Safe Meat, Smart Science: Biotechnology’s Role in Antibiotic Residue Removal
Abstract
1. Introduction
1.1. Economic and Social Impact of Antimicrobial Resistance Linked to Antibiotic Use in Livestock
1.2. Key Challenges in Food Safety Related to Antibiotic Residues and AMR
2. Antibiotic Residues in Meat: Source, Health Risk, and Food Safety Implications
2.1. Prudent Antibiotic Use and Antimicrobial Stewardship in Livestock
2.2. Challenges in Complying with Regulatory Standards and Guidelines
3. Biotechnology-Enhanced Stewardship and Optimized Antibiotic Use in Livestock
3.1. Biotechnological Innovations in Detecting and Eliminating Antibiotic Residues in Meat
Biotechnological Methods for the Detection of Antibiotic Residues: Biosensors and High-Throughput Screening (HTS)
| Type of Biosensor | Biorecognition Element | Transduction Mechanism | Key Advantages | Target Antibiotics | Scientific References |
|---|---|---|---|---|---|
| Enzyme-based | Enzymes (e.g., acetylcholinesterase) | Electrochemical (inhibition-based) | Fast, cost-effective | β-lactams, aminoglycosides | [28] |
| Immunosensor | Antibodies | Optical/electrochemical | High specificity, well-established | Tetracyclines, sulfonamides | [63] |
| Aptamer-based | DNA/RNA aptamers | Electrochemical or fluorescent | High affinity, reusability | Tetracyclines, chloramphenicol | [64] |
| Nanobiosensor | Antibodies or aptamers with nanoparticles | Enhanced electrochemical or optical signal | Increased sensitivity and stability | Various classes | [65] |
| Whole-cell sensor | Genetically modified bacteria | Luminescence or color change | Low cost, applicable in screening | General antibiotic activity | [66] |
3.2. Biotechnological Methods for the Removal of Antibiotic Residues: Microbial, Enzymatic, and Engineered Strategies
3.2.1. Microbial Degradation
3.2.2. Enzymatic Processes
3.2.3. Genetically Modified Bacteria
3.2.4. Phage Therapy and Biocontrol
3.2.5. Phytoremediation
| Method | Mechanism of Action | Application | Key Advantages | Key Limitations and Challenges | References |
|---|---|---|---|---|---|
| Microbial degradation | Microorganisms enzymatically degrade antibiotics into less harmful compounds | Bioreactors, wastewater treatment, meat processing | Natural, scalable, eco-friendly | Sensitivity to environmental conditions; low substrate concentrations reduce efficiency; complex antibiotic mixtures alter degradation pathways; formation of toxic intermediates; biosafety concerns | [73,79] |
| Enzymatic degradation | Enzymes cleave chemical bonds in antibiotic molecules, rendering them inactive | In-line processing, enzyme additives | Specificity, rapid action, industrial scalability | Limited stability; incomplete degradation; high production cost | [67] |
| Genetically modified bacteria | Engineered strains produce degradation enzymes or bind antibiotics | Bioremediation, residue cleanup in processing facilities | Targeted action, customizable traits | Biosafety concerns; regulatory and public acceptance issues; environmental stability; complexity and cost | [93] |
| Bacteriophage therapy | Phages infect and lyse specific bacteria that carry antibiotic residues or resistance | Surface decontamination, animal gut microbiota control | Host specificity, minimal resistance development | Narrow host range/specificity; sensitivity to environmental conditions; risk of bacterial resistance development; regulatory and production challenges | [107,108] |
| Antimicrobial peptides | Peptides disrupt bacterial membranes or essential functions | Feed additives, infection control | Natural alternative to antibiotics | High production cost; susceptibility to proteolytic degradation; potential cytotoxicity at high doses | [59] |
| Phytoremediation | Plants absorb or transform antibiotic residues from the environment | Environmental cleanup near livestock areas | Low cost, sustainable | Slow remediation rates; strong environmental dependence; risk of antibiotic accumulation in plants | [113] |
| Biocatalysis | Microbial enzymes transform antibiotic residues into non-toxic products | Combined with other strategies | Eco-friendly, highly adaptable | Limited substrate range; sensitivity to environmental conditions; potential formation of toxic byproducts | [115] |
| Integrated AOP + bioremediation | AOPs break down complex molecules; microbes further degrade intermediates | Sequential wastewater or surface treatment | Synergistic, more complete degradation | High operational complexity and cost; potential interactions reducing efficiency; variability in performance due to environmental and feedstock differences; challenges in industrial-scale implementation | [115] |
3.2.6. Biocatalysis
3.2.7. Integrated Approaches
3.3. Enabling Technologies for Antibiotic Residue Mitigation: Genomic, Computational, and Monitoring Tools
3.3.1. Metagenomics and Bioinformatics
3.3.2. Detection of Antibiotic Resistance Genes
3.3.3. Rational Design and Engineering
3.3.4. Computational Tools and Modeling
3.4. Biotechnological Applications and Case Studies
3.5. Monitoring and Detection Technologies
4. Risk Assessment and Public Acceptance of Biotechnology in Meat Production
5. Challenges and Future Directions for Biotechnological Applications in Antibiotic Residue Reduction
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Wang, H.; McEntire, J.; Zhang, L.; Li, X.; Doyle, M.P. The transfer of antibiotic resistance from food to humans: Facts, implications and future directions. Rev. Sci. Tech. Off. Int. Epiz. 2012, 31, 249–260. [Google Scholar] [CrossRef] [PubMed]
- Aarestrup, F.M. The livestock reservoir for antimicrobial resistance: A personal view on changing patterns of risks, effects of interventions and the way forward. Philos. Trans. R. Soc. Lond. B Biol. Sci. 2015, 370, 20140085. [Google Scholar] [CrossRef] [PubMed]
- Sapkota, A.R.; Lefferts, L.Y.; McKenzie, S.; Walker, P. What Do We Feed to Food-Production Animals? A Review of Animal Feed Ingredients and Their Potential Impacts on Human Health. Environ. Health Perspect. 2007, 115, 663. [Google Scholar] [CrossRef]
- FDA. 2012 Summary Report on Antimicrobials Sold or Distributed for Use in Food-Producing Animals; U.S. Food and Drug Administration: Silver Spring, MD, USA, 2014. Available online: https://www.fda.gov/media/89630/download (accessed on 1 October 2025).
