; Mansor, R. Knowledge, Attitude and Perception Regarding Antimicrobial Resistance and Usage among Ruminant Farmers in Selangor, Malaysia. Prev. Vet. Med. 2018, 156, 76–83. [Google Scholar] [CrossRef]
- Medina-Pizzali, M.L.; Hartinger, S.M.; Salmon-Mulanovich, G.; Larson, A.; Riveros, M.; Mäusezahl, D. Antimicrobial Resistance in Rural Settings in Latin America: A Scoping Review with a One Health Lens. Int. J. Environ. Res. Public Health 2021, 18, 9837. [Google Scholar] [CrossRef]
- Singer, A.C.; Shaw, H.; Rhodes, V.; Hart, A. Review of Antimicrobial Resistance in the Environment and Its Relevance to Environmental Regulators. Front. Microbiol. 2016, 7, 1728. [Google Scholar] [CrossRef]
- Munita, J.M.; Arias, C.A. Mechanisms of Antibiotic Resistance. Microbiol. Spectr. 2016, 4, 481–511. [Google Scholar] [CrossRef]
- Ashbolt, N.J.; Amézquita, A.; Backhaus, T.; Borriello, P.; Brandt, K.K.; Collignon, P.; Coors, A.; Finley, R.; Gaze, W.H.; Heberer, T.; et al. Human Health Risk Assessment (HHRA) for Environmental Development and Transfer of Antibiotic Resistance. Environ. Health Perspect. 2013, 121, 993–1001. [Google Scholar] [CrossRef]
- Lundborg, C.S.; Tamhankar, A.J. Antibiotic Residues in the Environment of South East Asia. BMJ 2017, 358, j2440. [Google Scholar] [CrossRef] [PubMed]
- Murray, C.J.; Ikuta, K.S.; Sharara, F.; Swetschinski, L.; Aguilar, G.R.; Gray, A.; Han, C.; Bisignano, C.; Rao, P.; Wool, E.; et al. Global Burden of Bacterial Antimicrobial Resistance in 2019: A Systematic Analysis. Lancet 2022, 399, 629–655. [Google Scholar] [CrossRef]
- Malijan, G.M.; Howteerakul, N.; Ali, N.; Siri, S.; Kengganpanich, M.; Nascimento, R.; Booton, R.D.; Turner, K.M.E.; Cooper, B.S.; Meeyai, A. A Scoping Review of Antibiotic Use Practices and Drivers of Inappropriate Antibiotic Use in Animal Farms in WHO Southeast Asia Region. One Health 2022, 15, 100412. [Google Scholar] [CrossRef] [PubMed]
- Samreen; Ahmad, I.; Malak, H.A.; Abulreesh, H.H. Environmental Antimicrobial Resistance and Its Drivers: A Potential Threat to Public Health. J. Glob. Antimicrob. Resist. 2021, 27, 101–111. [Google Scholar] [CrossRef]
- Kakkar, M.; Chatterjee, P.; Chauhan, A.S.; Grace, D.; Lindahl, J.; Beeche, A.; Jing, F.; Chotinan, S. Antimicrobial Resistance in South East Asia: Time to Ask the Right Questions. Glob. Health Action 2018, 11, 1483637. [Google Scholar] [CrossRef] [PubMed]
- Hosain, M.Z.; Kabir, S.M.L.; Kamal, M.M. Antimicrobial Uses for Livestock Production in Developing Countries. Vet World 2021, 14, 210–221. [Google Scholar] [CrossRef]
- Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E.; et al. The PRISMA 2020 Statement: An Updated Guideline for Reporting Systematic Reviews. BMJ 2021, 372, n71. [Google Scholar] [CrossRef]
- Xi, X.; Zhang, J.; Kwok, L.; Huo, D.; Feng, S.; Zhang, H.; Sun, T. Microbial Pollution Tracking of Dairy Farm with a Combined PCR-DGGE and qPCR Approach. Curr. Microbiol. 2015, 71, 678–686. [Google Scholar] [CrossRef]
- Ali, A.; Fontana, H.; Sano, E.; Li, R.; Humayon, M.; Rahman, S.; Lincopan, N.; Mohsin, M. Genomic Features of a High-Risk Mcr-1.1-Positive Escherichia Coli ST10 Isolated from Cattle Farm Environment. Environ. Sci. Pollut. Res. Int. 2021, 28, 54147–54152. [Google Scholar] [CrossRef]
- Borah, V.; Roy, M.; Saikia, K. High Prevalence of Antibiotic Resistance in Escherichia Coli Isolated from Fecal Sample of Cows and Assessment of Antibacterial Efficacy of Indigenous Medicinal Plants from Assam, India. Austin. J. Biotechnol. Bioeng. 2014, 1, 6. [Google Scholar]
- Chen, B.; Hao, L.; Guo, X.; Wang, N.; Ye, B. Prevalence of Antibiotic Resistance Genes of Wastewater and Surface Water in Livestock Farms of Jiangsu Province, China. Environ. Sci. Pollut. Res. 2015, 22, 13950–13959. [Google Scholar] [CrossRef] [PubMed]
- Cui, Y.; Liu, X.; Dietrich, R.; Märtlbauer, E.; Cao, J.; Ding, S.; Zhu, K. Characterization of Bacillus Cereus Isolates from Local Dairy Farms in China. FEMS Microbiol. Lett. 2016, 363, fnw096. [Google Scholar] [CrossRef] [PubMed]
