Structural Characterization of the Dimers and Selective Synthesis of the Cyclic Analogues of the Antimicrobial Peptide Cm-p5
Abstract
:1. Introduction
2. Results
2.1. Differentiation of Cyclic Parallel and Antiparallel Dimers of Cm-p5 by Chymotryptic Digestion and ESI-MS/MS Analysis
2.2. Targeted Synthesis of the Cyclic Monomer CysCysCm-p5ss
2.3. Selective Synthesis of the Antiparallel Dimer (CysCysCm-p5)2ss-ss
2.4. Selective Synthesis of the Parallel Dimer (CysCysCm-p5)2(ss)2
3. Discussion
3.1. Differentiation of Cyclic Parallel and Antiparallel Dimers of Cm-p5 by ESI-MS/MS
3.2. Selective Synthesis of the Cyclic Monomer CysCysCm-p5ss
3.3. Selective Synthesis of the Dimers
4. Materials and Methods
4.1. Materials and Reagents
4.2. Peptide Characterization
4.2.1. Analytical RP-HPLC and Purity Determination
4.2.2. ESI-MS
4.2.3. Proteolytic Digestion and Desalting of Chymotryptic Peptides
4.3. Peptide Synthesis
4.3.1. Peptide Deprotection and Cleavage
4.3.2. Two-Stage Procedure for Detachment/Deprotection of Rink Amide Resin
4.3.3. Liquid-Phase Peptide Cyclization
4.3.4. On-Resin Peptide Cyclization with DMSO, O2, or I2
4.3.5. Concentrated Iodine Oxidation of Acm-Containing Peptide
4.3.6. Low-Scale Experiments with EtOH
4.3.7. Dimerization Scale-Up to Afford the Antiparallel Dimer
4.3.8. Dimerization Scale-Up to Afford Parallel Dimer
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lei, J.; Sun, L.; Huang, S.; Zhu, C.; Li, P.; He, J.; Mackey, V.; Coy, D.H.; He, Q. The antimicrobial peptides and their potential clinical applications. Am. J. Translat. Res. 2019, 11, 3919–3931. [Google Scholar]
- Kościuczuk, E.M.; Lisowski, P.; Jarczak, J.; Strzałkowska, N.; Jóźwik, A.; Horbańczuk, J.; Krzyżewski, J.; Zwierzchowski, L.; Bagnicka, E. Cathelicidins: Family of antimicrobial peptides. A review. Mol. Biol. Rep. 2012, 39, 10957–10970. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.J.; Gallo, R.L. Antimicrobial peptides. Curr. Biol. 2016, 26, R14–R19. [Google Scholar] [CrossRef]
- Bechinger, B.; Gorr, S.U. Antimicrobial Peptides: Mechanisms of Action and Resistance. J. Dent. Res. 2017, 96, 254–260. [Google Scholar] [CrossRef] [PubMed]
- Ji, X.; Nielsen, A.L.; Heinis, C. Cyclic Peptides for Drug Development. Angew. Chem. Int. Ed. 2024, 63, e202308251. [Google Scholar] [CrossRef]
- Tyler, T.J.; Durek, T.; Craik, D.J. Native and Engineered Cyclic Disulfide-Rich Peptides as Drug Leads. Molecules 2023, 28, 3189. [Google Scholar] [CrossRef]
- Huan, Y.; Kong, Q.; Mou, H.; Yi, H. Antimicrobial Peptides: Classification, Design, Application and Research Progress in Multiple Fields. Front. Microbiol. 2020, 11, 582779. [Google Scholar] [CrossRef] [PubMed]
- Otvos, L.; Wade, J.D. Current challenges in peptide-based drug discovery. Front. Chem. 2014, 6, 62. [Google Scholar] [CrossRef] [PubMed]
- Chatterjee, J.; Gilon, C.; Hoffman, A.; Kessler, H. N-Methylation of Peptides: A New Perspective in Medicinal Chemistry. Acc. Chem. Res. 2008, 41, 1331–1342. [Google Scholar] [CrossRef]