- Landers, T.F.; Cohen, B.; Wittum, T.E.; Larson, E.L. A review of antibiotic use in food animals: Perspective, policy, and potential. Public Health Rep. 2012, 127, 4–22. [Google Scholar] [CrossRef]
- Van Boeckel, T.P.; Brower, C.; Gilbert, M.; Grenfell, B.T.; Levin, S.A.; Robinson, T.P.; Teillant, A.; Laxminarayan, R. Global trends in antimicrobial use in food animals. Proc. Natl. Acad. Sci. USA 2015, 112, 5649–5654. [Google Scholar] [CrossRef]
- Ajayi, A.O.; Odeyemi, A.; Akinjogunla, O.J.; Adeyeye, A.B.; Ayo-ajayi, I. Review of antibiotic-resistant bacteria and antibiotic resistance genes within the one health framework. Infect. Ecol. Epidemiol. 2024, 14, 2312953. [Google Scholar] [CrossRef] [PubMed]
- Verraes, C.; Boxstael, S.V.; Meervenne, E.V.; Coillie, E.V.; Butaye, P.; Catry, B.; Schaetzen, M.-A.D.; Huffel, X.V.; Imberechts, H.; Dierick, K.; et al. Antimicrobial Resistance in the Food Chain: A Review. Int. J. Environ. Res. Public Health 2013, 10, 2643. [Google Scholar] [CrossRef] [PubMed]
- Nair, D.V.T.; Venkitanarayanan, K.; Johny, A.K. Antibiotic-Resistant Salmonella in the Food Supply and the Potential Role of Antibiotic Alternatives for Control. Foods 2018, 7, 167. [Google Scholar] [CrossRef]
- Urban-Chmiel, R.; Marek, A.; Stępień-Pyśniak, D.; Wieczorek, K.; Dec, M.; Nowaczek, A.; Osek, J. Antibiotic Resistance in Bacteria—A Review. Antibiotics 2022, 11, 1079. [Google Scholar] [CrossRef]
- Levy, S.B.; Marshall, B. Antibacterial resistance worldwide: Causes, challenges and responses. Nat. Med. 2004, 10, S122–S129. [Google Scholar] [CrossRef]
- Fernández-Trapote, E.; Oliveira, M.; Cobo-Díaz, J.F.; Álvarez-Ordóñez, A. The resistome of the food chain: A One Health perspective [Review of The resistome of the food chain: A One Health perspective]. Microb. Biotechnol. 2024, 17, e14530. [Google Scholar] [CrossRef]
- Lee, H.; Yoon, Y. Etiological Agents Implicated in Foodborne Illness World Wide. Food Sci. Anim. Resour. 2021, 41, 1–7. [Google Scholar] [CrossRef]
- World Health Organization. Global Health Observatory Data Repository-Road Traffic Deaths Data by Country. 2020. Available online: https://www.who.int/gho/road_safety/mortality/traffic_deaths_number/en/ (accessed on 28 June 2020).
- Sundström, K. Cost of Illness for Five Major Foodborne Illnesses and Sequelae in Sweden. Foodborne Pathog. Dis. 2018, 15, 170–175. [Google Scholar] [CrossRef]
- Van Cauteren, D.; Le Strat, Y.; Sommen, C.; Bruyand, M.; Tourdjman, M.; Da Silva, N.J.; Couturier, E.; Fournet, N.; de Valk, H.; Desenclos, J.C. Estimated Annual Numbers of Foodborne Pathogen-Associated Illnesses, Hospitalizations, and Deaths, France, 2008–2013. Emerg. Infect. Dis. 2017, 23, 1486–1492. [Google Scholar] [CrossRef] [PubMed]
- Lund, B.M.; O’Brien, S.J. The occurrence and prevention of foodborne disease in vulnerable people. Foodborne Pathog. Dis. 2011, 8, 961–973. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization. WHO Estimates of the Global Burden of Foodborne Diseases. 2015. Available online: https://apps.who.int/iris/bitstream/handle/10665/199350/9789241565165_eng.pdf?sequence=1 (accessed on 21 July 2020).
- WHO. Global Action Plan on Antimicrobial Resistance; WHO: Geneva, Switzerland, 2019. [Google Scholar]
- O’Neill, J. Tackling Drug-Resistant Infections Globally: Final Report and Recommendations; Review on Antimicrobial Resistance; Wellcome Trust & HM Government: London, UK, 2016; Available online: https://amr-review.org/sites/default/files/160525_Final%20paper_with%20cover.pdf (accessed on 27 November 2025).