- Dameanti, F.N.A.E.P.; Yanestria, S.M.; Widodo, A.; Effendi, M.H.; Plumeriastuti, H.; Tyasningsih, W.; Sutrisno, R.; Akramsyah, M.A. Incidence of Escherichia Coli Producing Extended-Spectrum Beta-Lactamase in Wastewater of Dairy Farms in East Java, Indonesia. Biodiversitas 2023, 24, 1143–1150. [Google Scholar] [CrossRef]
- Gandhale, D.; Kolhe, R.; Nalband, S.; Deshpande, P.; Jagtap, U.; Dhandore, C.; Bhave, S.; Jadhav, S.; Muglikar, D.; Kolhe, S. Molecular Types and Antimicrobial Resistance Profile of Staphylococcus Aureus Isolated from Dairy Cows and Farm Environments. Turk. J. Vet. Anim. Sci. 2017, 41, 713–724. [Google Scholar] [CrossRef]
- Halimi, H.A.; Seifi, H.A.; Rad, M. Bovine Salmonellosis in Northeast of Iran: Frequency, Genetic Fingerprinting and Antimicrobial Resistance Patterns of Salmonella Spp. Asian Pac. J. Trop. Biomed. 2014, 4, 1–7. [Google Scholar] [CrossRef]
- Hinthong, W.; Pumipuntu, N.; Santajit, S.; Kulpeanprasit, S.; Buranasinsup, S.; Sookrung, N.; Chaicumpa, W.; Aiumurai, P.; Indrawattana, N. Detection and Drug Resistance Profile of Escherichia Coli from Subclinical Mastitis Cows and Water Supply in Dairy Farms in Saraburi Province, Thailand. PeerJ 2017, 2017, e3431. [Google Scholar] [CrossRef]
- Huang, S.; Tian, P.; Kou, X.; An, N.; Wu, Y.; Dong, J.; Cai, H.; Li, B.; Xue, Y.; Liu, Y.; et al. The Prevalence and Characteristics of Extended-Spectrum β-Lactamase Escherichia Coli in Raw Milk and Dairy Farms in Northern Xinjiang, China. Int. J. Food Microbiol. 2022, 381, 109908. [Google Scholar] [CrossRef]
- Jindal, P.; Bedi, J.; Singh, R.; Aulakh, R.; Gill, J. Phenotypic and Genotypic Antimicrobial Resistance Patterns of Escherichia Coli and Klebsiella Isolated from Dairy Farm Milk, Farm Slurry and Water in Punjab, India. Environ. Sci. Pollut. Res. 2021, 28, 28556–28570. [Google Scholar] [CrossRef]
- Kamaruzzaman, E.A.; Aziz, S.A.; Bitrus, A.A.; Zakaria, Z.; Hassan, L. Occurrence and Characteristics of Extended-Spectrum β-Lactamase-Producing Escherichia Coli from Dairy Cattle, Milk, and Farm Environments in Peninsular Malaysia. Pathogens 2020, 9, 1007. [Google Scholar] [CrossRef]
- Kang, J.; Liu, Y.; Chen, X.; Xu, F.; Wang, H.; Xiong, W.; Li, X. Metagenomic Insights into the Antibiotic Resistomes of Typical Chinese Dairy Farm Environments. Front. Microbiol. 2022, 13, 990272. [Google Scholar] [CrossRef]
- Li, R.; Zhang, L.; Lu, X.; Peng, K.; Liu, Y.; Xiao, X.; Song, H.; Wang, Z. Occurrence and Characterization of NDM-1-Producing Shewanella Spp. and Acinetobacter Portensis Co-Harboring Tet(X3) in a Chinese Dairy Farm. Antibiotics 2022, 11, 1422. [Google Scholar] [CrossRef] [PubMed]
- Lim, S.-K.; Nam, H.-M.; Jang, G.-C.; Lee, H.-S.; Jung, S.-C.; Kim, T.-S. Transmission and Persistence of Methicillin-Resistant Staphylococcus Aureus in Milk, Environment, and Workers in Dairy Cattle Farms. Foodborne Pathog. Dis. 2013, 10, 731–736. [Google Scholar] [CrossRef]
- Liu, C.; Liu, Y.; Feng, C.; Wang, P.; Yu, L.; Liu, D.; Sun, S.; Wang, F. Distribution Characteristics and Potential Risks of Heavy Metals and Antimicrobial Resistant Escherichia Coli in Dairy Farm Wastewater in Tai’an, China. Chemosphere 2021, 262, 127768. [Google Scholar] [CrossRef] [PubMed]
- Maulana, K.Y.; Pichpol, D.; Farhani, N.R.; Widiasih, D.A.; Unger, F.; Punyapornwithaya, V.; Meeyam, T. Antimicrobial Resistance Characteristics of Extended Spectrum Beta Lactamase (Esbl)-Producing Escherichia Coli from Dairy Farms in the Sleman District of Yogyakarta Province, Indonesia. Vet. Integr. Sci. 2021, 19, 525–535. [Google Scholar] [CrossRef]
- Parul; Bist, B.; Sharma, B.; Jain, U. Virulence Associated Factors and Antibiotic Sensitivity Pattern of Escherichia Coli Isolated from Cattle and Soil. Vet. World 2014, 7, 369–372. [Google Scholar] [CrossRef]
