Antibacterial and Antifungal Properties of New Synthetic Tricyclic Flavonoids
Abstract
:1. Introduction
2. Results and Discussion
2.1. Tricyclic Flavonoids
2.2. Antimicrobial Activity of Tricyclic Flavonoids
3. Materials and Methods
3.1. Chemistry
3.1.1. General Procedure for 8-Bromo-6-methyl-2-phenyl-4-oxochroman-3-yl N,N-Diethyldithiocarbamate (4a)
3.1.2. 8-Bromo-6-methyl-2-(4-fluorophenyl)-4-oxochroman-3-yl N,N-Diethyldithiocarbamate (4b)
3.1.3. 8-Bromo-6-methyl-2-(4-chlorophenyl)-4-oxochroman-3-yl N,N-Diethyldithiocarbamate (4c)
3.1.4. 8-Bromo-6-methyl-2-(4-bromophenyl)-4-oxochroman-3-yl N,N-Diethyldithiocarbamate (4d)
3.1.5. 8-Bromo-6-methyl-2-(4-methylphenyl)-4-oxochroman-3-yl N,N-Diethyldithiocarbamate (4e)
3.1.6. 8-Bromo-6-methyl-2-(4-ethylphenyl)-4-oxochroman-3-yl N,N-Diethyldithiocarbamate (4f)
3.1.7. 8-Bromo-6-methyl-2-(4-methoxyphenyl)-4-oxochroman-3-yl N,N-Diethyldithiocarbamate (4g)
3.1.8. General Procedure for 2-N,N-Diethylamino-8-bromo-6-methyl-4-phenyl-4H-1,3-dithiol[4,5-c]chromen-2-ylium Tetrafluoroborate (5a)
3.1.9. 2-N,N-Diethylamino-8-bromo-6-methyl-4-(4-fluorophenyl)-4H-1,3-dithiol[4,5-c]chromen-2-ylium Tetrafluoroborate (5b)
3.1.10. 2-N,N-Diethylamino-8-bromo-6-methyl-4-(4-chlorophenyl)-4H-1,3-dithiol[4,5-c]chromen-2-ylium Tetrafluoroborate (5c)
3.1.11. 2-N,N-Diethylamino-8-bromo-6-methyl-4-(4-bromophenyl)-4H-1,3-dithiol[4,5-c]chromen-2-ylium Tetrafluoroborate (5d)
3.1.12. 2-N,N-Diethylamino-8-bromo-6-methyl-4-(4-methylphenyl)-4H-1,3-dithiol[4,5-c]chromen-2-ylium Tetrafluoroborate (5e)
3.1.13. 2-N,N-Diethylamino-8-bromo-6-methyl-4-(4-ethylphenyl)-4H-1,3-dithiol[4,5-c]chromen-2-ylium Tetrafluoroborate (5f)
3.1.14. 2-N,N-Diethylamino-8-bromo-6-methyl-4-(4-methoxyphenyl)-4H-1,3-dithiol[4,5-c]chromen-2-ylium Tetrafluoroborate (5g)
3.2. Antimicrobial Activity
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Murray, C.J.L.; Ikuta, K.S.; Sharara, F.; Swetschinski, L.; Robles Aguilar, G.; Gray, A.; Han, C.; Bisignano, C.; Rao, P.; Wool, E.; et al. Global burden of bacterial antimicrobial resistance in 2019: A systematic analysis. Lancet 2022, 399, 629–655. [Google Scholar] [CrossRef] [PubMed]
- Tang, K.W.K.; Millar, B.C.; Moore, J.E. Antimicrobial Resistance (AMR). Br. J. Biomed. Sci. 2023, 80, 11387. [Google Scholar] [CrossRef] [PubMed]
- Bank, T.W. Drug-Resistant Infections: A Threat to Our Economic Future; World Bank: Washington, DC, USA, 2017. [Google Scholar]
- Zhu, Y.; Huang, W.E.; Yang, Q. Clinical perspective of antimicrobial resistance in bacteria. Infect. Drug. Resist. 2022, 15, 735–746. [Google Scholar] [CrossRef] [PubMed]
- Chinemerem, N.D.; Ugwu, M.C.; Oliseloke Anie, C.; Al-Ouqaili, M.T.S.; Chinedu Ikem, J.; Victor Chigozie, U.; Saki, M. Antibiotic resistance: The challenges and some emerging strategies for tackling a global menace. J. Clin. Lab. Anal. 2022, 36, e24655. [Google Scholar] [CrossRef]