- Meanwell, N.A. The Influence of Bioisosteres in Drug Design: Tactical Applications to Address Developability Problems. Tactics Contemp. Drug Des. 2013, 9, 283–381. [Google Scholar]
- Jing, X.; Jin, K. A gold mine for drug discovery: Strategies to develop cyclic peptides into therapies. Med. Res. Rev. 2019, 40, 753–810. [Google Scholar] [CrossRef]
- White, C.J.; Yudin, A.K. Contemporary strategies for peptide macrocyclization. Nat. Chem. 2011, 3, 509–524. [Google Scholar] [CrossRef] [PubMed]
- Chow, H.Y.; Zhang, Y.; Matheson, E.; Li, X. Ligation Technologies for the Synthesis of Cyclic Peptides. Chem. Rev. 2019, 119, 9971–10001. [Google Scholar] [CrossRef]
- Shinbara, K.; Liu, W.; van Neer, R.H.P.; Katoh, T.; Suga, H. Methodologies for Backbone Macrocyclic Peptide Synthesis Compatible with Screening Technologies. Front. Chem. 2020, 8, 447. [Google Scholar] [CrossRef]
- Gang, D.; Kim, D.W.; Park, H.S. Cyclic Peptides: Promising Scaffolds for Biopharmaceuticals. Genes 2018, 9, 557. [Google Scholar] [CrossRef] [PubMed]
- Khoo, K.K.; Norton, R.S.; Hughes, A.B. Role of Disulfide Bond in Peptide and Protein Conformation. In Amino Acids, Peptides and Proteins in Organic Chemistry: Analysis and Function of Amino Acids and Peptides; Wiley-VCH Verlag GmbH & Co. KGaA: Weinheim, Germany, 2011; Volume 5, pp. 395–417. [Google Scholar]
- Góngora-Benítez, M.; Tulla-Puche, J.; Albericio, F. Multifaceted Roles of Disulfide Bonds. Peptides as Therapeutics. Chem. Rev. 2014, 114, 901–926. [Google Scholar] [CrossRef] [PubMed]
- López-Abarrategui, C.; McBeth, C.; Zhen-Yu, J.S.; Heffron, G.; García, M.; Alba-Menéndez, A.; Migliolo, L.; Reyes-Acosta, O.; Campos-Dias, S.; Brandt, W.; et al. Cm-p5: An antifungal hydrophilic peptide derived from the coastal mollusk Cenchritis muricatus (Gastropoda: Littorinidae). FASEB J. 2015, 29, 3315–3325. [Google Scholar] [CrossRef] [PubMed]
- López-Abarrategui, C.; Alba-Menéndez, A.; Silva, N.S.; Reyes-Acosta, O.; Vasconcelos, I.M.; Oliveira, J.T.; Migliolo, L.; Costa, M.P.; Costa, C.R.; Silva, M.R.; et al. Funtional characterization of a synthetic hydrophilic antifungal peptide derived from the marine snail Cenchritis muricatus. Biochimie 2012, 94, 968–974. [Google Scholar] [CrossRef]
- Morales-Vicente, F.E.; González-García, M.; Díaz Pico, E.; Moreno-Castillo, E.; Garay, H.E.; Rosi, P.E.; Jimenez, A.M.; Campos-Delgado, J.A.; Rivera, D.G.; Chinea, G.; et al. Design of a Helical-Stabilized, Cyclic, and Nontoxic Analogue of the Peptide Cm-p5 with Improved Antifungal Activity. ACS Omega 2019, 4, 19081–19095. [Google Scholar] [CrossRef] [PubMed]
- González-Garcia, M.; Morales-Vicente, F.; Diáz-Pico, E.; Garay, H.; Rivera, D.G.; Grieshober, M.; Olari, L.R.; Grob, R.; Conzelmann, C.; Kruger, F.; et al. Antimicrobial activity of cyclic-monomeric and dimeric derivatives of the snail-derived peptide Cm-p5 against viral and multidrug-resistant bacterial strains. Biomolecules 2021, 11, 745. [Google Scholar] [CrossRef]