- Peng, S.; Zhang, H.; Song, D.; Chen, H.; Lin, X.; Wang, Y.; Ji, L. Distribution of Antibiotic, Heavy Metals and Antibiotic Resistance Genes in Livestock and Poultry Feces from Different Scale of Farms in Ningxia, China. J. Hazard. Mater. 2022, 440, 129719. [Google Scholar] [CrossRef]
- Pumipuntu, N.; Pumipuntu, S. Detection of Antimicrobial Resistance Genes of Carbapenem-Resistant Enterobacteriaceae in Escherichia Coli Isolated from the Water Supply of Smallholder Dairy Farms in Saraburi and Maha Sarakham, Thailand. Int. J. One Health 2020, 6, 1–5. [Google Scholar] [CrossRef]
- Qi, Z.; Jin, S.; Guo, X.; Tong, H.; Ren, N.; You, S. Distribution and Transmission of β-Lactamase Resistance Genes in Meal-to-Milk Chain on Dairy Farm. Environ. Pollut. 2023, 331, 121831. [Google Scholar] [CrossRef]
- Qi, Z.; Le, Z.; Han, F.; Qi, Y.; Liu, R. β-Lactamase Genes Transmission Influenced by Tetracycline, Sulfonamide and β-Lactams Antibiotics Contamination in the on-Site Farm Soil. Ecotoxicol. Environ. Saf. 2022, 241, 113753. [Google Scholar] [CrossRef]
- Qi, Z.; Qi, Y.; Le, Z.; Han, F.; Li, F.; Yang, H.; Zhang, T.; Feng, Y.; Liu, R.; Sun, Y. The Interactions Between Antibiotic Resistance Genes and Heavy Metal Pollution Under Co-Selective Pressure Influenced the Bio-Enzyme Activity. Front. Chem. 2021, 9, 691565. [Google Scholar] [CrossRef]
- Qiu, T.; Huo, L.; Guo, Y.; Gao, M.; Wang, G.; Hu, D.; Li, C.; Wang, Z.; Liu, G.; Wang, X. Metagenomic Assembly Reveals Hosts and Mobility of Common Antibiotic Resistome in Animal Manure and Commercial Compost. Environ. Microbiomes 2022, 17, 42. [Google Scholar] [CrossRef] [PubMed]
- Shoaib, M.; He, Z.; Geng, X.; Tang, M.; Hao, R.; Wang, S.; Shang, R.; Wang, X.; Zhang, H.; Pu, W. The Emergence of Multi-Drug Resistant and Virulence Gene Carrying Escherichia Coli Strains in the Dairy Environment: A Rising Threat to the Environment, Animal, and Public Health. Front. Microbiol. 2023, 14, 1197579. [Google Scholar] [CrossRef] [PubMed]
- Shourav, A.H.; Hasan, M.; Ahmed, S. Antibiotic Susceptibility Pattern of Listeria Spp. Isolated from Cattle Farm Environment in Bangladesh. J. Agric. Food Res. 2020, 2, 100082. [Google Scholar] [CrossRef]
- Sobur, M.A.; Sabuj, A.A.M.; Sarker, R.; Rahman, A.M.M.T.; Kabir, S.M.L.; Rahman, M.T. Antibiotic-Resistant Escherichia Coli and Salmonella Spp. Associated with Dairy Cattle and Farm Environment Having Public Health Significance. Vet. World 2019, 12, 984–993. [Google Scholar] [CrossRef]
- Sun, M.; Ye, M.; Wu, J.; Feng, Y.; Wan, J.; Tian, D.; Shen, F.; Liu, K.; Hu, F.; Li, H.; et al. Positive Relationship Detected between Soil Bioaccessible Organic Pollutants and Antibiotic Resistance Genes at Dairy Farms in Nanjing, Eastern China. Environ. Pollut. 2015, 206, 421–428. [Google Scholar] [CrossRef]
- Suzuki, Y.; Hiroki, H.; Xie, H.; Nishiyama, M.; Sakamoto, S.H.; Uemura, R.; Nukazawa, K.; Ogura, Y.; Watanabe, T.; Kobayashi, I. Antibiotic-Resistant Escherichia Coli Isolated from Dairy Cows and Their Surrounding Environment on a Livestock Farm Practicing Prudent Antimicrobial Use. Int. J. Hyg. Environ. Health 2022, 240, 113930. [Google Scholar] [CrossRef] [PubMed]
- Wang, N.; Guo, X.; Yan, Z.; Wang, W.; Chen, B.; Ge, F.; Ye, B. A Comprehensive Analysis on Spread and Distribution Characteristic of Antibiotic Resistance Genes in Livestock Farms of Southeastern China. PLoS ONE 2016, 11, e0156889. [Google Scholar] [CrossRef]
- Wang, Y.; Li, X.; Fu, Y.; Chen, Y.; Wang, Y.; Ye, D.; Wang, C.; Hu, X.; Zhou, L.; Du, J.; et al. Association of Florfenicol Residues with the Abundance of Oxazolidinone Resistance Genes in Livestock Manures. J. Hazard. Mater. 2020, 399, 123059. [Google Scholar] [CrossRef]
- Wu, X.; Liu, J.; Feng, J.; Shabbir, M.A.B.; Feng, Y.; Guo, R.; Zhou, M.; Hou, S.; Wang, G.; Hao, H.; et al. Epidemiology, Environmental Risks, Virulence, and Resistance Determinants of Klebsiella Pneumoniae from Dairy Cows in Hubei, China. Front. Microbiol. 2022, 13, 858799. [Google Scholar] [CrossRef]