- FAO. The FAO Action Plan on Antimicrobial Resistance 2021–2025; FAO: Rome, Italy, 2020. [Google Scholar]
- Tang, K.L.; Caffrey, N.P.; Nóbrega, D.B.; Cork, S.C.; E Ronksley, P.; Barkema, H.W.; Polachek, A.J.; Ganshorn, H.; Sharma, N.; Kellner, J.D.; et al. Restricting antibiotic use in food-producing animals and its associations with antibiotic resistance in food animals and humans: A systematic review and meta-analysis. Lancet Planet Health 2017, 1, e316–e327. [Google Scholar] [CrossRef] [PubMed]
- Collignon, P.; Beggs, J.J.; Walsh, T.R.; Gandra, S.; Laxminarayan, R. Anthropological and economic factors contributing to global antimicrobial resistance. Microbiol. Spectr. 2018, 2, e398–e405. [Google Scholar]
- CDC. Antibiotic Resistance Threats in the United States, 2022; CDC: Atlanta, GA, USA, 2022. [Google Scholar]
- Havelaar, A.H.; Kirk, M.D.; Torgerson, P.R.; Gibb, H.J.; Hald, T.; Lake, R.J.; Praet, N.; Bellinger, D.C.; de Silva, N.R.; Gargouri, N.; et al. World Health Organization Global Estimates and Regional Comparisons of the Burden of Foodborne Disease in 2010. PLoS Med. 2015, 12, e1001923. [Google Scholar] [CrossRef] [PubMed]
- El-Khishin, M.; Gooneratne, R.; Hussain, M.A. Microbial Safety of Foods in the Supply Chain and Food Security. Adv. Food Technol. Nutr. Sci. 2017, 3, 22. [Google Scholar] [CrossRef]
- Egbuim, T.C.; Umeh, S.O.; Izuegbunam, L.C. Prevalence and Antibiogram of Bacteria Associated with Food Vending in Awka-South LGA, Anambra State, Nigeria. Int. J. Trend Sci. Res. Dev. 2018, 3, 1034–1042. [Google Scholar] [CrossRef]
- Kumar, S.; Sharma, R.; Verma, B.; Gupta, A.; Singh, P.; Kalia, S.; Thakur, P.; Kumar, V. Prospects of Biosensors Based on Functionalized and Nanostructured Solitary Materials: Detection of Viral Infections and Other Risks. ACS Omega 2022, 7, 22073. [Google Scholar] [CrossRef] [PubMed]
- Abebe, A.; Alemayehu, B. Methicillin Resistant Staphylococcus aureus: Molecular Mechanisms Underlying Drug Resistance Development and Novel Strategies to Combat. Infect. Drug Resist. 2023, 16, 7641–7662. [Google Scholar] [CrossRef] [PubMed]
- Saraiva, M.d.M.S.; Lim, K.; Monte, D.F.M.; Givisiez, P.E.N.; Alves, L.B.R.; Neto, O.C.d.F.; Kariuki, S.; Berchieri, Â.; Oliveira, C.J.B.d.; Gebreyes, W.A. Antimicrobial resistance in the globalized food chain: A One Health perspective applied to the poultry industry. Braz. J. Microbiol. 2021, 53, 465. [Google Scholar] [CrossRef]
- Castro-Vargas, R.E.; Herrera-Sánchez, M.P.; Rodríguez-Hernández, R.; Rondón-Barragán, I.S. Antibiotic resistance in Salmonella spp. isolated from poultry: A global overview. Vet. World 2020, 13, 2070. [Google Scholar] [CrossRef]
- OIE (WOAH). Annual Report on Antimicrobial Agents Intended for Use in Animals; World Organisation for Animal Health: Paris, France, 2021. [Google Scholar]
- European Medicines Agency (EMA). European Surveillance of Veterinary Antimicrobial Consumption (ESVAC) Report; European Medicines Agency: Amsterdam, The Netherlands, 2023. [Google Scholar]
- Kovačević, Z.; Krivokapic, M.; Tomanić, D.; Mugoša, S. Antimicrobial stewardship in pig production: Regulatory frameworks and strategic implementation. Vet. Arh. 2025, 96, 155–163. [Google Scholar] [CrossRef]
- Best, C.; Bard, A.; Rees, G.; Reyher, K.K. Validation, visibility, vagueness and variation: A qualitative assessment of existing veterinary guidelines for antimicrobial use in cattle and sheep in the UK. PLoS ONE 2023, 18, e0294733. [Google Scholar] [CrossRef] [PubMed]
- Kruse, A.B. Associations between Antimicrobial Use, Productivity, Vaccination and Biosecurity: Analyses on Herd Level Data from the Danish Pig Production; Research Portal Denmark. 2018, p. 226. Available online: https://curis.ku.dk/ws/portalfiles/portal/461873640/PhD_Thesis_Amanda_Brinch_Kruse_2018.pdf (accessed on 23 November 2025).
- Thakur, A.; Kumar, A.; Sharma, M.; Kumar, R.; Vanita, B. Strategies to Minimize the Impact of Antibiotic Resistance in Livestock Production System. Int. J. Curr. Microbiol. Appl. Sci. 2019, 8, 2293. [Google Scholar] [CrossRef]
- Pulingam, T.; Parumasivam, T.; Gazzali, A.M.; Sulaiman, A.M.; Chee, J.Y.; Lakshmanan, M.; Chin, C.F.; Sudesh, K. Antimicrobial resistance: Prevalence, economic burden, mechanisms of resistance and strategies to overcome. Eur. J. Pharm. Sci. 2021, 170, 106103. [Google Scholar] [CrossRef]
- Kusi, J.; Ojewole, C.O.; Ojewole, A.E.; Nwi-Mozu, I. Antimicrobial Resistance Development Pathways in Surface Waters and Public Health Implications. Antibiotics 2022, 11, 821. [Google Scholar] [CrossRef]
- European Parliament and Council. Regulation (EU) 2019/6 on veterinary medicinal products. Off. J. Eur. Union 2019. [Google Scholar]
- European Commission. Regulation (EC) No 1831/2003 on additives for use in animal nutrition. Off. J. Eur. Union 2003. [Google Scholar]
- European Commission. Regulation (EU) 2022/1255 amending Annexes to Regulation (EU) 2019/6. Off. J. Eur. Union 2022. [Google Scholar]
- FDA. Guidance for Industry (GFI) #213: New Animal Drugs and Medically Important Antimicrobial Drugs; U.S. Food and Drug Administration: Silver Spring, MD, USA, 2017.
- FDA. Guidance for Industry (GFI) #263: Recommendations for Sponsors of Medically Important Antimicrobial Drugs; U.S. Food and Drug Administration: Silver Spring, MD, USA, 2021.
- Codex Alimentarius. Maximum Residue Limits for Veterinary Drugs; World Health Organization: Geneva, Switzerland, 2024. [Google Scholar]
- FDA. Code of Federal Regulations (CFR) Title 21—Food and Drugs; U.S. Food and Drug Administration: Silver Spring, MD, USA, 2025.
