Targeting Gene Transcription Prevents Antibiotic Resistance
Abstract
:1. Introduction
1.1. Present Challenges from Antimicrobial Resistance and Traditional Pathways to Antibiotics
1.2. Proteins Versus RNA Targets
2. Targeting RNA Function
2.1. RNA Transcription Factors
2.2. A Novel Perspective
3. Discussion and Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Miethke, M.; Pieroni, M.; Weber, T.; Brönstrup, M.; Hammann, P.; Halby, L.; Arimondo, P.B.; Glaser, P.; Aigle, B.; Bode, H.B.; et al. Towards the sustainable discovery and development of new antibiotics. Nat. Rev. Chem. 2021, 5, 726–749. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Adefisoye, M.A.; Olaniran, A.O. Antimicrobial resistance expansion in pathogens: A review of current mitigation strategies and advances towards innovative therapy. JAC-Antimicrob. Resist. 2023, 5, dlad127. [Google Scholar] [CrossRef] [PubMed]
- Centers for Disease Control and Prevention, CDC. Antibiotic Resistance, AR, 2019, Threats Reports Center for Disease Control. Available online: https://www.cdc.gov/antimicrobial-resistance/data-research/facts-stats/index.html (accessed on 17 March 2025).
- Centers for Disease Control and Prevention, CDC. Antibiotic Resistance Threats in the United States, 2021–2022. Center for Disease Control Reports. 2024. Available online: https://www.cdc.gov/antimicrobial-resistance/data-research/threats/update-2022.html (accessed on 17 March 2025).
- Zhou, G.; Shi, Q.S.; Huang, X.M.; Xie, X.B. The Three Bacterial Lines of Defense against Antimicrobial Agents. Int. J. Mol. Sci. 2015, 16, 21711–21733. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Lambert, P.A. Bacterial resistance to antibiotics: Modified target sites. Adv. Drug Deliv. Rev. 2005, 57, 1471–1485. [Google Scholar] [CrossRef] [PubMed]
- Viner, C.; Ishak, C.A.; Johnson, J.; Walker, N.J.; Shi, H.; Sjöberg-Herrera, M.K.; Shen, S.Y.; Lardo, S.M.; Adams, D.J.; Ferguson-Smith, A.C.; et al. Modeling methyl-sensitive transcription factor motifs with an expanded epigenetic alphabet. Genome Biol. 2024, 25, 11–57. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Bushweller, J.H. Targeting transcription factors in cancer—From undruggable to reality. Nat. Rev. Cancer 2019, 19, 611–624. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Cui, H.; Stilgenbauer, M.; Koehler, A.N. Small molecule approaches to target transcription factors. Annu. Rev. Cancer Biol. 2024, 8, 395–415. [Google Scholar]
- Tao, Z.; Wu, Z. Targeting transcription factors in cancer: From “Undruggable” to “Druggable”. Methods Mol. Biol. 2023, 2594, 107–131. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Barrick, J.E.; Breaker, R.R. The distributions, mechanisms, and structures of metabolite-binding riboswitches. Genome Biol. 2007, 8, R239. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Panchal, V.; Brenk, R. Riboswitches as Drug Targets for Antibiotics. Antibiotics 2021, 10, 45. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Ellinger, E.; Chauvier, A.; Romero, R.A.; Liu, Y.; Ray, S.; Walter, N.G. Riboswitches as therapeutic targets: Promise of a new era of antibiotics. Expert Opin. Ther. Targets 2023, 27, 433–445. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Mercer, T.R.; Dinger, M.E.; Mattick, J.S. Long non-coding RNAs: Insights into functions. Nat. Rev. Genet. 2009, 10, 155–159. [Google Scholar] [CrossRef] [PubMed]
- Ferrer, J.; Dimitrova, N. Transcription regulation by long non-coding RNAs: Mechanisms and disease relevance. Nat. Rev. Mol. Cell Biol. 2024, 25, 396–415. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Nazli, A.; He, D.L.; Liao, D.; Khan, M.Z.I.; Huang, C.; He, Y. Strategies and progresses for enhancing targeted antibiotic delivery. Adv. Drug Deliv. Rev. 2022, 189, 114502. [Google Scholar] [CrossRef]