- Yang, F.; Tian, X.; Han, B.; Zhao, R.; Li, J.; Zhang, K. Tracking High-Risk β-Lactamase Gene (Bla Gene) Transfers in Two Chinese Intensive Dairy Farms. Environ. Pollut. 2021, 274, 116953. [Google Scholar] [CrossRef]
- Yang, F.; Zhang, Z.; Li, Z.; Han, B.; Zhang, K.; Yang, P.; Ding, Y. Prevalence of High-Risk β-Lactam Resistance Genes in Family Livestock Farms in Danjiangkou Reservoir Basin, Central China. Int. J. Environ. Res. Public Health 2022, 19, 6036. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Ma, C.; Zhang, W.; Li, W.; Yu, J.; Xue, D.; Wu, X.; Deng, G. Shifts in Microbial Community, Pathogenicity-Related Genes and Antibiotic Resistance Genes during Dairy Manure Piled Up. Microb. Biotechnol. 2020, 13, 1039–1053. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Zhang, B.; Guo, Y.; Wang, J.; Zhao, P.; Liu, J.; He, K. Colistin Resistance Prevalence in Escherichia Coli from Domestic Animals in Intensive Breeding Farms of Jiangsu Province. Int. J. Food Microbiol. 2019, 291, 87–90. [Google Scholar] [CrossRef]
- Zhao, Q.; Hu, P.; Li, Q.; Zhang, S.; Li, H.; Chang, J.; Jiang, Q.; Zheng, Y.; Li, Y.; Liu, Z.; et al. Prevalence and Transmission Characteristics of Listeria Species from Ruminants in Farm and Slaughtering Environments in China. Emerg. Microbes Infect. 2021, 10, 356–364. [Google Scholar] [CrossRef]
- Zheng, B.; Feng, C.; Xu, H.; Yu, X.; Guo, L.; Jiang, X.; Song, X. Detection and Characterization of ESBL-Producing Escherichia Coli Expressing Mcr-1 from Dairy Cows in China. J. Antimicrob. Chemother. 2019, 74, 321–325. [Google Scholar] [CrossRef] [PubMed]
- Zhou, B.; Wang, C.; Zhao, Q.; Wang, Y.; Huo, M.; Wang, J.; Wang, S. Prevalence and Dissemination of Antibiotic Resistance Genes and Coselection of Heavy Metals in Chinese Dairy Farms. J. Hazard. Mater. 2016, 320, 10–17. [Google Scholar] [CrossRef]
- Benkova, M.; Soukup, O.; Marek, J. Antimicrobial Susceptibility Testing: Currently Used Methods and Devices and the near Future in Clinical Practice. J. Appl. Microbiol. 2020, 129, 806–822. [Google Scholar] [CrossRef]
- Reller, L.B.; Weinstein, M.; Jorgensen, J.H.; Ferraro, M.J. Antimicrobial Susceptibility Testing: A Review of General Principles and Contemporary Practices. Clin. Infect. Dis. 2009, 49, 1749–1755. [Google Scholar] [CrossRef]
- Tacconelli, E.; Carrara, E.; Savoldi, A.; Harbarth, S.; Mendelson, M.; Monnet, D.L.; Pulcini, C.; Kahlmeter, G.; Kluytmans, J.; Carmeli, Y.; et al. Discovery, Research, and Development of New Antibiotics: The WHO Priority List of Antibiotic-Resistant Bacteria and Tuberculosis. Lancet Infect Dis. 2018, 18, 318–327. [Google Scholar] [CrossRef]
- Oliveros, M.C.R. The Dairy Industry in Southeast Asia: Perspective, Challenges and Opportunities. IOP Conf. Ser. Earth Environ. Sci. 2019, 372, 012068. [Google Scholar] [CrossRef]
- Savin, M.; Bierbaum, G.; Hammerl, J.A.; Heinemann, C.; Parcina, M.; Sib, E.; Voigt, A.; Kreyenschmidt, J. ESKAPE Bacteria and Extended-Spectrum-β-Lactamase-Producing Escherichia Coli Isolated from Wastewater and Process Water from German Poultry Slaughterhouses. Appl. Environ. Microbiol. 2020, 86, e02748-19. [Google Scholar] [CrossRef] [PubMed]
- Ramos, S.; Silva, V.; Dapkevicius, M.d.L.E.; Caniça, M.; Tejedor-Junco, M.T.; Igrejas, G.; Poeta, P. Escherichia coli as Commensal and Pathogenic Bacteria among Food-Producing Animals: Health Implications of Extended Spectrum β-Lactamase (ESBL) Production. Animals 2020, 10, 2239. [Google Scholar] [CrossRef]
- Messele, Y.E.; Alkhallawi, M.; Veltman, T.; Trott, D.J.; McMeniman, J.P.; Kidd, S.P.; Low, W.Y.; Petrovski, K.R. Phenotypic and Genotypic Analysis of Antimicrobial Resistance in Escherichia Coli Recovered from Feedlot Beef Cattle in Australia. Animals 2022, 12, 2256. [Google Scholar] [CrossRef]
- WHO. WHO Publishes List of Bacteria for Which New Antibiotics Are Urgently Needed; Geneva; 2017. Available online: https://www.who.int/zh/news/item/27-02-2017-who-publishes-list-of-bacteria-for-which-new-antibiotics-are-urgently-needed (accessed on 18 November 2022).