- USDA-FSIS. National Residue Program (NRP) Annual Plan; United States Department of Agriculture, Food Safety and Inspection Service: Washington, DC, USA, 2022. Available online: https://www.ams.usda.gov/sites/default/files/media/2022PDPAnnualSummary.pdf (accessed on 23 November 2025).
- CDC. National Antimicrobial Resistance Monitoring System (NARMS) Report; U.S. Department of Agriculture (USDA): Washington, DC, USA, 2023.
- McEwen, S.A.; Collignon, P. Antimicrobial Resistance: A One Health Perspective. Microbiol. Spectr. 2018, 6, eARBA-0009-2017. [Google Scholar] [CrossRef] [PubMed]
- López Romo, A.; Quirós, R. Appropriate use of antibiotics: An unmet need. Ther. Adv. Urol. 2019, 11, 1756287219832174. [Google Scholar] [CrossRef] [PubMed]
- Ayukekbong, J.A.; Ntemgwa, M.; Atabe, A.N. The threat of antimicrobial resistance in developing countries: Causes and control strategies. Antimicrob. Resist. Infect. Control 2017, 6, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Yamsani, N.; Muthukumaran, K.; Kumar, D.; Asha, V.; Singh, N.; Arockia Dhanraj, J. IoT Based Livestock Monitoring and Management System Using Machine Learning Algorithms. In Proceedings of the 2024 International Conference on Science Technology Engineering and Management (ICSTEM), Coimbatore, India, 26–27 April 2024; pp. 1–6. [Google Scholar] [CrossRef]
- Spink, J.; Ortega, D.L.; Chen, C.; Wu, F. Food fraud prevention shifts the food risk focus to vulnerability. Trends Food Sci. Technol. 2017, 62, 72–83. [Google Scholar] [CrossRef]
- Bossé, J.T.; Li, Y.; Rogers, J.; Fernandez Crespo, R.; Li, Y.; Chaudhuri, R.R.; Holden, M.T.; Maskell, D.J.; Tucker, A.W.; Wren, B.W.; et al. Whole Genome Sequencing for Surveillance of Antimicrobial Resistance in Actinobacillus pleuropneumoniae. Front. Microbiol. 2017, 8, 311. [Google Scholar] [CrossRef]
- Neethirajan, S. Artificial Intelligence and Sensor Technologies in Dairy Livestock Export: Charting a Digital Transformation. Sensors 2023, 23, 7045. [Google Scholar] [CrossRef]
- Zamojska, D.; Nowak, A.; Nowak, I.; Macierzyńska-Piotrowska, E. Probiotics and Postbiotics as Substitutes of Antibiotics in Farm Animals: A Review. Animals 2021, 11, 3431. [Google Scholar] [CrossRef] [PubMed]
- Collignon, P.; McEwen, S.A. One Health—Its Importance in Helping to Better Control Antimicrobial Resistance. Trop. Med. Infect. Dis. 2019, 4, 22. [Google Scholar] [CrossRef]
- Singh, A.; Chaurasia, D.; Khan, N.; Singh, E.; Chaturvedi, P. Efficient mitigation of emerging antibiotics residues from water matrix: Integrated approaches and sustainable technologies. Environ. Pollut. 2023, 328, 121552. [Google Scholar] [CrossRef]
- Ban, Y.; Guan, L.L. Implication and challenges of direct-fed microbial supplementation to improve ruminant production and health. J. Anim. Sci. Biotechnol. 2021, 12, 1–22. [Google Scholar] [CrossRef]
- Zhang, T.; Li, Y.; Chen, C.; Liu, X.; Tian, Y.; Zeng, S.; He, M. Rapid screening and quantification of multi-class antibiotic pollutants in water using a planar waveguide immunosensor. RSC Adv. 2019, 9, 38422. [Google Scholar] [CrossRef] [PubMed]
- Zenebe Tadesse, T.; Hosseini, E.; D’Amore, T.; Smaoui, S.; Varzakas, T. Biosensing Strategies to Monitor Contaminants and Additives on Fish, Meat, Poultry, and Related Products. Biosensors 2025, 15, 415. [Google Scholar] [CrossRef]
- Hao, H.; Cheng, G.; Zahid, I.; Ai, X.; Hussain, H.I.; Huang, L.; Dai, M.; Wang, Y.; Liu, Z.; Yuan, Z. Benefits and risks of antimicrobial use in food-producing animals. Front. Microbiol. 2014, 5, 288. [Google Scholar] [CrossRef] [PubMed]
- Patra, P.; Disha, B.R.; Kundu, P.; Das, M.; Ghosh, A. Recent advances in machine learning applications in metabolic engineering. Biotechnol. Adv. 2022, 62, 108069. [Google Scholar] [CrossRef]
- Qian, L.; Durairaj, S.; Prins, S.; Chen, A. Nanomaterial-based electrochemical sensors and biosensors for the detection of pharmaceutical compounds. Biosens. Bioelectron. 2020, 175, 112836. [Google Scholar] [CrossRef]
- Pérez-López, B.; Merkoçi, A. Nanomaterials based biosensors for food analysis applications. Trends Food Sci. Technol. 2011, 22, 625. [Google Scholar] [CrossRef]
- Furst, A.L.; Francis, M.B. Impedance-Based Detection of Bacteria. Chem. Rev. 2018, 119, 700. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Huang, H.; Song, G.; Huang, K.; Luo, Y.; Liu, Q.; He, X.; Cheng, N. Intelligent biosensing strategies for rapid detection in food safety: A review. Biosens. Bioelectron. 2022, 202, 114003. [Google Scholar] [CrossRef] [PubMed]
