National-Level Consumption of Antimicrobials in the Veterinary Sector in Uganda: A Report on Analysis of Import Data for 2021
Abstract
:1. Introduction
2. Results
2.1. Quantity of Antibacterials and Antiprotozoals per Product
2.2. Proportions of Veterinary Antibacterials Imported into Uganda in 2021 by Pharmacological Class
2.3. Proportions of Antibacterials Classified by WOAH Veterinary Critically Important Antimicrobials (CIA)
2.4. Proportions of Antibacterials by WHO Critically Important Antimicrobials Classification
2.5. Proportion by the EU AMEG Classification on Prudent Use of Antimicrobials [19]
3. Discussion
4. Materials and Methods
4.1. Study Setting
4.2. Study Design and Data Sources
4.3. Data Collection
4.4. Antimicrobials Included
4.5. Data Analysis
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Murray, C.J.L.; Ikuta, K.S.; Sharara, F.; Swetschinski, L.; Aguilar, G.R.; Gray, A.; Han, C.; Bisignano, C.; Rao, P.; Wool, E.; et al. Global burden of bacterial antimicrobial resistance in 2019: A systematic analysis. Lancet 2022, 399, 629–655. [Google Scholar] [CrossRef] [PubMed]
- Iskandar, K.; Molinier, L.; Hallit, S.; Sartelli, M.; Hardcastle, T.C.; Haque, M.; Lugova, H.; Dhingra, S.; Sharma, P.; Islam, S.; et al. Surveillance of antimicrobial resistance in low- and middle-income countries: A scattered picture. Antimicrob. Resist. Infect. Control 2021, 10, 1–19. [Google Scholar] [CrossRef] [PubMed]
- Sulis, G.; Sayood, S.; Gandra, S. Antimicrobial resistance in low- and middle-income countries: Current status and future directions. Expert Rev. Anti-Infect. Ther. 2021, 20, 147–160. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization (WHO). Global Action Plan on Antimicrobial Resistance. 2015. Available online: https://www.who.int/publications/i/item/9789241509763 (accessed on 7 January 2024).
- van Bunnik, B.A.D.; Woolhouse, M.E.J. Modelling the impact of curtailing antibiotic usage in food animals on antibiotic resistance in humans. R. Soc. Open Sci. 2017, 4, 161067. [Google Scholar] [CrossRef]
- Van Boeckel, T.P.; Glennon, E.E.; Chen, D.; Gilbert, M.; Robinson, T.P.; Grenfell, B.T.; Levin, S.A.; Bonhoeffer, S.; Laxminarayan, R. Reducing antimicrobial use in food animals. Science 2017, 357, 1350–1352. [Google Scholar] [CrossRef]
- Bâtie, C.; Minh, H.T.; Vu, V.A.T.; Luong, D.T.; Pham, T.T.; Fortané, N.; Duc, P.P.; Goutard, F.L. Reducing antimicrobial use in chicken production in Vietnam: Exploring the systemic dimension of change. PLoS ONE 2023, 18, e0290296. [Google Scholar] [CrossRef] [PubMed]
- Jensen, H.H.; Hayes, D.J. Impact of Denmark’s ban on antimicrobials for growth promotion. Curr. Opin. Microbiol. 2014, 19, 30–36. [Google Scholar] [CrossRef] [PubMed]
- Kivumbi, M.T.; Standley, C.J. Efforts to identify and combat antimicrobial resistance in Uganda: A systematic review. Trop. Med. Infect. Dis. 2021, 6, 86. [Google Scholar] [CrossRef]
- Uganda Bureau of Statistics (UBOS). The Annual Agriculture Survey 2018: Statistical Release; Uganda Bureau of Statistics (UBOS): Kampala, Uganda, 2020. Available online: https://www.ubos.org/wp-content/uploads/publications/06_2020AAS_2018_Report_Final_050620.pdf (accessed on 30 September 2023).