- Denissen, J.; Reyneke, B.; Waso-Reyneke, M.; Havenga, B.; Barnard, T.; Khan, S.; Khan, W. Prevalence of ESKAPE Pathogens in the Environment: Antibiotic Resistance Status, Community-Acquired Infection and Risk to Human Health. Int. J. Hyg. Environ. Health 2022, 244, 114006. [Google Scholar] [CrossRef]
- Patil, A.; Banerji, R.; Kanojiya, P.; Saroj, S.D. Foodborne ESKAPE Biofilms and Antimicrobial Resistance: Lessons Learned from Clinical Isolates. Pathog. Glob. Health 2021, 115, 339–356. [Google Scholar] [CrossRef]
- Manyi-Loh, C.; Mamphweli, S.; Meyer, E.; Okoh, A. Antibiotic Use in Agriculture and Its Consequential Resistance in Environmental Sources: Potential Public Health Implications. Molecules 2018, 23, 795. [Google Scholar] [CrossRef] [PubMed]
- Arbab, S.; Ullah, H.; Wang, W.; Li, K.; Akbar, A.; Zhang, J. Isolation and Identification of Infection-Causing Bacteria in Dairy Animals and Determination of Their Antibiogram. J. Food Qual. 2021, 2021, 2958304. [Google Scholar] [CrossRef]
- Liu, J.; Niu, J.; Han, Z.; Bi, C.; Mehmood, K.; Farraj, D.A.A.; Alzaidi, I.; Iqbal, R.; Qin, J. Complete Genome of Multi-Drug Resistant Staphylococcus Aureus in Bovine Mastitic Milk in Anhui, China. Pak. Vet. J. 2023, 43, 456–462. [Google Scholar] [CrossRef]
- Habib, S.; Gibbon, M.J.; Couto, N.; Kakar, K.; Habib, S.; Samad, A.; Munir, A.; Fatima, F.; Mohsin, M.; Feil, E.J. The Diversity, Resistance Profiles and Plasmid Content of Klebsiella Spp. Recovered from Dairy Farms Located around Three Cities in Pakistan. Antibiotics 2023, 12, 539. [Google Scholar] [CrossRef]
- Codjoe, F.S.; Donkor, E.S. Carbapenem Resistance: A Review. Med. Sci. 2017, 6, 1. [Google Scholar] [CrossRef]
- Cella, E.; Giovanetti, M.; Benedetti, F.; Scarpa, F.; Johnston, C.; Borsetti, A.; Ceccarelli, G.; Azarian, T.; Zella, D.; Ciccozzi, M. Joining Forces against Antibiotic Resistance: The One Health Solution. Pathogens 2023, 12, 1074. [Google Scholar] [CrossRef] [PubMed]
- Tricco, A.C.; Lillie, E.; Zarin, W.; O’Brien, K.K.; Colquhoun, H.; Levac, D.; Moher, D.; Peters, M.D.J.; Horsley, T.; Weeks, L.; et al. PRISMA Extension for Scoping Reviews (PRISMA-ScR): Checklist and Explanation. Ann. Intern. Med. 2018, 169, 467–473. [Google Scholar] [CrossRef]
- Arksey, H.; O’Malley, L. Scoping Studies: Towards a Methodological Framework. Int. J. Soc. Res. Methodol. Theory Pract. 2005, 8, 19–32. [Google Scholar] [CrossRef]
- Murphy, C.; Fajt, V.; Scott, H.; Foster, M.; Wickwire, P.; Mcewen, S. Scoping Review to Identify Potential Non-Antimicrobial Interventions to Mitigate Antimicrobial Resistance in Commensal Enteric Bacteria in North American Cattle Production Systems. Epidemiol. Infect. 2015, 144, 1–18. [Google Scholar] [CrossRef] [PubMed]
- Worldometer. How Many Countries in Asia? Available online: https://www.worldometers.info/geography/how-many-countries-in-asia/ (accessed on 1 February 2025).
Characteristic | n (%) |
---|---|
Country | |
China | 24 (61.5) |
India | 4 (10.3) |
Bangladesh | 2 (5.1) |
Thailand | 2 (5.1) |
Indonesia | 2 (5.1) |
Malaysia, Iran, Japan, Pakistan, South Korea | 1 each (2.6) |
Study period | |
2023 | 3 (7.7) |
2022 | 9 (38.5) |
2021 | 7 (12.8) |
2020 | 5 (17.9) |
2019 | 3 (7.7) |
2018 | 0 |
2017 | 2 (5.1) |
2016 | 3 (7.7) |
2015 | 3 (7.7) |
2014 | 3 (7.7) |
2013 | 1 (2.6) |
Environmental samples | |
Manure/feces | 26 (66.7) |
Soil | 14 (35.9) |
Drinking/piped water | 14 (35.9) |
Wastewater/effluent | 10 (25.6%) |
Feed | 6 (15.4) |
Floor | 6 (15.4) |
Bedding | 2 (5.1) |
Silage/compost | 2 (5.1) |
Milk equipment | 2 (5.1) |
Sink, fence, machine liner, dairy slurry | 1 each (2.6) |
Characteristics | n (%) |
---|---|
Type of bacteria analyzed (n = 25) | |
E. coli | 17 (68.0) |
S. aureus | 3 (12.0) |
Salmonella spp. | 3 (12.0) |
Klebsiella pneumoniae | 2 (8.0) |
Listeria monocytogenes | 2 (8.0) |
Bacillus cereus, Shigella spp., Shewanella spp., Acinetobacter portensis, Enterococcus spp., Stenotrophomonas maltophilia | 1 each (4.0) |
AMR susceptibility testing methods (n = 24) | |
Disk diffusion | 15 (62.5) |
Broth dilution (MIC) | 8 (33.3) |
Agar dilution | 1 (4.2) |
E-test | 1 (4.2) |
VITEK-2 system | 2 (8.0) |
ARGs detection (n = 32) | |
Polymerase chain reaction | 25 (78.1) |
Whole genome sequencing | 3 (9.4) |
Metagenomic analysis | 5 (15.6) |
Author, Year | Country | Year | Environmental Matrix | Isolation and Identification | Antimicrobial Susceptibility Testing | Antibiotic Resistance Genes | |||
---|---|---|---|---|---|---|---|---|---|
Species Studied | Methods of Detection | Method | Break-Points Used | Tested or Not | Method | ||||