- World Health Organization. Global Antimicrobial Resistance and Use Surveillance System (GLASS) Report 2022; WHO: Geneva, Switzerland, 2022. [Google Scholar]
- Hwang, I.Y.; Tan, M.H.; Koh, E.; Ho, C.L.; Poh, C.L.; Chang, M.W. Reprogramming Microbes to Be Pathogen-Seeking Killers. ACS Synth. Biol. 2014, 3, 228–237. [Google Scholar] [CrossRef]
- Bartlett, J.G.; Gilbert, D.N.; Spellberg, B. Seven Ways to Preserve the Miracle of Antibiotics. Clin. Infect. Dis. 2013, 56, 1445–1450. [Google Scholar] [CrossRef]
- World Health Organization. 2023 Antibacterial Agents in Clinical and Preclinical Development: An Overview and Analysis; WHO: Geneva, Switzerland, 2024. [Google Scholar]
- de Oliveira Santos, G.C.; Vasconcelos, C.C.; Lopes, A.J.O.; de Sousa Cartágenes, M.d.S.; Filho, A.K.D.B.; do Nascimento, F.R.F.; Ramos, R.M.; Pires, E.R.R.B.; de Andrade, M.S.; Rocha, F.M.G.; et al. Candida Infections and therapeutic strategies: Mechanisms of action for traditional and alternative agents. Front. Microbiol. 2018, 9, 1351. [Google Scholar] [CrossRef]
- Tobudic, S.; Kratzer, C.; Lassnigg, A.; Presterl, E. Antifungal susceptibility of Candida albicans in biofilms. Mycoses 2012, 55, 199–204. [Google Scholar] [CrossRef]
- Pappas, P.G.; Kauffman, C.A.; Andes, D.R.; Clancy, C.J.; Marr, K.A.; Ostrosky-Zeichner, L.; Reboli, A.C.; Schuster, M.G.; Vazquez, J.A.; Walsh, T.J.; et al. Clinical Practice guideline for the management of candidiasis: 2016 update by the Infectious Diseases Society of America. Clin. Infect. Dis. 2015, 62, e1–e50. [Google Scholar] [CrossRef]
- Douglas, L.J. Candida biofilms and their role in infection. Trends. Microbiol. 2003, 11, 30–36. [Google Scholar] [CrossRef]
- Ngo-Mback, M.N.L.; Babii, C.; Jazet Dongmo, P.M.; Kouipou Toghueo, M.R.; Stefan, M.; Fekam Boyom, F. Anticandidal and synergistic effect of essential oil fractions from three aromatic plants used in Cameroon. J. Mycol. Med. 2020, 30, 100940. [Google Scholar] [CrossRef] [PubMed]
- Taylor, L.P.; Grotewold, E. Flavonoids as developmental regulators. Curr. Opin. Plant Biol. 2005, 8, 317–323. [Google Scholar] [CrossRef] [PubMed]
- Peer, W.A.; Murphy, A.S. Flavonoids and auxin transport: Modulators or regulators? Trends Plant Sci. 2007, 12, 556–563. [Google Scholar] [CrossRef] [PubMed]
- Buer, C.S.; Imin, N.; Djordjevic, M.A. Flavonoids: New roles for old molecules. J. Integr. Plant Biol. 2010, 52, 98–111. [Google Scholar] [CrossRef]
- Speisky, H.; Shahidi, F.; Costa de Camargo, A.; Fuentes, J. Revisiting the Oxidation of Flavonoids: Loss, Conservation or Enhancement of Their Antioxidant Properties. Antioxidants 2022, 11, 133. [Google Scholar] [CrossRef]