- Sobhan, A.; Hossain, A.; Wei, L.; Muthukumarappan, K.; Ahmed, M. IoT-Enabled Biosensors in Food Packaging: A Breakthrough in Food Safety for Monitoring Risks in Real Time. Foods 2025, 14, 1403. [Google Scholar] [CrossRef]
- Gherbovet, O.; Ferreira, J.J.; Clément, A.; Ragon, M.; Durand, J.; Bozonnet, S.; O’Donohue, M.; Fauré, R. Regioselective chemo-enzymatic syntheses of ferulate conjugates as chromogenic substrates for feruloyl esterases. arXiv 2020, arXiv:2011.09703. [Google Scholar] [CrossRef]
- Colin, P.Y.; Kintses, B.; Gielen, F.; Miton, C.M.; Fischer, G.; Mohamed, M.F.; Hyvönen, M.; Morgavi, D.P.; Janssen, D.B.; Hollfelder, F. Ultrahigh-throughput discovery of promiscuous enzymes by picodroplet functional metagenomics. Nat. Commun. 2015, 6, 10008. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Forsberg, K.J.; Patel, S.; Wencewicz, T.A.; Dantas, G. The Tetracycline Destructases: A Novel Family of Tetracycline-Inactivating Enzymes. Chem. Biol. 2015, 22, 888–897. [Google Scholar] [CrossRef]
- Mao, S.; Jiang, J.; Xiong, K.; Chen, Y.; Yao, Y.; Liu, L.; Liu, H.; Li, X. Enzyme Engineering: Performance Optimization, Novel Sources, and Applications in the Food Industry. Foods 2024, 13, 3846. [Google Scholar] [CrossRef] [PubMed]
- Keyvani, F.; GhavamiNejad, P.; Saleh, M.A.; Soltani, M.; Zhao, Y.; Sadeghzadeh, S.; Shakeri, A.; Chelle, P.; Zheng, H.; Rahman, F.A.; et al. Integrated Electrochemical Aptamer Biosensing and Colorimetric pH Monitoring via Hydrogel Microneedle Assays for Assessing Antibiotic Treatment. Adv. Sci. 2024, 11, e2309027. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Chen, C.; Choudhury, A.; Zhang, S.; Garst, A.D.; Song, X.; Liu, X.; Chen, T.; Gill, R.T.; Wang, Z. Integrating CRISPR-Enabled Trackable Genome Engineering and Transcriptomic Analysis of Global Regulators for Antibiotic Resistance Selection and Identification in Escherichia coli. mSystems 2020, 5, e00232-20. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Bittencourt, M.S.; Martins, M.T.; de Albuquerque, F.G.; Barreto, F.; Hoff, R. High-throughput multiclass screening method for antibiotic residue analysis in meat using liquid chromatography-tandem mass spectrometry: A novel minimum sample preparation procedure. Food Addit. Contam. Part A Chem. Anal. Control Expo. Risk Assess. 2012, 29, 508–516. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Said, L.B.; Hervé, N.; Zirah, S.; Diarra, M.S.; Fliss, I. Effects of drinking water supplementation with Lactobacillus reuteri, and a mixture of reuterin and microcin J25 on the growth performance, caecal microbiota and selected metabolites of broiler chickens. J. Anim. Sci. Biotechnol. 2022, 13, 34. [Google Scholar] [CrossRef] [PubMed]
- Khan, F.M.; Chen, J.; Zhang, R.; Liu, B. A comprehensive review of the applications of bacteriophage-derived endolysins for foodborne bacterial pathogens and food safety: Recent advances, challenges, and future perspective. Front. Microbiol. 2023, 14, 1259210. [Google Scholar] [CrossRef]
- Saeed, S.I.; Mergani, A.; Aklilu, E.; Kamaruzzaman, N.F. Antimicrobial Peptides: Bringing Solution to the Rising Threats of Antimicrobial Resistance in Livestock. Front. Vet. Sci. 2022, 9, 851052. [Google Scholar] [CrossRef]
- Cheng, X. Research progress on antibiotic removal process in wastewater for aquatic environment protection. E3S Web Conf. 2023, 438, 1009. [Google Scholar] [CrossRef]
- Huang, J.; Wang, Z.; Zhao, C.; Yang, H.; Niu, L. Performance of four different microalgae-based technologies in antibiotics removal under multiple concentrations of antibiotics and strigolactone analogue GR24 administration. Sci. Rep. 2024, 14, 16004. [Google Scholar] [CrossRef]
- Cheng, D.L.; Ngo, H.H.; Guo, W.; Liu, Y.; Zhou, J.L.; Chang, S.W.; Nguyen, D.D.; Bui, X.; Zhang, X. Bioprocessing for elimination antibiotics and hormones from swine wastewater. Sci. Total Environ. 2017, 621, 1664. [Google Scholar] [CrossRef]
- Oberoi, A.S.; Jia, Y.; Zhang, H.; Khanal, S.K.; Lü, H. Insights into the Fate and Removal of Antibiotics in Engineered Biological Treatment Systems: A Critical Review. Environ. Sci. Technol. 2019, 53, 7234. [Google Scholar] [CrossRef] [PubMed]
- Pârvulescu, V.I.; Epron, F.; García, H.; Granger, P. Recent Progress and Prospects in Catalytic Water Treatment. Chem. Rev. 2021, 122, 2981. [Google Scholar] [CrossRef] [PubMed]
- Zahedi, S.; Gros, M.; Balcázar, J.L.; Petrović, M.; Pijuan, M. Assessing the occurrence of pharmaceuticals and antibiotic resistance genes during the anaerobic treatment of slaughterhouse wastewater at different temperatures. Sci. Total Environ. 2021, 789, 147910. [Google Scholar] [CrossRef]