- Kubiczek, D.; Raber, H.; Gonzalez-García, M.; Morales-Vicente, F.; Staendker, L.; Otero-Gonzalez, A.J.; Rosenau, F. Derivates of the Antifungal Peptide Cm-p5 Inhibit Development of Candida auris Biofilms In Vitro. Antibiotics 2020, 9, 363. [Google Scholar] [CrossRef] [PubMed]
- Mormann, M.; Eble, J.; Schwoppe, C.; Mesters, R.M.; Berdel, W.E.; Peter-Katalinic, J.; Pohlentz, G. Fragmentation of intra-peptide disulfide bonds of proteolytic peptides by nanoESI collision induced dissociation. Anal. Bioanal. Chem. 2008, 392, 831–838. [Google Scholar] [CrossRef]
- Yang, Y.; Hansen, L.; Badalassi, F. Investigation of On-Resin Disulfide Formation for Large-Scale Manufacturing of Cyclic Peptides: A Case Study. Org. Process Res. Dev. 2020, 24, 1281–1293. [Google Scholar] [CrossRef]
- Postma, T.M.; Albericio, F. Disulfide Formation Strategies in Peptide Synthesis. Eur. J. Org. Chem. 2014, 17, 3519–3530. [Google Scholar] [CrossRef]
- Poole, L.B. The basics of thiols and cysteines in redox biology and chemistry. Free. Radic. Biol. Med. 2014, 80, 148–157. [Google Scholar] [CrossRef]
- Harriss, M.G.; Milne, J.B. The trifluoracetic acid solvent system. Part III. The acid, HB(OOCCF3)4 and the solvent autoprotolysis constant. Can. J. Chem. 1971, 49, 3612. [Google Scholar] [CrossRef]
- Cabodevilla, J.F.; Odriozola, L.; Santiago, E.; Martínez-Irujo, J.J. Factors affecting the dimerization of the p66 form of HIV-1 reverse transcriptase. Eur. J. Biochem. 2001, 268, 1163–1172. [Google Scholar] [CrossRef]
- Rodríguez, A.P.; Morejón, M.C.; Rivera, D.G.; Wessjohann, L.A. Peptide macrocyclization assisted by traceless turn inducers derived from Ugi peptide ligation with cleavable and resin-linked amines. Org. Lett. 2017, 19, 4022–4025. [Google Scholar]
- Tuncer, S.; Gurbanov, R.; Sheraj, I.; Solel, E.; Esenturk, O.; Banerjee, S. Low dose dimethyl sulfoxide driven gross molecular changes have the potential to interfere with various cellular processes. Sci. Rep. 2018, 8, 14828. [Google Scholar] [CrossRef]
- Annis, I.; Hargittai, B.; Barani, G. Disulfide bond formation in peptides. Methods Enzymol. 1997, 289, 198–221. [Google Scholar] [PubMed]
Exp. | Chemmatrix | Oxidation | Cleavage Mixture | Cyclic | Linear | Racemic | Yield | Dimers |
---|---|---|---|---|---|---|---|---|
1 | 0.7 mmol/g, 0.15 g | 40% DMSO, 3 h | TFA/EDT 2.5%/TIS 1%/H2O 2.5% | 0% | >95% | - | 48% | - |
2 | TFA/TIS 2.5%/H2O 2.5% | >95% | - | - | 34% | - | ||
3 | 0.41 mmol/g, 0.1 g | 40% DMSO, 6 h | TFA/TIS 2.5%/H2O 2.5% | 10% | >80% | - | 45% | - |
4 | 50% DMSO, 12 h | 25% | >70% | - | 47% | |||
5 | 0.49 mmol/g, 0.2 g | 35% DMSO, 3 h | TFA/TIS 2%/H2O 2% | 0% | >95% | 35% | ||
6 | 0.41 mmol/g | 35% DMSO, 3 h | TFA 10% | >98% | - | - | - | - |
7 | I2/DMF-Trt, 30 min | |||||||
8 | O2, 6 h | |||||||
9 | 0.41 mmol/g, 0.2 g | 35% DMSO, 3 h | TFA/TIS 1%/H2O 3.5% | 25% | 75% | 43% | - | |
TFA/TIS 1%/H2O 1% | 50% | 50% | 50% | - | ||||
10 | 0.41 mmol/g, 0.1 g | 35% DMSO, 3 h | TFA/TIS 1% | 68% | 27% | 35% | - | |
11 | I2/DMF-Trt, 30 min | 80% | - | 10% | 32% | - | ||
12 | O2, 6 h | 71% | 25% | 37% | - | |||
13 | 0.2 mmol/g, 0.1 g | I2/DMF, 30 min | 70% | - | 5% | |||
14 | 40% DMSO, 3 h | 61% | 37% | - | - | - | ||