- Agati, G.; Brunetti, C.; Fini, A.; Gori, A.; Guidi, L.; Landi, M.; Sebastiani, F.; Tattini, M. Are Flavonoids Effective Antioxidants in Plants? Twenty Years of Our Investigation. Antioxidants 2020, 9, 1098. [Google Scholar] [CrossRef]
- Kurepa, J.; Shull, T.E.; Smalle, J.A. Friends in Arms: Flavonoids and the Auxin/Cytokinin Balance in Terrestrialization. Plants 2023, 12, 517. [Google Scholar] [CrossRef]
- Williamson, G. The role of polyphenols in modern nutrition. Nutr. Bull. 2017, 42, 226–235. [Google Scholar] [CrossRef]
- Narbona, E.; del Valle, J.C.; Arista, M.; Buide, M.L.; Ortiz, P.L. Major Flower Pigments Originate Different Colour Signals to Pollinators. Front. Ecol. Evol. 2021, 9, 743850. [Google Scholar] [CrossRef]
- Ramaroson, M.L.; Koutouan, C.; Helesbeux, J.J.; Le Clerc, V.; Hamama, L.; Geoffriau, E.; Briard, M. Role of Phenylpropanoids and Flavonoids in Plant Resistance to Pests and Diseases. Molecules 2022, 27, 8371. [Google Scholar] [CrossRef]
- Bondonno, C.P.; Croft, K.D.; Ward, N.; Considine, M.J.; Hodgson, J.M. Dietary flavonoids and nitrate: Effects on nitric oxide and vascular function. Nutr. Rev. 2015, 73, 216–235. [Google Scholar] [CrossRef] [PubMed]
- Khan, J.; Deb, P.K.; Priya, S.; Medina, K.D.; Devi, R.; Walode, S.G.; Rudrapal, M. Dietary Flavonoids: Cardioprotective Potential with Antioxidant Effects and Their Pharmacokinetic, Toxicological and Therapeutic Concerns. Molecules 2021, 26, 4021. [Google Scholar] [CrossRef] [PubMed]
- Hwang, S.L.; Shih, P.H.; Yen, G.C. Neuroprotective Effects of Citrus Flavonoids. J. Agric. Food Chem. 2012, 60, 877–885. [Google Scholar] [CrossRef] [PubMed]
- Ren, W.; Qiao, Z.; Wang, H.; Zhu, L.; Zhang, L. Flavonoids: Promising anticancer agents. Med. Res. Rev. 2003, 23, 519–534. [Google Scholar] [CrossRef] [PubMed]
- Ninfali, P.; Antonelli, A.; Magnani, M.; Scarpa, E.S. Antiviral Properties of Flavonoids and Delivery Strategies. Nutrients 2020, 12, 2534. [Google Scholar] [CrossRef]
- Badshah, S.L.; Faisal, S.; Muhammad, A.; Poulson, B.G.; Emwas, A.H.; Jaremko, M. Antiviral activities of flavonoids. Biomed. Pharmacother. 2021, 140, 111596. [Google Scholar] [CrossRef]
- Cushnie, T.P.T.; Lamb, A.J. Antimicrobial activity of flavonoids. Int. J. Antimicrob. Agents 2005, 26, 343–356. [Google Scholar] [CrossRef]
- Huang, W.; Wang, Y.; Tian, W.; Cui, X.; Tu, P.; Li, J.; Shi, S.; Liu, X. Biosynthesis Investigations of Terpenoid, Alkaloid, and Flavonoid Antimicrobial Agents Derived from Medicinal Plants. Antibiotics 2022, 11, 1380. [Google Scholar] [CrossRef]
- Jagtap, S.; Meganathan, K.; Wagh, V.; Winkler, J.; Hescheler, J.; Sachinidis, A. Chemoprotective Mechanism of the Natural Compounds, Epigallocatechin- 3-O-Gallate, Quercetin and Curcumin Against Cancer and Cardiovascular Diseases. Curr. Med. Chem. 2009, 16, 1451–1462. [Google Scholar] [CrossRef]
