Effect of Colloid Centrifugation and Cold Storage of Boar Semen at 4 °C on Bacterial Load and Sperm Quality
Abstract
:1. Introduction
2. Results
2.1. Bacterial Load
2.2. Sperm Quality
2.3. Effect of Single Layer Centrifugation
3. Discussion
4. Materials and Methods
4.1. Semen Samples
4.2. Experimental Design
4.3. Sample Preparation
4.4. Single Layer Centrifugation
4.5. Bacterial Load
4.6. Flow Cytometry
4.6.1. Membrane Integrity
4.6.2. Reactive Oxygen Species
4.6.3. Mitochondrial Membrane Potential
4.6.4. Sperm Chromatin Structure Assay
4.7. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ghosh, C.; Sarkar, P.; Issa, R.; Haldar, J. Alternatives to Conventional Antibiotics in the Era of Antimicrobial Resistance. Trends Microbiol. 2019, 27, 323–338. [Google Scholar] [CrossRef] [PubMed]
- Althouse, G.C. Sanitary procedures for the production of extended semen. Reprod. Domest. Anim. 2008, 43, 374–378. [Google Scholar] [CrossRef]
- Picket, B.W.; Voss, J.L.; Jones, R.L. Control of bacteria in stallions and their semen. J. Equine Vet Sci. 1999, 19, 424–441. [Google Scholar] [CrossRef]
- Koedooder, R.; Mackens, S.; Budding, A.; Fares, D.; Blockeel, C.; Laven, J.; Schoenmakers, S. Identification and evaluation of the microbiome in the female and male reproductive tracts. Hum. Reprod. Update 2019, 25, 298–325. [Google Scholar] [CrossRef] [PubMed]
- Ouwerkerk, J.P.; de Vos, W.M.; Belzer, C. Glycobiome: Bacteria and mucus at the epithelial interface. Best Pract. Res. Clin. Gastroenterol. 2013, 27, 25–38. [Google Scholar] [CrossRef] [PubMed]
- Úbeda, J.L.; Ausejo, R.; Dahmania, Y.; Falceto, M.V.; Usan, A.; Malo, C.; Perez-Martinez, F.C. Adverse effects of members of the Enterobacteriaceae family on boar sperm quality. Theriogenology 2013, 80, 565–570. [Google Scholar] [CrossRef]
- Nitsche-Melkus, E.; Bortfeldt, R.; Jung, M.; Schulze, M. Impact of hygiene on bacterial contamination in extended boar semen: An eight-year retrospective study of 28 European AI centers. Theriogenology 2020, 146, 133–139. [Google Scholar] [CrossRef]
- Schulze, M.; Ammon, C.; Rüdiger, K.; Jung, M.; Grobbel, M. Analysis of hygienic critical control points in boar semen production. Theriogenology 2015, 83, 430–437. [Google Scholar] [CrossRef]
- Ciornei, Ş.; Drugociu, D.; Ciornei, L.M.; Mareş, M.; Roşca, P. Total Aseptization of Boar Semen, to Increase the Biosecurity of Reproduction in Swine. Molecules 2021, 26, 6183. [Google Scholar] [CrossRef]
- Drobnis, E.Z.; Crowe, L.M.; Berger, T.; Anchordoguy, T.J.; Overstreet, J.W.; Crowe, J.H. Cold shock damage is due to lipid phase transitions in cell membranes. A demonstration using sperm as a model. J. Exp. Zool. 1993, 265, 432–437. [Google Scholar] [CrossRef]
- Lacalle, E.; Martinez-Martinez, S.; Fernández-Alegre, E.; Soriano-Ubeda, C.; Morrell, J.M.; Martínez-Pastor, F. Low-density colloid centrifugation removes bacteria from boar semen doses after spiking with selected species. Res. Vet. Sci. 2023, 158, 215–225. [Google Scholar] [CrossRef] [PubMed]
- Council of Europe. Directive 92/65/EEC of 13 July 1992, Laying Down Animal Health Requirements Governing Trade in and Imports into the Community of Animals, Semen, Ova and Embryos not Subject to Animal Health Requirements Laid Down in Specific Community Rules Referred to in Annex A to Directive 92/425/EEC. Off. J. Eur. Communities 268, 54–72. Repealed and Replaced by 32016R0429. Available online: https://eur-lex.europa.eu/legal-content/EN/ALL/?uri=celex:31992L0065 (accessed on 14 February 2025).