Ali et al., 2021 [21] | Pakistan | 2019 | Wastewater | E. coli | Supplemented with colistin | Disk diffusion method or microdilution broth method | EUCAST, CLSI 2021, and CLSI 2020 | Yes | Whole genome sequencing |
Borah et al., 2014 [22] | India | 2013 | Cow dung | E. coli | Gram staining and biochemical analysis | Disk diffusion method | NCCLS, 2002 | Yes | PCR and sequencing |
Chen et al., 2015 [23] | China | 2014 | Wastewater and surface water | NA | NA | NA | NA | Yes | qPCR |
Cui et al., 2016 [24] | China | 2013–2014 | Bedding. Feces, feed, liquid manure, and sink | Bacillus cereus | PCR | Microbroth dilution | CLSI | No | |
Dameanti et al., 2023 [25] | Indonesia | NA | Wastewater | E. coli | Gram staining and biochemical analysis | Disk Diffusion Method | CLSI | No | |
Gandhale et al., 2017 [26] | India | NA | Floor swab and milking machine | S. aureus | Biochemical analysis | Kirby–Bauer disk diffusion | CLSI | Yes | Multiplex PCR |
Halimi et al., 2014 [27] | Iran | 2009–2010 | Milk filters, feeds, water, and milk fed | Salmonella | Biochemical analysis and PCR | Disk diffusion method | CLSI | No | |
Hinthong et al., 2017 [28] | Thailand | NA | Water | E. coli | Gram staining, biochemical analysis, and PCR | Disk diffusion method | CLSI | Yes | PCR |
Huang et al., 2022 [29] | China | 2020–2021 | Cow feces, sewage, fence, sink, soil, and feed | E. coli | Biochemical analysis, supplemented with cefotaxime, and PCR | Double disk diffusion method (ESBL) and micro-agar dilution method | CLSI | Yes | PCR |
Jindal et al., 2021 [30] | India | NA | Slurry, animal drinking water, and pond water | E. coli and Klebsiella | Biochemical analysis | Disk diffusion method | NA | Yes | Multiplex PCR |
Kamaruzaman et al., 2020 [31] | Malaysia | NA | Drinking water, source of drinking water, feed, house flies, floor, feed, and water troughs | E. coli | Biochemical analysis and PCR | Double-disk diffusion method | NA | Yes | Multiplex PCR |
Kang et al., 2022 [32] | China | 2017–2018 | Feces, wastewater, and soil | NA | NA | NA | NA | Yes | Metagenomic sequencing |
Li et al., 2022 [33] | China | 2021 | Feces, milking environment, and shed environment | Acinetobacter portensis, Shewanella spp., and Stenotrophomonas maltophilia | Supplemented with meropenem and 16s-rRNA gene sequencing | Broth microdilution method | CLSI and EUCAST | Yes | PCR and whole genome sequencing |
Lim et al., 2013 [34] | Korea | 2008 | Milk cup, floor, fence, ventilation fan, water, and feed | S. aureus | Supplemented with cefoxitin and PCR | Disk diffusion method AND E-test strips | CLSI | Yes | Multiplex PCR |
Liu et al., 2021 [35] | China | NA | Wastewater | E. coli | Microbial mass spectrometry identification | MIC method | CLSI | Yes | PCR |
Maulana et al., 2021 [36] | Indonesia | 2020 | Wastewater, drinking water, and feed | E. coli | Biochemical analysis, supplemented with cefotaxime | VITEK-2 system | CLSI, EUCAST, and Global European | No | |
Parul et al., 2014 [37] | India | 2012–2013 | Soil | E. coli | Biochemical analysis | Disk diffusion method | CLSI | No | |
Peng et al., 2022 [38] | China | NA | Feces | NA | PCR | NA | NA | Yes | qPCR |
Pumipuntu and Pumipuntu, 2020 [39] | Thailand | NA | Water | E. coli | Biochemical analysis | Disk diffusion method | CLSI | Yes | PCR |
Qi et al., 2023 [40] | China | 2022 | Water, manure, feed, and soil | NA | NA | NA | NA | Yes | qPCR and metagenomic sequencing |
Qi et al., 2022 [41] | China | 2019 | Soil | NA | NA | NA | NA | Yes | qPCR |
Qi et al., 2021 [42] | China | NA | Soil | NA | NA | NA | NA | Yes | qPCR |
Qiu et al., 2022 [43] | China | 2017–2018 | Manure and compost | NA | NA | NA | NA | Yes | Metagenomic sequencing |
Shoaib et al., 2023 [44] | China | 2017–2019 | Feces, manure slurry, water, soil, and crop field soil | E. coli | VITEK-2 system and PCR | Micro-dilution assay | EUCAST | Yes | PCR |
Shourav et al., 2020 [45] | Bangladesh | 2018–2019 | Cow dung, water, and feed | Listeria spp. | Biochemical analysis | Kirby–Bauer disk diffusion | CLSI | No | |
Sobur et al., 2019 [46] | Bangladesh | NA | Cow dung, soil, and water | E. coli and Salmonella | Biochemical analysis and PCR | Disk diffusion method | CLSI | Yes | PCR |
Sun et al., 2015 [47] | China | 2014 | Soil | NA | NA | NA | NA | Yes | qPCR |
Suzuki et al., 2022 [48] | Japan | 2018–2019 | Feces, drainage, and wastewater | E. coli | MALDI-TOF-MS | Microliquid dilution method | CLSI | Yes | PCR |
Wang et al., 2016 [49] | China | 2014 | Manure, amended soil, water, surface water, and wastewater | NA | NA | NA | NA | Yes | qPCR |
Wang et al., 2020 [50] | China | NA | Manure | NA | NA | NA | NA | Yes | RT-qPCR |