- Norman, B.H.; Dodge, J.A.; Richardson, T.I.; Borromeo, P.S.; Lugar, C.W.; Jones, S.A.; Chen, K.; Wang, Y.; Durst, G.L.; Barr, R.J.; et al. Benzopyrans Are Selective Estrogen Receptor β Agonists with Novel Activity in Models of Benign Prostatic Hyperplasia. J. Med. Chem. 2006, 49, 6155–6157. [Google Scholar] [CrossRef]
- Richardson, T.I.; Norman, B.H.; Lugar, C.W.; Jones, S.A.; Wang, Y.; Durbin, J.D.; Krishnan, V.; Dodge, J.A. Benzopyrans as selective estrogen receptor beta agonists (SERBAs). Part 2: Structure-activity relationship studies on the benzopyran scaffold. Bioorg. Med. Chem. Lett. 2007, 17, 3570–3574. [Google Scholar] [CrossRef] [PubMed]
- Richardson, T.I.; Dodge, J.A.; Durst, G.L.; Pfeifer, L.A.; Shah, J.; Wang, Y.; Durbin, J.D.N.; Krishnan, V.; Norman, B.H. Estrogen Receptors Alpha (ERα) and Beta (ERβ): Subtype-Selective Ligands and Clinical Potential. Bioorg. Med. Chem. Lett. 2007, 17, 4824–4828. [Google Scholar] [CrossRef] [PubMed]
- Richardson, T.I.; Dodge, J.A.; Wang, Y.; Durbin, J.D.; Krishnan, V.; Norman, B.H. Estrogen receptor beta ligand-binding domain complexed to a benzopyran ligand. Bioorg. Med. Chem. Lett. 2007, 17, 5563–5566. [Google Scholar] [CrossRef] [PubMed]
- Zhao, J.; Yang, J.; Xie, Y. Improvement strategies for the oral bioavailability of poorly water-soluble flavonoids: An overview. Int. J. Pharm. 2019, 570, 118642. [Google Scholar] [CrossRef]
- Bahrin, L.G.; Hopf, H.; Jones, P.G.; Sarbu, L.G.; Babii, C.; Mihai, A.C.; Stefan, M.; Birsa, L.M. Antibacterial structure-activity relationship studies of several tricyclic sulfur-containing flavonoids. Beilstein J. Org. Chem. 2016, 12, 1065–1071. [Google Scholar] [CrossRef]
- Bahrin, L.G.; Sarbu, L.G.; Jones, P.G.; Birsa, L.M.; Hopf, H. [2.2]Paracyclophane-Bis(triazole) Systems: Synthesis and Photochemical Behavior. Chem. Eur. J. 2017, 23, 12338–12345. [Google Scholar] [CrossRef]
- Bahrin, L.G.; Apostu, M.O.; Birsa, L.M.; Stefan, M. The antibacterial properties of sulfur containing flavonoids. Bioorg. Med. Chem. Lett. 2014, 24, 2315–2318. [Google Scholar] [CrossRef]
- Birsa, M.L. Synthesis of some new substituted flavanones and related 4-chromanones by a novel synthetic method. Synth. Commun. 2002, 32, 115–118. [Google Scholar] [CrossRef]
- Bahrin, L.G.; Asaftei, I.V.; Sandu, I.; Sarbu, L.G. Synthesis of (4-Methylpiperazin-1-yl)carbodithioates and of their 1,3-Dithiolium Derivatives. Rev. Chim. 2014, 65, 1046–1048. [Google Scholar]
- Sarbu, L.G.; Hopf, H.; Gruenenberg, J.; Birsa, M.L. Reduction of pseudo-geminal bis(ethynyl) substituted [2.2]paracyclophanes. Synlett 2015, 26, 87–90. Available online: http://www.thieme-connect.de/products/ejournals/abstract/10.1055/s-0034-1378935 (accessed on 20 December 2024).