- Karishma, S.; Yaashikaa, P.R.; Kumar, P.S.; Kamalesh, R.; Saravanan, A.; Rangasamy, G. Promising approaches and kinetic prospects of the microbial degradation of pharmaceutical contaminants. Environ. Sci. Adv. 2023, 2, 1488. [Google Scholar] [CrossRef]
- Zhao, B.; Wang, Y.; Zhang, J.; Wang, L.; Basang, W.; Zhu, Y.; Gao, Y. Development and assessment of an immobilized bacterial alliance that efficiently degrades tylosin in wastewater. PLoS ONE 2024, 19, e0304113. [Google Scholar] [CrossRef]
- Ezzariai, A.; Hafidi, M.; Khadra, A.; Aemig, Q.; Fels, L.E.; Barret, M.; Merlina, G.; Patureau, D.; Pinelli, É. Human and veterinary antibiotics during composting of sludge or manure: Global perspectives on persistence, degradation, and resistance genes. J. Hazard. Mater. 2018, 359, 465. [Google Scholar] [CrossRef] [PubMed]
- Vaithyanathan, V.K.; Cabana, H. Integrated Biotechnology Management of Biosolids: Sustainable Ways to Produce Value—Added Products. Front. Water 2021, 3, 729679. [Google Scholar] [CrossRef]
- Asensio, Y.; Llorente, M.V.; Sánchez-Gómez, A.; Manchón, C.; Boltes, K.; Esteve-Núñez, A. Microbial Electrochemical Fluidized Bed Reactor: A Promising Solution for Removing Pollutants from Pharmaceutical Industrial Wastewater. Front. Microbiol. 2021, 12, 737112. [Google Scholar] [CrossRef] [PubMed]
- Cheng, D.L.; Ngo, H.H.; Guo, W.; Chang, S.W.; Nguyen, D.D.; Kumar, S.; Du, B.; Wei, Q.; Wei, D. Problematic effects of antibiotics on anaerobic treatment of swine wastewater. Bioresour. Technol. 2018, 263, 642. [Google Scholar] [CrossRef]
- Zubair, M.; Li, Z.; Zhu, R.; Wang, J.; Liu, X.; Liu, X. The Antibiotics Degradation and Its Mechanisms during the Livestock Manure Anaerobic Digestion. Molecules 2023, 28, 4090. [Google Scholar] [CrossRef] [PubMed]
- Veiga-Crespo, P.; Villa, T.G. Enzybiotics and phages: Safe alternatives to antibiotics in the control of food safety. Microbiol. Today 2012, 39, 212. Available online: https://investigacion.usc.es/documentos/5d9da910299952484ef7df3e (accessed on 3 September 2025).
- Khmaissa, M.; Zouari-Mechichi, H.; Sciara, G.; Record, É.; Mechichi, T. Pollution from livestock farming antibiotics an emerging environmental and human health concern: A review. J. Hazard. Mater. Adv. 2024, 13, 100410. [Google Scholar] [CrossRef]
- Stanley, D.; Batacan, R.; Bajagai, Y.S. Rapid growth of antimicrobial resistance: The role of agriculture in the problem and the solutions. Appl. Microbiol. Biotechnol. 2022, 106, 6953. [Google Scholar] [CrossRef]
- de Boer, S.R.; Schäffer, A.; Moreira, M.T. Towards oxidoreductase-based processes for the removal of antibiotics from wastewater. Rev. Environ. Sci. Bio/Technol. 2023, 22, 899. [Google Scholar] [CrossRef]
- White, D.G.; Zhao, S.; Simjee, S.; Wagner, D.D.; McDermott, P.F. Antimicrobial resistance of foodborne pathogens. Microbes Infect. 2002, 4, 405. [Google Scholar] [CrossRef]
- Au, A.; Lee, H.; Ye, T.; Dave, U.; Rahman, M.A. Bacteriophages: Combating Antimicrobial Resistance in Food-Borne Bacteria Prevalent in Agriculture. Microorganisms 2021, 10, 46. [Google Scholar] [CrossRef]
- Lu, P.; Zhan, C.; Huang, C.; Zhou, Y.; Hong, F.; Wang, Z.; Dong, Y.; Li, N.; He, Q.; Chen, Y. Cartridge voltage-sensitive micropump immunosensor based on a self-assembled polydopamine coating mediated signal amplification strategy. Biosens. Bioelectron. 2023, 223, 115087. [Google Scholar] [CrossRef]
- Crofts, T.S.; Wang, B.; Spivak, A.; Gianoulis, T.A.; Forsberg, K.J.; Gibson, M.K.; Johnsky, L.A.; Broomall, S.M.; Rosenzweig, C.N.; Skowronski, E.W.; et al. Shared strategies for β-lactam catabolism in the soil microbiome. Nat. Chem. Biol. 2018, 14, 556. [Google Scholar] [CrossRef]
- Seal, B.S.; Drider, D.; Oakley, B.B.; Brüssow, H.; Bikard, D.; Rich, J.O.; Miller, S.; Devillard, E.; Kwan, J.C.; Bertin, G.; et al. Microbial-derived products as potential new antimicrobials. Vet. Res. 2018, 49, 66. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.; Ahn, J. Emergence and spread of antibiotic-resistant foodborne pathogens from farm to table. Food Sci. Biotechnol. 2022, 31, 1481. [Google Scholar] [CrossRef] [PubMed]
- Hudson, J.; Frewer, L.J.; Jones, G.; Brereton, P.; Whittingham, M.J.; Stewart, G. The agri-food chain and antimicrobial resistance: A review. Trends Food Sci. Technol. 2017, 69, 131. [Google Scholar] [CrossRef]
- Ager, E.; Carvalho, T.; Silva, E.; Ricke, S.C.; Hite, J.L. Global trends in antimicrobial resistance on organic and conventional farms. Sci. Rep. 2023, 13, 22608. [Google Scholar] [CrossRef] [PubMed]