Wu et al., 2022 [51] | China | 2019–2020 | Bedding, feed, feces, air, drinking water, spraying water, washing water, and milk cup | Klebsiella | Biochemical analysis and PCR | Microbroth dilution method | CLSI, EUCAST | Yes | PCR, sanger sequencing |
Xi et al., 2015 [20] | China | NA | Fresh cow pats, wastewater, surface water, soil, river water, and drinking water | E. coli, Enterococcus, S. aureus, Shigella, and Salmonella | PCR | NA | NA | Yes | qPCR |
Yang et al., 2021 [52] | China | 2019 | Feces, solid waste, wastewater, and soil | NA | NA | NA | NA | Yes | PCR, qPCR |
Yang et al., 2022 [53] | China | Manure and cowshed Wastewater | NA | NA | NA | NA | Yes | qPCR | |
Zhang et al., 2020 [54] | China | 2017 | Feces and manure | NA | NA | NA | NA | Yes | Metagenomic sequencing |
Zhang et al., 2019 [55] | China | 2015–2016 | Feces | E. coli | Supplemented with sulfate colistin and PCR | NA | NA | Yes | PCR |
Zhao et al., 2021 [56] | China | 2018–2019 | Feces, hide swabs, silage, and drinking water | Listeria | PCR | Disk diffusion method | CLSI | No | |
Zheng et al., 2019 [57] | China | 2016 | Feces | E. coli | MALDI-TOF MS | VITEK-2 | CLSI | Yes | Whole genome sequencing |
Zhou et al., 2016 [58] | China | NA | Feces and soil | NA | NA | NA | NA | Yes | qPCR and metagenomic sequencing |
Author, Year | Focus | Highlights of the Findings |
---|---|---|
Ali et al., 2021 [21] | AR and GD | E. coli PK-3225 carried colistin, beta-lactam, tetracycline, and other resistance genes. |
Borah et al., 2014 [22] | AR and GD | ESBLs were the main cause of resistance in E. coli. In total, 73.75% of isolates were resistant to at least one of the 3rd generation cephalosporins. Both blaTEM and blaSHV were found in 21.42% of the isolates. |
Chen et al., 2015 [23] | GD | A total of 22 ARGs detected in samples, with sul1, sul2, and tetM being the most abundant, with a frequency of 100%. The abundance of ARGs in wastewater is high. |
Cui et al., 2016 [24] | AR | Antimicrobial resistance was common in B. cereus-like isolates. B. cereus group strains were sensitive to certain antibiotics (ciprofloxacin, gentamicin, linezolid, streptomycin, and virginiamycin), while resistant to others (lincomycin, retapamulin, tiamulin, and valnemulin). |
Dameanti et al., 2023 [25] | AR | In total, 99.17% of E. coli isolates showed antimicrobial resistance, and 84.25% of E. coli isolates were multidrug-resistant. ESBL-producing E. coli incidence in wastewater was 22.80%. |
Gandhale et al., 2017 [26] | AR and GD | S. aureus isolates were sensitive to netilmicin, amikacin, tobramycin, and gentamicin, and resistant to penicillin, kanamycin, and oxacillin. Antimicrobial resistant genes blaZ, ermB, and tetK were detected in isolates. |
Halimi et al., 2014 [27] | AR | Eighteen out of nineteen Salmonella spp. were resistant to oxytetracycline. A total of 26.3% showed resistance to more than one antibiotic. Enrofloxacin was the most susceptible antibiotic against all isolates. |
Hinthong et al., 2017 [28] | AR and GD | E. coli from water samples showed resistance to ampicillin and carbenicillin and carried ESBL phenotype and ARGs (blaTEM and blaCMY-2). In total, 24 E. coli isolates showed positive results for virulence gene detection. |
Huang et al., 2022 [29] | AR and GD | Overall, 19.5% of ESBL E. coli were isolated from five dairy farms. In total, 91.3% of strains were resistant to three or more antibiotics. blaCTX-M1 was the most dominant gene followed by blaCTX-M9 and aadA1. |
Jindal et al., 2021 [30] | AR and GD | E. coli and Klebsiella showed resistance genes in various samples. ARGs were most prevalent in slurry with 193 genes. TetA was the highest followed by sulII and qnrS. |
Kamaruzaman et al., 2020 [31] | AR and GD | A total of 4.8% of samples had ESBL-producing E. coli, mainly in milk. Predominant ESBL genotypes were a combination of TEM and CTX-M. There was no association between ESBL-producing E. coli in lactating cows and milk. |
Kang et al., 2022 [32] | GD | ARGs resistant to tetracyclines, aminoglycoside, β-lactams, and MLS were dominant, and a high abundance of tet(X) was found in wastewater and feces. |
Li et al., 2022 [33] | AR and GD | Shewanella spp.-carrying blaNDM-1 and Acinetobacter portensis-harboring tetX3 and blaNDM-1 were found. |
Lim et al., 2013 [34] | AR and GD | In total, 1.2% of environmental samples were MRSA-positive. MRSA isolated from environmental samples was genetically identical to that from milk isolates. |
Liu et al., 2021 [35] | AR and GD | E. coli isolates were mainly resistant to β-lactams and tetracyclines. TetA gene was highly found, with limited dissemination of sulphonamide-resistance genes in the study area. |