- Musoke, D.; Namata, C.; Lubega, G.B.; Kitutu, F.E.; Mugisha, L.; Amir, S.; Brandish, C.; Gonza, J.; Ikhile, D.; Niyongabo, F.; et al. Access, use and disposal of antimicrobials among humans and animals in Wakiso district, Uganda: A qualitative study. J. Pharm. Policy Pract. 2021, 14, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Myers, J.; Hennessey, M.; Arnold, J.-C.; McCubbin, K.D.; Lembo, T.; Mateus, A.; Kitutu, F.E.; Samanta, I.; Hutchinson, E.; Davis, A.; et al. Crossover-Use of Human Antibiotics in Livestock in Agricultural Communities: A Qualitative Cross-Country Comparison between Uganda, Tanzania and India. Antibiotics 2022, 11, 1342. [Google Scholar] [CrossRef]
- Government of Uganda. Antimicrobial Resistance National Action Plan 2018–2023. 2018. Available online: https://www.who.int/publications/m/item/uganda-antimicrobial-resistance-national-action-plan-2018-2023 (accessed on 30 September 2023).
- Mikecz, O.; Pica-Ciamarra, U.; Felis, A.; Nizeyimana, G.; Okello, P.; Brunelli, C. Data on antimicrobial use in livestock: Lessons from Uganda. One Health 2020, 10, 100165. [Google Scholar] [CrossRef]
- FAO. The Future of Livestock in Uganda. Opportunities and Challenges in the Face of Uncertainty; FAO: Rome, Italy, 2019. [Google Scholar]
- World Health Organization. Global Antimicrobial Resistance and Use Surveillance System (GLASS) Report 2022; World Health Organization: Geneva, Switzerland, 2022. [Google Scholar]
- World Organization for Animal Health. OIE Annual Report on Antimicrobial Agents Intended for Use in Animals. Better Understanding of the Global Situation. Fourth Report. 2020. Available online: https://www.woah.org/fileadmin/Home/eng/Our_scientific_expertise/docs/pdf/A_Fourth_Annual_Report_AMU.pdf (accessed on 15 January 2025).
- Ching, C.; Zaman, M.H.; Wirtz, V.J. Evaluation of Surveillance Strategies of Antimicrobial Consumption in Animals. Antibiotics 2024, 13, 505. [Google Scholar] [CrossRef] [PubMed]
- Murungi, M.; Ndagije, H.B.; Kiggundu, R.; Kesi, D.N.; Waswa, J.P.; Rajab, K.; Barigye, M.; Serwanga, A.; Manirakiza, L.; Kasujja, H.; et al. Antimicrobial consumption surveillance in Uganda: Results from an analysis of national import data for the human health sector, 2018–2021. J. Infect. Public Health 2023, 16 (Suppl. S1), 45–51. [Google Scholar] [CrossRef] [PubMed]
- Góchez, D.; Raicek, M.; Ferreira, J.P.; Jeannin, M.; Moulin, G.; Erlacher-Vindel, E. OIE annual report on antimicrobial agents intended for use in animals: Methods used. Front. Vet. Sci. 2019, 6, 317. [Google Scholar] [CrossRef] [PubMed]
- Dione, M.M.; Amia, W.C.; Ejobi, F.; Ouma, E.A.; Wieland, B. Supply Chain and Delivery of Antimicrobial Drugs in Smallholder Livestock Production Systems in Uganda. Front. Vet. Sci. 2021, 8, 611076. [Google Scholar] [CrossRef]
- Namugambe, J.S.; Delamou, A.; Moses, F.; Ali, E.; Hermans, V.; Takarinda, K.; Thekkur, P.; Nanyonga, S.M.; Koroma, Z.; Mwoga, J.N.; et al. National antimicrobial consumption: Analysis of central warehouses supplies to in-patient care health facilities from 2017 to 2019 in Uganda. Trop. Med. Infect. Dis. 2021, 6, 83. [Google Scholar] [CrossRef] [PubMed]
- World Organization for Animal Health. Annual Report on Antimicrobial Agents Intended for Use in Animals. 8th Report. 2024. Available online: https://www.woah.org/app/uploads/2024/05/woah-amu-report-2024-final.pdf (accessed on 15 January 2025).