- Henkin, T.M. The T box riboswitch: A novel regulatory RNA that utilizes tRNA as its ligand. Biochim. Biophys. Acta 2014, 1839, 959–963. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Gutiérrez-Preciado, A.; Henkin, T.M.; Grundy, F.J.; Yanofsky, C.; Merino, E. Biochemical features and functional implications of the RNA-based T-box regulatory mechanism. Microbiol. Mol. Biol. Rev. 2009, 73, 36–61. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Green, N.J.; Grundy, F.J.; Henkin, T.M. The T box mechanism: tRNA as a regulatory molecule. FEBS Lett. 2010, 584, 318–324. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Frohlich, K.M.; Weintraub, S.F.; Bell, J.T.; Todd, G.C.; Väre, V.Y.P.; Schneider, R.; Kloos, Z.A.; Tabe, E.S.; Cantara, W.A.; Stark, C.J.; et al. Discovery of Small-Molecule Antibiotics against a Unique tRNA-Mediated Regulation of Transcription in Gram-Positive Bacteria. ChemMedChem 2019, 14, 758–769. [Google Scholar] [CrossRef] [PubMed]
- Väre, V.Y.P.; Schneider, R.F.; Kim, H.; Lasek-Nesselquist, E.; McDonough, K.A.; Agris, P.F. Small-molecule antibiotics inhibiting tRNA-regulated gene expression is a viable strategy for targeting Gram-positive bacteria. Antimicrob. Agents Chemother. 2021, 65, 01247-20. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Seyler, T.M.; Moore, C.; Kim, H.; Ramachandran, S.; Agris, P.F. A new promising anti-infective agent inhibits biofilm growth by targeting simultaneously a conserved RNA function that controls multiple genes. Antibiotics 2021, 10, 41. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Agarwal, R.; Rajeshaw, T.R.; Smith, J.C. Comparative Assessment of Pose Prediction Accuracy in RNA-Ligand Docking. J. Chem. Inf. Model. 2023, 63, 7444–7452. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Ferré-D’Amaré, A. Co-crystal structure of a T-box riboswitch stem I domain in complex with its cognate tRNA. Nature 2013, 500, 363–366. [Google Scholar] [CrossRef] [PubMed]
- Grigg, J.C.; Ke, A. Structural determinants for geometry and information decoding of tRNA by T box leader RNA. Structure 2013, 21, 2025–2032. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Cera, E.D. Mechanisms of ligand binding. Biophys. Rev. 2020, 1, 011303. [Google Scholar] [CrossRef]
- Wang, J.; Henkin, T.M.; Nikonowicz, E.P. NMR structure and dynamics of the Specifier Loop domain from the Bacillus subtilis tyrS T box leader RNA. Nucleic Acids Res. 2010, 38, 3388–3398. [Google Scholar]
- Wang, J.; Nikonowicz, E.P. Solution structure of the K-turn and Specifier Loop domains from the Bacillus subtilis tyrS T-box leader RNA. J. Mol. Biol. 2011, 22, 99–117. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
Bacteria | MIC 1 (MBC) [µg/mL] |
---|---|
Gram-positive | |
B. subtilis (BGSC 1A1) | 64 (64) |
B. cereus (ATCC 7064) | 64 (64) |
S. aureus (ATCC 29213) | 64 (N/O) |
E. faecalis (ATCC 29212) | 32 (N/D) 2 |
S. pyogenes (clinical isolate) | 16 (16) |
S. agalactiae (clinical isolate) | 32 (32) |
S. pneumoniae (clinical isolate) | 16 (16) |
S. mutans (clinical isolate) | 125 (125) |
MRSA (clinical isolate, pleural fluid) | 64 (N/O) |
MRSA (clinical isolate, blood) | 64 (N/O) |
Gram-negative | |
E. coli (ATCC 25922) | N/O (N/D) |
P. aeruginosa (ATCC 27853) | N/O (N/D) |
K. pneumoniae (clinical isolate) | N/O (N/D) |
PKZ18 Family | MIC (µg/mL) | |
---|---|---|
PKZ18 | 64 | |
PKZ18-21 | 64 | |
PKZ18-22 | 32 | |
PKZ18-52 | 32 | |
PKZ18-53 | 32 | |
PKZ18-54 | 128 | |
PKZ18-55 | >256 | |
PKZ18-56 | >256 | |
PKZ18-57 | >256 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Agris, P.F. Targeting Gene Transcription Prevents Antibiotic Resistance. Antibiotics 2025, 14, 345. https://doi.org/10.3390/antibiotics14040345
Agris PF. Targeting Gene Transcription Prevents Antibiotic Resistance. Antibiotics. 2025; 14(4):345. https://doi.org/10.3390/antibiotics14040345
Chicago/Turabian StyleAgris, Paul F. 2025. "Targeting Gene Transcription Prevents Antibiotic Resistance" Antibiotics 14, no. 4: 345. https://doi.org/10.3390/antibiotics14040345
APA StyleAgris, P. F. (2025). Targeting Gene Transcription Prevents Antibiotic Resistance. Antibiotics, 14(4), 345. https://doi.org/10.3390/antibiotics14040345