Maulana et al., 2021 [36] | AR | Overall, 54% were ESBL-producing E. coli and 50% of them were multidrug resistant. Resistance to trimethoprim, tetracycline, and gentamicin was observed in isolates. |
Parul et al., 2014 [37] | AR | The majority of the E. coli isolates were highly susceptible to ceftriaxone, amikacin, ciprofloxacin, and gentamicin but highly resistant to amoxicillin and tetracycline. |
Peng et al., 2022 [38] | GD | A relative abundance of ARGs presenting resistance to tetracycline and aminoglycoside was observed, with tetM, cmx(A), sul1, tetW, ermB, and qacE∆1–01 being the most abundant. |
Pumipuntu and Pumipuntu, 2020 [39] | AR and GD | A total of 1.43% of E. coli resistant to carbapenem in were found Saraburi and two isolates resistant to imipenem in Kaeng Khoi, while no drug-resistant E. coli were found in Sarakham. The blaNDM gene was detected in drug-resistant E. coli isolates. |
Qi, 2023 [40] | GD | High abundance of β-lactamase resistance genes with blaTEM content as high as 94.55% among all ARGs was observed. |
Qi et al., 2022 [41] | GD | The abundance of β-lactam ARGs increased with tetracycline and β-lactams. It was noticed that tetracycline ARGs remained stable with increasing antibiotic concentrations, while sulfonamide ARGs decreased with rising antibiotic levels. |
Qi et al., 2021 [42] | GD | Significant correlations between heavy metals and ARGs in soil were found. The top ARGs were sul2, tetX, and blaTEM. |
Qiu et al., 2022 [43] | GD | In total, 201 ARGs were shared in different animal manures and reported for 86–99% of total abundance. Compost had a significantly lower abundance of ARGs compared to manure. |
Shoaib et al., 2023 [44] | AR and GD | Most E. coli isolates were resistant to sulfamethoxazole/trimethoprim, cefotaxime, ampicillin, ciprofloxacin, and tetracycline. All isolates were susceptible to meropenem, tigecycline, and colistin sulfate. A total of 44% showed multidrug resistance, and 90% of ARGs were detected. |
Shourav et al., 2020 [45] | AR | The prevalence of Listeria spp. was 13.2% in cattle farm environments. Listeria spp. isolates showed resistance to multiple antibiotics with at least eight antibiotic classes. |
Sobur et al., 2019 [46] | AR and GD | E. coli and Salmonella spp. were highly resistant to specific antibiotics and showed resistance to multiple antibiotics. ARGs ereA, tetA, tetB, and SHV were detected with tetA being the highest and SHV being the lowest. |
Sun et al., 2015 [47] | GD | The sulI, sulII, ermA, and ermB were 100% detected in the soil samples. There was a strong positive relationship between ARG abundance and bio-accessible OP content. |
Suzuki et al., 2022 [48] | AR and GD | A total of 1.7% of cow feces strains were resistant to tetracycline, all other strains were susceptible. The drainage resistance rate 8.3%, and all strains showed susceptibility for 8 months. Tetracycline resistance is common in animal feces and water samples. The TetA gene was detected in all strains. |
Wang et al., 2016 [49] | GD | The spread of sul genes was strong and extensive. A higher abundance of tet genes expressing ribosomal protection proteins and ermB genes was found. Most ARGs showed significant positive relationships with environmental variables. |
Wang et al., 2020 [50] | GD | Overall, 89.17% of ARGs were detected in manure. Tiamulin was identified to have a significant correlation with optrA, which was the most abundant. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Veloo, Y.; Thahir, S.S.A.; Zakaria, Z.; Rahman, S.A.; Mansor, R.; Rajendiran, S. A Scoping Review Unveiling Antimicrobial Resistance Patterns in the Environment of Dairy Farms Across Asia. Antibiotics 2025, 14, 436. https://doi.org/10.3390/antibiotics14050436
Veloo Y, Thahir SSA, Zakaria Z, Rahman SA, Mansor R, Rajendiran S. A Scoping Review Unveiling Antimicrobial Resistance Patterns in the Environment of Dairy Farms Across Asia. Antibiotics. 2025; 14(5):436. https://doi.org/10.3390/antibiotics14050436
Chicago/Turabian StyleVeloo, Yuvaneswary, Syahidiah Syed Abu Thahir, Zunita Zakaria, Salina Abdul Rahman, Rozaihan Mansor, and Sakshaleni Rajendiran. 2025. "A Scoping Review Unveiling Antimicrobial Resistance Patterns in the Environment of Dairy Farms Across Asia" Antibiotics 14, no. 5: 436. https://doi.org/10.3390/antibiotics14050436
APA StyleVeloo, Y., Thahir, S. S. A., Zakaria, Z., Rahman, S. A., Mansor, R., & Rajendiran, S. (2025). A Scoping Review Unveiling Antimicrobial Resistance Patterns in the Environment of Dairy Farms Across Asia. Antibiotics, 14(5), 436. https://doi.org/10.3390/antibiotics14050436