- Tebug, S.F.; Mouiche, M.M.M.; Abia, W.A.; Teno, G.; Tiambo, C.K.; Moffo, F.; Awah-Ndukum, J. Antimicrobial use and practices by animal health professionals in 20 sub-Saharan African countries. Prev. Vet. Med. 2021, 186, 105212. [Google Scholar] [CrossRef]
- Mouiche, M.M.M.; Moffo, F.; Betsama, J.D.B.; Mapiefou, N.P.; Mbah, C.K.; Mpouam, S.E.; Penda, R.E.; Ciake, S.A.C.; Feussom, J.M.K.; Kamnga, Z.F.; et al. Challenges of antimicrobial consumption surveillance in food-producing animals in sub-Saharan African countries: Patterns of antimicrobials imported in Cameroon from 2014 to 2019. J. Glob. Antimicrob. Resist. 2020, 22, 771–778. [Google Scholar] [CrossRef]
- Sangeda, R.Z.; Baha, A.; Erick, A.; Mkumbwa, S.; Bitegeko, A.; Sillo, H.B.; Fimbo, A.M.; Chambuso, M.; Mbugi, E.V. Consumption Trends of Antibiotic for Veterinary Use in Tanzania: A Longitudinal Retrospective Survey From 2010–2017. Front. Trop. Dis. 2021, 2, 694082. [Google Scholar] [CrossRef]
- Republic of Uganda Ministry of Agriculture Animal Industry and Fisheries (MAAIF). Essential Veterinary Medicines List for Uganda. 2020. Available online: https://ugandavetassociation.org/download/essential-veterinary-medicines-list-for-uganda-2020/ (accessed on 7 August 2023).
- Samuel, M.; Wabwire, T.F.; Tumwine, G.; Waiswa, P. Antimicrobial Usage by Small-Scale Commercial Poultry Farmers in Mid-Western District of Masindi Uganda: Patterns, Public Health Implications, and Antimicrobial Resistance of E. coli. Vet. Med. Int. 2023, 2023, 6644271. [Google Scholar] [CrossRef]
- McCubbin, K.D.; Ramatowski, J.W.; Buregyeya, E.; Hutchinson, E.; Kaur, H.; Mbonye, A.K.; Mateus, A.L.P.; Clarke, S.E. Unsafe ‘crossover-use’ of chloramphenicol in Uganda: Importance of a One Health approach in antimicrobial resistance policy and regulatory action. J. Antibiot. 2021, 74, 417–420. [Google Scholar] [CrossRef] [PubMed]
- Nayiga, S.; Nayiga, S.; Kayendeke, M.; Kayendeke, M.; Nabirye, C.; Nabirye, C.; Willis, L.D.; Willis, L.D.; Chandler, C.I.R.; Chandler, C.I.R.; et al. Use of antibiotics to treat humans and animals in Uganda: A cross-sectional survey of households and farmers in rural, urban and peri-urban settings. JAC-Antimicrob. Resist. 2020, 2, dlaa082. [Google Scholar] [CrossRef] [PubMed]
- Basulira, Y.; Olet, S.A.; Alele, P.E. Inappropriate usage of selected antimicrobials: Comparative residue proportions in rural and urban beef in Uganda. PLoS ONE 2019, 14, e0209006. [Google Scholar] [CrossRef]
- Kebirungi, P.; Nyombi, A.; Omara, T.; Adaku, C.; Ntambi, E. Oxytetracycline residues in bovine muscles, liver and kidney tissues from selected slaughter facilities in South Western Uganda. Bull. Natl. Res. Cent. 2022, 46, 1–9. [Google Scholar] [CrossRef]
- Kayendeke, M.; Denyer-Willis, L.; Nayiga, S.; Nabirye, C.; Fortané, N.; Staedke, S.G.; Chandler, C.I. Pharmaceuticalised livelihoods: Antibiotics and the rise of ’Quick Farming’ in peri-urban Uganda. J. Biosoc. Sci. 2023, 55, 995–1014. [Google Scholar] [CrossRef]
- Namubiru, S.; Migisha, R.; Okello, P.E.; Simbwa, B.; Kabami, Z.; Agaba, B.; Zalwango, J.F.; Naiga, H.N.; Zalwango, M.G.; Wanyana, M.W.; et al. Increasing trends of antibiotic resistance in Uganda: Analysis of the national antimicrobial resistance surveillance data, 2018–2021. BMC Infect. Dis. 2024, 24, 930. [Google Scholar] [CrossRef] [PubMed]