- Toader, E.; Bahrin, L.G.; Jones, P.G.; Hopf, H.; Sarbu, L.G.; Stoleriu, G. Synthesis of New Morpholine Containing Flavonoids with Potential Biological Applications. Rev. Chim. 2016, 67, 1520–1522. [Google Scholar]
- Seliger, H.; Happ, E.; Cascaval, A.; Birsa, M.L.; Nicolaescu, T.; Poinescu, I.; Cojocariu, C. Synthesis and characterization of new photostabilizers from 2,4-dihydroxybenzophenone. Eur. Polym. J. 1999, 35, 827–833. [Google Scholar] [CrossRef]
- Sarbu, L.G.; Birsa, A.; Hopf, H.; Birsa, M.L. New bridges in [2.2]paracyclophanes: The interaction of chalcogenide halides with pseudo-geminal triple bonds. Phosphorus Sulfur Silicon Relat. Elem. 2011, 186, 1246–1250. [Google Scholar] [CrossRef]
- Birsa, M.L. A new approach to preparation of 1,3-dithiolium salts. Synth. Commun. 2001, 31, 1271–1275. [Google Scholar] [CrossRef]
- Bauer, A.W.; Perry, D.M.; Kirby, W.M.M. Single disc antibiotic sensitivity testing of Staphylococci. A.M.A. Arch. Intern. Med. 1959, 104, 208–216. [Google Scholar] [CrossRef] [PubMed]
- Clinical and Laboratory Standards Institute (CLSI). Performance Standards for Antimicrobial Susceptibility Testing, 32nd ed.; CLSI Supplement M100; Clinical and Laboratory Standards Institute: Berwyn, PA, USA, 2022; ISSN 978-1-68440-134-5/978-1-68440-135-2. [Google Scholar]
Flavanones 4 | a | b | c | d | e | f | g |
---|---|---|---|---|---|---|---|
3JH2-H3syn (Hz) | 3.9 | 3.8 | 3.7 | 3.8 | 4.2 | 3.9 | 4.2 |
3JH2-H3 anti (Hz) | 6.9 | 7.4 | 7.1 | 7.2 | 7.6 | 7.2 | 7.4 |
syn: anti ratio | 7:93 | 80:20 | 36:64 | 39:61 | 40:60 | 6:94 | 92:8 |
Strains | (a) Samples | |||||||
---|---|---|---|---|---|---|---|---|
5a | 5b | 5c | 5d | 5e | 5f | 5g | ||
S. aureus | 19.96 ± 1.90 | 22.83 ± 1.77 | 22.86 ± 2.05 | 20.30 ± 1.05 | 23.03 ± 1.50 | 20.83 ± 0.90 | 22.20 ± 0.60 | |
E. coli | 0 | 13.03 ± 0.20 | 15.00 ± 0.26 | 14.50 ± 0.60 | 11.46 ± 0.58 | 13.83 ± 0.30 | 10.80 ± 0.40 | |
E. faecalis | 0 | 11.16 ± 0.55 | 11.83 ± 0.11 | 9.56 ± 0.23 | 15.46 ± 0.60 | 8.70 ± 0.20 | 9.16 ± 0.28 | |
K. pneumoniae | 0 | 8.53 ± 0.35 | 9.06 ± 0.15 | 15.33 ± 0.55 | 8.86 ± 0.32 | 16.26 ± 0.56 | 16.53 ± 0.58 | |
S. typhimurium | 0 | 0 | 0 | 9.33 ± 0.15 | 0 | 0 | 0 | |