- Steverink, D.W.B.; Soede, N.M.; Bouwman, E.G.; Kemp, B. Semen backflow after insemination and its effect on fertilisation results in sows. Anim. Reprod. Sci. 1998, 54, 109–119. [Google Scholar] [CrossRef] [PubMed]
- Bresciani, C.; Cabassi, C.S.; Morini, G.; Taddei, S.; Bettini, R.; Bigliardi, E.; Di Ianni, F.; Sabbioni, A.; Parmigiani, E. Boar semen bacterial contamination in Italy and antibiotic efficacy in a modified extender. Ital. J. Anim. Sci. 2014, 13, 3082. [Google Scholar] [CrossRef]
- Gòdia, M.; Ramayo-Caldas, Y.; Zingaretti, L.M.; Darwich, L.; Lopez, S.; Rodríguez-Gil, J.E.; Yeste, M.; Sánchez, A.; Clop, A. A pilot RNA-seq study in 40 pietrain ejaculates to characterize the porcine sperm microbiome. Theriogenology 2020, 157, 525–533. [Google Scholar] [CrossRef]
- Costinar, L.; Herman, V.; Pitoiu, E.; Iancu, I.; Degi, J.; Hulea, A.; Pascu, C. Boar Semen Contamination: Identification of Gram-Negative Bacteria and Antimicrobial Resistance Profile. Animals 2021, 12, 43. [Google Scholar] [CrossRef]
- Davies, J.; Webb, V. Biomedical Research Reports: Emerging Infections; Krause, R.M., Ed.; Academic Press: New York, NY, USA, 1998; pp. 239–273. [Google Scholar]
- Morrell, J.M.; Cojkic, A.; Malaluang, P.; Ntallaris, T.; Lindahl, J.; Hansson, I. Antibiotics in semen extenders—A multiplicity of paradoxes. Reprod. Fertil. Dev. 2024, 36, RD23218. [Google Scholar] [CrossRef] [PubMed]
- Waberski, D.; Luther, A.M.; Grünther, B.; Jäkel, H.; Henning, H.; Vogel, C.; Peralta, W.; Weitze, K.F. Sperm function in vitro and fertility after antibiotic-free. hypothermic storage of liquid preserved boar semen. Sci. Rep. 2019, 9, 14748. [Google Scholar] [CrossRef]
- Menezes, T.D.A.; Mellagi, A.P.G.; da Silva Oliveira, G.; Bernardi, M.L.; Wentz, I.; Ulguim, R.D.R.; Bortolozzo, F.P. 2020 Antibiotic-Free Extended Boar Semen Preserved under Low Temperature Maintains Acceptable in-Vitro Sperm Quality and Reduces Bacterial Load. Theriogenology 2019, 149, 131–138. [Google Scholar] [CrossRef]
- Morrell, J.M.; Wallgren, M. Removal of bacteria from boar ejaculates by Single Layer Centrifugation can reduce the use of antibiotics in semen extenders. Anim. Reprod. Sci. 2011, 123, 64–69. [Google Scholar] [CrossRef]
- Morrell, J.M.; van Wienen, M.; Wallgren, M. Single layer centrifugation can be scaled-up further to process up to 150 mL semen. ISRN Vet. Sci. 2011, 2011, 183412. [Google Scholar] [CrossRef]
- Morrell, J.M.; Nunez-Gonzalez, A.; Crespo-Felez, I.; Martinez-Martinez, S.; Martinez Alborcia, M.-J.; Fernandez-Alegre, E.; Dominguez, J.C.; Gutierrez-Martin, C.B.; Martinez-Pastor, F. Removal of bacteria from boar semen using a low-density colloid. Theriogenology 2019, 126, 272–278. [Google Scholar] [CrossRef] [PubMed]
- Deori, S.; Johannisson, A.; Morrell, J.M. Single Layer Centrifugation with 20% or 30% Porcicoll separates the majority of spermatozoa from a sample without adversely affecting sperm quality. Reprod. Domest. Anim. 2020, 55, 1337–1342. [Google Scholar] [CrossRef]
- Ngo, C.B.; Suwimonteerabutr, J.; Morrell, J.M.; Tummaruk, P. Sow reproductive performance following artificial insemination with semen doses processed by Single Layer Centrifugation without antibiotics in the tropics. Theriogenology 2024, 226, 194–201. [Google Scholar] [CrossRef] [PubMed]
- Hallberg, I.; Morrell, J.M.; Malaluang, P.; Johannisson, A.; Sjunnesson, Y.; Laskowski, D. Sperm quality and in vitro fertilizing ability of boar spermatozoa stored at 4 °C versus conventional storage for one week. Front. Vet. Sci. 2024, 11, 1444550. [Google Scholar] [CrossRef]
- Luther, A.M.; Beckermann, C.; Nguyen, T.Q.; Verspohl, J.; Waberski, D. Growth Dynamic and Threshold Values for Spermicidal Effects of Multidrug-Resistant Bacteria in Extended Boar Semen. Microorganisms 2023, 11, 788. [Google Scholar] [CrossRef] [PubMed]
- Luther, A.M.; Nguyen, T.Q.; Verspohl, J.; Waberski, D. Update of the cooling protocol for antibiotic-free storage of boar semen at 5 °C improves sperm quality and maintains low bacterial counts. PLoS ONE 2024, 19, e0305280. [Google Scholar] [CrossRef]
- Maaßen, I.K.; Luther, A.M.; Verspohl, J.; Waberski, D. Storage of Extended Boar Semen at 5 °C Inhibits Growth of Multi-Drug Resistant Serratia marcescens and Klebsiella oxytoca while Maintaining High Sperm Quality. Antibiotics 2023, 12, 857. [Google Scholar] [CrossRef]
- Khezri, A.; Narud, B.; Stenseth, E.B.; Johannisson, A.; Myromslien, F.D.; Gaustad, A.H.; Wilson, R.C.; Lyle, R.; Morrell, J.M.; Kommisrud, E.; et al. DNA methylation patterns vary in boar sperm cells with different levels of DNA fragmentation. BMC Genom. 2019, 20, 897. [Google Scholar] [CrossRef]
- Swedish Standard SS-EN ISO 7218:2024; Microbiology of the Food Chain—General Requirements and Guidance for Microbiological Examinations (ISO 7218:2024, IDT). Available online: https://www.sis.se/en/produkter/mathematics-natural-sciences/microbiology/food-microbiology/ss-en-iso-72182024/ (accessed on 20 February 2025).