- Kabaalu, A. Isolation, Identification and Antimicrobial Susceptability of E. coli and Salmonella in Commercial Layer Chicken on Selected Farms in Kasanje Sub-County, Wakiso District Uganda. Ph.D. Thesis, Makerere University, Kampala, Ugandam, 2019. [Google Scholar]
- UNAS; CDDEP; GARP-Uganda; Mpairwe, Y.; Wamala, S. Antibiotic Resistance in Uganda: Situation Analysis and Recommendations; Uganda National Academy of Sciences, Center for Disease Dynamics, Economics & Policy: Kampala, Uganda, 2015; p. 107. [Google Scholar]
- Ikwap, K.; Gertzell, E.; Hansson, I.; Dahlin, L.; Selling, K.; Magnusson, U.; Dione, M.; Jacobson, M. The presence of antibiotic-resistant Staphylococcus spp. and Escherichia coli in smallholder pig farms in Uganda. BMC Vet. Res. 2021, 17, 31. [Google Scholar] [CrossRef]
- Allel, K.; Day, L.; Hamilton, A.; Lin, L.; Furuya-Kanamori, L.; Moore, C.E.; Van Boeckel, T.; Laxminarayan, R.; Yakob, L. Global antimicrobial-resistance drivers: An ecological country-level study at the human-animal interface. Lancet Planet. Health 2023, 7, e291–e303. [Google Scholar] [CrossRef] [PubMed]
- Tang, K.L.; Caffrey, N.P.; Nóbrega, D.B.; Cork, S.C.; Ronksley, P.E.; Barkema, H.W.; Polachek, A.J.; Ganshorn, H.; Sharma, N.; Kellner, J.D.; et al. Restricting the use of antibiotics in food-producing animals and its associations with antibiotic resistance in food-producing animals and human beings: A systematic review and meta-analysis. Lancet Planet. Health 2017, 1, e316–e327. [Google Scholar] [CrossRef] [PubMed]
- Umair, M.; Hassan, B.; Farzana, R.; Ali, Q.; Sands, K.; Mathias, J.; Afegbua, S.; Haque, M.N.; Walsh, T.R.; Mohsin, M. International Manufacturing and Trade in Colistin, its Implications in Polymyxin Resistance and One-Health Global Policies: A Microbiological, Economic and Anthropological Study. Lancet Microbe 2022, 4, e264–e276. [Google Scholar] [CrossRef] [PubMed]
- Rhouma, M.; Beaudry, F.; Thériault, W.; Letellier, A. Colistin in pig production: Chemistry, mechanism of antibacterial action, microbial resistance emergence, and one health perspectives. Front. Microbiol. 2016, 7, 1789. [Google Scholar] [CrossRef] [PubMed]
- Umair, M.; Mohsin, M.; Sönksen, U.W.; Walsh, T.R.; Kreienbrock, L.; Laxminarayan, R. Measuring antimicrobial use needs global harmonization. Glob. Chall. 2021, 5, 2100017. [Google Scholar] [CrossRef] [PubMed]
- Mohsin, M.; Farooq, U.; Hartmann, M.; Brogden, S.; Kreienbrock, L.; Stoffregen, J. Case Study: Using a Shared International Database to Document Veterinary Consumption of Antibiotics in Pakistan. Antibiotics 2023, 12, 394. [Google Scholar] [CrossRef] [PubMed]
- Umair, M.; Orubu, S.; Zaman, M.H.; Wirtz, V.J.; Mohsin, M. Veterinary consumption of highest priority critically important antimicrobials and various growth promoters based on import data in Pakistan. PLoS ONE 2022, 17, e0273821. [Google Scholar] [CrossRef]
- Iramiot, J.S.; Kajumbula, H.; Bazira, J.; Kansiime, C.; Asiimwe, B.B. Antimicrobial resistance at the human-animal interface in the Pastoralist Communities of Kasese District, South Western Uganda. Sci. Rep. 2020, 10, 14737. [Google Scholar] [CrossRef] [PubMed]
- The World Bank. Data|Uganda. Available online: https://data.worldbank.org/country/UG (accessed on 22 January 2024).