15 | TFA/PhSiH3 1% | 48% | 47% | |||||
MBHA | ||||||||
16 | 0.46 mmol/g, 0.2 g | I2/DMF, 30 min | TFA/TIS 2%/H2O 2% | 43% | - | 9.7% | 62% | 27% |
17 | 1.11 mmol/g, 0.13 g | I2/DMF, 30 min | 41% | - | 10% | 32% | 34% | |
18 | 1.11 mmol/g, 0.17 g | 60% DMSO, 3 h | TFA/TIS 1.5%/H2O 1.5% | 28% | 43% | 1.8% | 57% | 22% |
19 | 1.35 mmol/g, 0.15 g | I2/THF, 30 min | 57% | - | 9.8% | 30% | 6.7% | |
20 | 1.35 mmol/g, 0.15 g | I2/DMF, 30 min | 56% | - | 7.6% | 26% | 9% |
Exp. | Solvent Mixture | Time | Parallel | Acyclic | Cyclic | Antiparallel |
---|---|---|---|---|---|---|
CysCysCm-p5 at 0.5 mg/mL | ||||||
1 | ACN 50% | 30% | - | - | 40% | |
2 | MeOH 50% | 40% | 10% | 10% | 25% | |
3 | H2O | 40% | - | 25% | 10% | |
4 | EtOH 5% | 60% | - | - | 39% | |
5 | EtOH 25% | 67% | - | - | 32% | |
6 | EtOH 50% | 57% | - | - | 43% | |
7 | EtOH 75% | 44% | - | - | 55% | |
8 | EtOH 90% | 36% | - | - | 64% | |
CysCysCm-p5 at 1 mg/mL | ||||||
10 | EtOH 22% | 45% | - | 10% | 31% | |
11 | EtOH 45% | 41% | - | 12% | 28% | |
12 | EtOH 67% | 28% | - | 13% | 45% | |
13 | EtOH 81% | 12% | 4% | 11% | 51% | |
14 | DMF 5% | 40% | - | 10% | 35% | |
15 | TFE 5% | 6 h | 30% | 30% | 10% | 20% |
16 | TFE 5% | 12 h | 50% | 5% | 10% | 20% |
17 | TFE 90% | 30% | - | 10% | 50% | |
CysCysCm-p5 at 2 mg/mL | ||||||
18 | EtOH 90% | 8% | 5% | 7% | 68% | |
19 | EtOH 5% | 10% | 5% | 5% | 73% | |
20 | ACN 5% | 10% | 5% | 5% | 71% | |
21 | iPrOH 5% | 10% | 5% | 5% | 70% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Morales-Vicente, F.E.; Espinosa, L.A.; Díaz-Pico, E.; Martell, E.M.; Gonzalez, M.; Ojeda, G.; González, L.J.; Rodríguez, A.; Garay, H.E.; Franco, O.L.; et al. Structural Characterization of the Dimers and Selective Synthesis of the Cyclic Analogues of the Antimicrobial Peptide Cm-p5. Antibiotics 2025, 14, 194. https://doi.org/10.3390/antibiotics14020194
Morales-Vicente FE, Espinosa LA, Díaz-Pico E, Martell EM, Gonzalez M, Ojeda G, González LJ, Rodríguez A, Garay HE, Franco OL, et al. Structural Characterization of the Dimers and Selective Synthesis of the Cyclic Analogues of the Antimicrobial Peptide Cm-p5. Antibiotics. 2025; 14(2):194. https://doi.org/10.3390/antibiotics14020194
Chicago/Turabian StyleMorales-Vicente, Fidel E., Luis A. Espinosa, Erbio Díaz-Pico, Ernesto M. Martell, Melaine Gonzalez, Gerardo Ojeda, Luis Javier González, Armando Rodríguez, Hilda E. Garay, Octavio L. Franco, and et al. 2025. "Structural Characterization of the Dimers and Selective Synthesis of the Cyclic Analogues of the Antimicrobial Peptide Cm-p5" Antibiotics 14, no. 2: 194. https://doi.org/10.3390/antibiotics14020194
APA StyleMorales-Vicente, F. E., Espinosa, L. A., Díaz-Pico, E., Martell, E. M., Gonzalez, M., Ojeda, G., González, L. J., Rodríguez, A., Garay, H. E., Franco, O. L., Rosenau, F., Otero-González, A. J., & Ständker, L. (2025). Structural Characterization of the Dimers and Selective Synthesis of the Cyclic Analogues of the Antimicrobial Peptide Cm-p5. Antibiotics, 14(2), 194. https://doi.org/10.3390/antibiotics14020194