- Makumi, A.; Mhone, A.L.; Odaba, J.; Guantai, L.; Svitek, N. Phages for Africa: The Potential Benefit and Challenges of Phage Therapy for the Livestock Sector in Sub-Saharan Africa. Antibiotics 2021, 10, 1085. [Google Scholar] [CrossRef] [PubMed]
- Gigante, A.M.; Atterbury, R.J. Veterinary use of bacteriophage therapy in intensively-reared livestock. Virol. J. 2019, 16, 155. [Google Scholar] [CrossRef]
- Ferriol-González, C.; Domingo-Calap, P. Phage Therapy in Livestock and Companion Animals. Antibiotics 2021, 10, 559. [Google Scholar] [CrossRef] [PubMed]
- Küçükduman, Y.; Bayrak, R.; Esmer, E.; Başaran, P. Gıda teknolojilerinde inovatif bir yaklaşım olarak “Bakteriyofajlar”. Avrupa Bilim Ve Teknol. Derg. 2021, 27, 6–16. [Google Scholar] [CrossRef]
- Bae, D.; Lee, J.-W.; Chae, J.P.; Kim, J.-W.; Eun, J.-S.; Lee, K.-W.; Seo, K. Characterization of a novel bacteriophage φCJ22 and its prophylactic and inhibitory effects on necrotic enteritis and Clostridium perfringens in broilers. Poult. Sci. 2020, 100, 302. [Google Scholar] [CrossRef]
- Boggione, D.M.G.; Batalha, L.S.; Gontijo, M.T.P.; Lopez, M.E.S.; Teixeira, Á.V.N.d.C.; Santos, I.J.B.; Mendonça, R.C.S. Evaluation of microencapsulation of the UFV-AREG1 bacteriophage in alginate-Ca microcapsules using microfluidic devices. Colloids Surf. B Biointerfaces 2017, 158, 182. [Google Scholar] [CrossRef]
- García, P.; Tabla, R.; Anany, H.; Bastías, R.; Brøndsted, L.; Casado, S.; Cifuentes, P.; Deaton, J.W.; Denes, T.G.; Islam, M.A.; et al. ECOPHAGE: Combating Antimicrobial Resistance Using Bacteriophages for Eco-Sustainable Agriculture and Food Systems. Viruses 2023, 15, 2224. [Google Scholar] [CrossRef] [PubMed]
- Teng, T.S.; Chin, Y.L.; Chai, K.F.; Chen, W.N. Fermentation for future food systems. EMBO Rep. 2021, 22, e52680. [Google Scholar] [CrossRef]
- Hassan, Y.I.; Lahaye, L.; Gong, M.M.; Peng, J.; Gong, J.; Liu, S.; Gay, C.G.; Yang, C. Innovative drugs, chemicals, and enzymes within the animal production chain. Vet. Res. 2018, 49, 71. [Google Scholar] [CrossRef]
- Davidova, S.; Galabov, A.S.; Satchanska, G. Antibacterial, Antifungal, Antiviral Activity, and Mechanisms of Action of Plant Polyphenols. Microorganisms 2024, 12, 2502. [Google Scholar] [CrossRef] [PubMed]
- Ende, S.S.W.; Henjes, J.; Spiller, M.; Elshobary, M.E.; Hanelt, D.; Abomohra, A.E. Recent advances in recirculating aquaculture systems and role of microalgae to close system loop. Bioresour. Technol. 2024, 407, 131107. [Google Scholar] [CrossRef] [PubMed]
- Ufarté, L.; Laville, É.; Duquesne, S.; Potocki-Véronèse, G. Metagenomics for the Discovery of Pollutant Degrading Enzymes. Biotechnol. Adv. 2015, 33, 1845–1854. [Google Scholar] [CrossRef]
- Tajudeen, Y.A.; Oladunjoye, I.O.; Atta, H.I.; Oyediji, K. Crispr-Cas Systems: A Potential Tool to Reduce the Global Burden of Antimicrobial Resistance. Bact. Emp. 2021, 4, e273. [Google Scholar] [CrossRef]
- Chen, X.; Wu, X.; Wang, S. An optimized antimicrobial peptide analog acts as an antibiotic adjuvant to reverse methicillin-resistant Staphylococcus aureus. Npj Sci. Food 2022, 6, 57. [Google Scholar] [CrossRef]
- Wu-Wu, J.W.F.; Guadamuz-Mayorga, C.; Oviedo-Cerdas, D.; Zamora, W.J. Antibiotic Resistance and Food Safety: Perspectives on New Technologies and Molecules for Microbial Control in the Food Industry. Antibiotics 2023, 12, 550. [Google Scholar] [CrossRef]
- Cristóbal-Cueto, P.; García-Quintanilla, A.; Esteban, J.; García-Quintanilla, M. Phages in Food Industry Biocontrol and Bioremediation. Antibiotics 2021, 10, 786. [Google Scholar] [CrossRef]
- Scicchitano, D.; Babbi, G.; Palladino, G.; Turroni, S.; Mekonnen, Y.T.; Laczny, C.C.; Wilmes, P.; Leekitcharoenphon, P.; Castagnetti, A.; D’Amico, F.; et al. Routes of dispersion of antibiotic resistance genes from the poultry farm system. Sci. Total Environ. 2023, 912, 169086. [Google Scholar] [CrossRef]
- Aslam, B.; Khurshid, M.; Arshad, M.; Muzammil, S.; Rasool, M.; Yasmeen, N.; Shah, T.; Chaudhry, T.H.; Rasool, M.H.; Shahid, A.; et al. Antibiotic Resistance: One Health One World Outlook. Front. Cell. Infect. Microbiol. 2021, 11, 771510. [Google Scholar] [CrossRef]
- Leistikow, K.R.; Beattie, R.E.; Hristova, K.R. Probiotics beyond the farm: Benefits, costs, and considerations of using antibiotic alternatives in livestock. Front. Antibiot. 2022, 1, 1003912. [Google Scholar] [CrossRef]
- Billington, C.; Kingsbury, J.M.; Rivas, L. Metagenomics Approaches for Improving Food Safety: A Review. J. Food Prot. 2022, 85, 448–464. [Google Scholar] [CrossRef]
- Quintela, I.A.; Vasse, T.; Lin, C.; Wu, V.C.H. Advances, applications, and limitations of portable and rapid detection technologies for routinely encountered foodborne pathogens. Front. Microbiol. 2022, 13, 1054782. [Google Scholar] [CrossRef]