- National Agricultural Biosecurity Center (NABC). Uganda Veterinary Response Capabilities (VetCap); NABC, Kansas State University: Manhattan, KS, USA, 2011; Available online: https://www.k-state.edu/nabc/docs/vetcap_country_profiles/Uganda_VetCap_ExecSum_Report.pdf (accessed on 30 September 2023).
- WHOCC. WHO Collaborating Centre for Drug Statistics Methodology|ATCvet Index 2023. Available online: https://www.whocc.no/atcvet/atcvet_index/ (accessed on 30 September 2023).
- World Organization for Animal Health (WOAH). Annual Report on Antimicrobial Agents Intended for Use in Animals, 6th ed.; World Organization for Animal Health (WOAH): Geneva, Switzerland, 2022; Available online: https://www.woah.org/app/uploads/2022/06/a-sixth-annual-report-amu-final.pdf (accessed on 30 September 2023).
- European Medicines Agency (EMA). Categorisation of Antibiotics for Use in Animals for Prudent and Responsible Use. 2019. Available online: https://www.ema.europa.eu/en/documents/report/infographic-categorisation-antibiotics-use-animals-prudent-and-responsible-use_en.pdf (accessed on 30 September 2023).
Quantity in Kg | ||||
---|---|---|---|---|
* VET_ATC5 CODE | Medicine Name | Kg | % | |
1 | QJ01AA06 | Oxytetracycline | 51,657.21 | 58.4% |
2 | QJ01EW10 | Sulphadiazine + Trimethoprim | 9776.54 | 11.1% |
3 | QJ51RC22 | Penicillin G + Dihydrostreptomycin | 6564.02 | 7.4% |
4 | QJ51RC23 | Penicillin G Procaine + Dihydrostreptomycin | 6017.80 | 6.8% |
5 | QJ01AA07 | Tetracycline Hydrochloride | 3050.02 | 3.5% |
6 | QJ01FA90 | Tylosin | 2818.08 | 3.2% |
7 | QJ01FA01 | Erythromycin | 2251.35 | 2.5% |
8 | QJ01MA90 | Enrofloxacin | 1615.51 | 1.8% |
9 | QJ01EW11 | Trimethoprim + Sulfamethoxazole | 1545.89 | 1.7% |
10 | QA07AA51 | Doxycycline + Neomycin | 720 | 0.8% |
11 | QJ01AA02 | Doxycycline | 682 | 0.8% |
12 | QJ01RA90 | Doxycycline + Tylosin | 456.4 | 0.5% |
13 | QG51AG07 | Ampicillin + Colistin | 444 | 0.5% |
14 | QJ01GB03 | Gentamicin | 254.12 | 0.3% |
15 | Not assigned | Tylosin Tartrate + Gentamicin Sulphate | 209.09 | 0.2% |
16 | QJ01RA01 | Amoxycillin + Gentamicin | 131.67 | 0.1% |
17 | QA07AA10 | Colistin | 69.03 | 0.1% |
18 | QJ01AA56 | Oxytetracycline + Neomycin | 50.4 | 0.1% |
19 | QJ01RA95 | Erythromcin 35 mg/Streptomycin 35 mg/Oxytetracycline 5000 mg/Colistin 225,000 IU | 30.72 | 0.0% |
20 | QJ01EW17 | Sulfamonomethoxine Sodium + Trimethoprim | 28.5 | 0.0% |
21 | QJ01RA90 | Doxycycline + Sodium Sulphacetamide | 15.02 | 0.0% |
Total | 88,387.37 | 100.0% |
TOTAL QTY IN KG | |||||
---|---|---|---|---|---|
ATC3 Code | ATC3Name | ATC4Name | Kg | % | |