C. albicans 1 | 0 | 10.26 ± 0.20 | 11.90 ± 0.60 | 11.56 ± 0.92 | 14.53 ± 0.81 | 15.96 ± 0.15 | 10.73 ± 0.86 | |
C. albicans 2 | 0 | 9.43 ± 0.50 | 13.00 ± 0.60 | 11.86 ± 0.81 | 14.06 ± 0.66 | 15.16 ± 0.65 | 10.23 ± 0.45 | |
C. glabrata 3 | 0 | 0 | 8.43 ± 0.41 | 8.53 ± 0.45 | 8.83 ± 0.30 | 10.70 ± 0.85 | 0 | |
C. glabrata 4 | 0 | 0 | 0 | 9.33 ± 0.25 | 0 | 11.13 ± 0.30 | 0 | |
C. parapsilosis | 9.53 ± 0.25 | 13.16 ± 2.40 | 16.46 ± 0.40 | 14.56 ± 0.06 | 17.43 ± 0.20 | 16.26 ± 0.15 | 11.80 ± 0.95 | |
Strains | (b) Controls | |||||||
AMC30 | SXT25 | CN10 | F300 | AP100 | NS100 | KCA10 | FLU10 | |
S. aureus | 31.00 ± 0.86 | 27.73 ± 0.37 | 19.66 ± 1.35 | 18.16 ± 1.15 | - | - | - | - |
E. coli | 19.86 ± 0.80 | 24.03 ± 2.70 | 19.40 ± 0.70 | 19.90 ± 0.10 | - | - | - | - |
E. faecalis | 28.80 ± 0.45 | 26.16 ± 0.40 | 13.33 ± 1.13 | 21.53 ± 1.38 | - | - | - | - |
K. pneumoniae | 16.33 ± 0.25 | 25.96 ± 0.30 | 19.60 ± 1.04 | 18.43 ± 1.15 | - | - | - | - |
S. typhimurium | 23.53 ± 0.80 | 24.03 ± 1.52 | 15.40 ± 1.57 | 12.53 ± 0.75 | - | - | - | - |
C. albicans 1 | - | - | - | - | 11.63 ± 0.96 | 0 | 14.30 ± 1.70 | 0 |
C. albicans 2 | - | - | - | - | 11.80 ± 1.51 | 0 | 0 | 0 |
C. glabrata 3 | - | - | - | - | 12.33 ± 0.75 | 0 | 0 | 0 |
C. glabrata 4 | - | - | - | - | 16.26 ± 0.83 | 0 | 0 | 0 |
C. parapsilosis | - | - | - | - | 12.46 ± 0.47 | 0 | 0 | 14.30 ± 0.26 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sarbu, L.G.; Rosca, I.; Birsa, M.L. Antibacterial and Antifungal Properties of New Synthetic Tricyclic Flavonoids. Antibiotics 2025, 14, 307. https://doi.org/10.3390/antibiotics14030307
Sarbu LG, Rosca I, Birsa ML. Antibacterial and Antifungal Properties of New Synthetic Tricyclic Flavonoids. Antibiotics. 2025; 14(3):307. https://doi.org/10.3390/antibiotics14030307
Chicago/Turabian StyleSarbu, Laura Gabriela, Irina Rosca, and Mihail Lucian Birsa. 2025. "Antibacterial and Antifungal Properties of New Synthetic Tricyclic Flavonoids" Antibiotics 14, no. 3: 307. https://doi.org/10.3390/antibiotics14030307
APA StyleSarbu, L. G., Rosca, I., & Birsa, M. L. (2025). Antibacterial and Antifungal Properties of New Synthetic Tricyclic Flavonoids. Antibiotics, 14(3), 307. https://doi.org/10.3390/antibiotics14030307