Parameter (%) | Semen in Extender with Antibiotics | Semen in Extender Without Antibiotics |
---|---|---|
MMP Low | 28.80 ± 9.50 | 27.04 ± 8.61 |
MMP High | 71.20 ± 9.50 | 72.96 ± 8.61 |
MI Living | 56.66 ± 19.97 | 50.94 ± 11.63 |
MI Dead | 28.12 ± 21.77 a | 35.82 ± 14.76 a |
MI Dying | 15.22 ± 5.07 | 13.24 ± 4.80 |
Dead H2O2 − | 34.21 ± 6.48 | 36.26 ± 7.05 |
Dead H2O2 + | 0.98 ± 1.30 | 0.30 ± 0.17 |
Live H2O2 − | 58.87 ± 9.40 | 58.89 ± 10.26 |
Live H2O2 + | 5.94 ± 6.32 | 4.55 ± 4.80 |
Live SO − | 31.73 ± 15.77 | 31.34 ± 13.20 |
Live SO + | 30.96 ± 18.53 | 30.01 ± 13.41 |
Dead SO + | 34.28 ± 6.90 | 35.04 ± 6.16 |
%DFI | 1.51 ± 1.02 | 1.47 ± 0.67 |
Sperm Parameters (%) | Control Semen with Antibiotics, 16–18 °C Day 4 | SLC Samples with Antibiotics, 4 °C Day 4 | SLC Samples Without Antibiotics, 4 °C Day 4 |
---|---|---|---|
MMP Low | 23.72 ± 11.74 | 14.80 ± 8.14 | 15.70 ± 12.17 |
MMP High | 76.28 ± 11.74 | 85.20 ± 8.14 | 84.30 ± 12.17 |
MI Living | 52.03 ± 21.24 | 50.03 ± 14.65 | 52.54 ± 14.03 |
MI Dead | 32.88 ± 20.94 | 28.65 ± 15.63 | 36.23 ± 15.02 |
MI Dying | 15.09 ± 4.89 | 11.32 ± 6.06 | 11.23 ± 5.53 |
Dead H2O2 − | 35.83 ± 24.6 | 38.37 ± 15.99 | 37.83 ± 14.85 |
Dead H2O2 + | 15.74 ± 20.45 | 9.64 ± 9.85 | 7.58 ± 5.55 |
Live H2O2 − | 35.42 ± 18.4 | 44.95 ± 13.52 | 45.73 ± 13.53 |
Live H2O2 + | 13.05 ± 15.09 | 7.03 ± 4.28 | 8.86 ± 4.94 |
Live SO − | 26.09 ± 12.74 | 25.93 ± 11.69 | 25.19 ± 11.53 |
Live SO + | 19.24 ± 16.03 | 28.65 ± 9.04 | 30.22 ± 7.25 |
Dead SO + | 48.41 ± 14.34 | 41.65 ± 9.31 | 40.60 ± 11.17 |
%DFI | 6.11 ± 3.64 ab | 2.00 ± 0.65 a | 1.90 ± 1.05 b |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ngo, C.; Morrell, J.M.; Hansson, I.; Tummaruk, P.; Cojkic, A. Effect of Colloid Centrifugation and Cold Storage of Boar Semen at 4 °C on Bacterial Load and Sperm Quality. Antibiotics 2025, 14, 267. https://doi.org/10.3390/antibiotics14030267
Ngo C, Morrell JM, Hansson I, Tummaruk P, Cojkic A. Effect of Colloid Centrifugation and Cold Storage of Boar Semen at 4 °C on Bacterial Load and Sperm Quality. Antibiotics. 2025; 14(3):267. https://doi.org/10.3390/antibiotics14030267
Chicago/Turabian StyleNgo, CongBang, Jane M. Morrell, Ingrid Hansson, Padet Tummaruk, and Aleksandar Cojkic. 2025. "Effect of Colloid Centrifugation and Cold Storage of Boar Semen at 4 °C on Bacterial Load and Sperm Quality" Antibiotics 14, no. 3: 267. https://doi.org/10.3390/antibiotics14030267
APA StyleNgo, C., Morrell, J. M., Hansson, I., Tummaruk, P., & Cojkic, A. (2025). Effect of Colloid Centrifugation and Cold Storage of Boar Semen at 4 °C on Bacterial Load and Sperm Quality. Antibiotics, 14(3), 267. https://doi.org/10.3390/antibiotics14030267