1 | QJ01AA | Tetracyclines | Tetracyclines | 51,657.21 | 59.0% |
2 | QJ51R | Combinations of antibacterials for intramammary use | Aminoglycoside + Penicillin | 9776.54 | 11.2% |
3 | QJ01E | Sulfonamides and trimethoprim | Sulfonamides and trimethoprim | 6564.02 | 7.5% |
4 | QJ01F | Macrolides | Macrolides | 6017.80 | 6.9% |
5 | QJ01M | Fluoroquinolones | Fluoroquinolones | 3050.00 | 3.5% |
6 | QA07A | Intestinal antiinfectives | Aminoglycoside + Tetracycline | 2818.08 | 3.2% |
7 | QJ01R | Combinations of antibacterials | Tetracycline + Macrolide | 2251.35 | 2.6% |
8 | QG51A | Antiinfectives for intrauterine use | Polymixin + Penicillin | 1615.51 | 1.8% |
9 | QJ01G | Aminoglycosides | Aminoglycosides | 1545.89 | 1.8% |
10 | QJ01R | Combinations of antibacterials | Aminoglycoside + macrolide | 720 | 0.8% |
11 | QA07A | Intestinal antiinfectives | Polymixins | 682 | 0.8% |
12 | QJ01R | Combinations of antibacterials | Polymixin + three others | 456.4 | 0.5% |
13 | QJ01R | Combinations of antibacterials | Tetracyclines + Sulfonamides | 444 | 0.5% |
TOTAL | 87,598.80 | 1.00 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Murungi, M.; Vudriko, P.; Ndagije, H.B.; Kesi, D.N.; Serwanga, A.; Rajab, K.; Manirakiza, L.; Waswa, J.P.; Kasujja, H.; Barigye, M.; et al. National-Level Consumption of Antimicrobials in the Veterinary Sector in Uganda: A Report on Analysis of Import Data for 2021. Antibiotics 2025, 14, 150. https://doi.org/10.3390/antibiotics14020150
Murungi M, Vudriko P, Ndagije HB, Kesi DN, Serwanga A, Rajab K, Manirakiza L, Waswa JP, Kasujja H, Barigye M, et al. National-Level Consumption of Antimicrobials in the Veterinary Sector in Uganda: A Report on Analysis of Import Data for 2021. Antibiotics. 2025; 14(2):150. https://doi.org/10.3390/antibiotics14020150
Chicago/Turabian StyleMurungi, Marion, Patrick Vudriko, Helen Byomire Ndagije, Diana Nakitto Kesi, Allan Serwanga, Kalidi Rajab, Leonard Manirakiza, John Paul Waswa, Hassan Kasujja, Mark Barigye, and et al. 2025. "National-Level Consumption of Antimicrobials in the Veterinary Sector in Uganda: A Report on Analysis of Import Data for 2021" Antibiotics 14, no. 2: 150. https://doi.org/10.3390/antibiotics14020150
APA StyleMurungi, M., Vudriko, P., Ndagije, H. B., Kesi, D. N., Serwanga, A., Rajab, K., Manirakiza, L., Waswa, J. P., Kasujja, H., Barigye, M., Kaweesi, D., Akello, H., Namugambe, J., Kiggundu, R., & Konduri, N. (2025). National-Level Consumption of Antimicrobials in the Veterinary Sector in Uganda: A Report on Analysis of Import Data for 2021. Antibiotics, 14(2), 150. https://doi.org/10.3390/antibiotics14020150