- Jaiswal, S.; Shukla, P. Alternative Strategies for Microbial Remediation of Pollutants via Synthetic Biology. Front. Microbiol. 2020, 11, 808. [Google Scholar] [CrossRef] [PubMed]
- Katz, L.; Chen, Y.Y.; González, R.; Peterson, T.C.; Zhao, H.; Baltz, R.H. Synthetic biology advances and applications in the biotechnology industry: A perspective. J. Ind. Microbiol. Biotechnol. 2018, 45, 449. [Google Scholar] [CrossRef] [PubMed]
- Mirete, S.; Morgante, V.; González-Pastor, J.E. Functional metagenomics of extreme environments. Curr. Opin. Biotechnol. 2016, 38, 143. [Google Scholar] [CrossRef] [PubMed]
- Nnolim, N.E.; Udenigwe, C.C.; Okoh, A.I.; Nwodo, U.U. Microbial Keratinase: Next Generation Green Catalyst and Prospective Applications. Front. Microbiol. 2020, 11, 580164. [Google Scholar] [CrossRef]
- Rittmann, B.E. Environmental Biotechnology in Water and Wastewater Treatment. J. Environ. Eng. 2009, 136, 348. [Google Scholar] [CrossRef]
- Atterbury, R.J.; Gigante, A.M.; Rubio Lozano, M.S.; Méndez Medina, R.D.; Robinson, G.; Alloush, H.; Barrow, P.A.; Allen, V.M. Reduction of Salmonella contamination on the surface of chicken skin using bacteriophage. Virol. J. 2020, 17, 98. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Khater, M.; De La Escosura-Muñiz, A.; Merkoçi, A. Biosensors for plant pathogen detection. Biosens. Bioelectron. 2017, 90, 475–490. [Google Scholar] [CrossRef]
- Mora-Gamboa, M.P.C.; Rincón-Gamboa, S.M.; Ardila-Leal, L.D.; Poutou-Piñales, R.A.; Pedroza-Rodríguez, A.M.; Quevedo-Hidalgo, B.E. Impact of Antibiotics as Waste, Physical, Chemical, and Enzymatical Degradation: Use of Laccases. Molecules 2022, 27, 4436. [Google Scholar] [CrossRef]
- Kim, M.; Kim, H.Y.; Song, H.; Oh, S.; Kwon, H.C. Monitoring of Veterinary Drug Residues in Livestock Products with Antimicrobial Resistance. Appl. Biol. Chem. 2025, 68, 10. [Google Scholar] [CrossRef]
- Ainsworth, R.; Heaney, L.M.; Puskarich, M.A.; Vaughan, D.; Beasley, M.; Faulds, K.; Graham, D.; Griffiths, J.; Kellum, J.A.; Conway, B.R.; et al. Real-Time Monitoring of Antibiotics in the Critically Ill Using Biosensors. Antibiotics 2023, 12, 1478. [Google Scholar] [CrossRef] [PubMed]
- Zhou, J.; Yang, H.; Han, Y.; Jiang, C. Graphene-Based Electrochemical Sensors for Antibiotics: Sensing Theories, Synthetic Methods, and On-Site Monitoring Applications. Mater. Horiz. 2025, 12, 1442–1463. [Google Scholar] [CrossRef] [PubMed]
- Yao, L.; Wang, Y.; Zhang, L.; Zhang, Q.; Wang, S. Recent Development of Microfluidic Biosensors for the Analysis of Antibiotic Residues. Biosensors 2021, 11, 343. [Google Scholar] [CrossRef]
- Delatour, T.; Racault, L.; Bessaire, T.; Desmarchelier, A. Screening of veterinary drug residues in food by LC-MS/MS. Background and challenges. Food Addit. Contam. Part A 2018, 35, 632–645. [Google Scholar] [CrossRef]
- Trump, B.D.; Cummings, C.; Klasa, K.; Galaitsi, S.; Linkov, I. Governing biotechnology to provide safety and security and address ethical, legal, and social implications. Front. Genet. 2023, 13, 1052371. [Google Scholar] [CrossRef]
- Lemire, S.; Yehl, K.; Lu, T.K. Phage-Based Applications in Synthetic Biology. Annu. Rev. Virol. 2018, 5, 453. [Google Scholar] [CrossRef]
- Qin, K.; Shi, X.; Yang, K.; Xu, Q.; Wang, F.; Chen, S.; Xu, T.; Liu, J.; Wen, W.; Chen, R.; et al. Phage-antibiotic synergy suppresses resistance emergence of Klebsiella pneumoniae by altering the evolutionary fitness. mBio 2024, 15, e0139324. [Google Scholar] [CrossRef]
- Peng, H.; Borg, R.E.; Dow, L.P.; Pruitt, B.L.; Chen, I.A. Controlled phage therapy by photothermal ablation of specific bacterial species using gold nanorods targeted by chimeric phages. Proc. Natl. Acad. Sci. USA 2020, 117, 1951. [Google Scholar] [CrossRef] [PubMed]
- Heymich, M.-L.; Srirangan, S.; Pischetsrieder, M. Stability and Activity of the Antimicrobial Peptide Leg1 in Solution and on Meat and Its Optimized Generation from Chickpea Storage Protein. Foods 2021, 10, 1192. [Google Scholar] [CrossRef]
- Yang, B.; Fang, D.; Lv, Q.; Wang, Z.; Liu, Y. Targeted Therapeutic Strategies in the Battle Against Pathogenic Bacteria. Front. Pharmacol. 2021, 12, 673239. [Google Scholar] [CrossRef] [PubMed]
- Fatima, H.; Goel, N.; Sinha, R.; Khare, S.K. Recent strategies for inhibiting multidrug-resistant and β-lactamase producing bacteria: A review. Colloids Surf. B Biointerfaces 2021, 205, 111901. [Google Scholar] [CrossRef] [PubMed]
- Roca, I.; Akova, M.; Baquero, F.; Carlet, J.; Cavaleri, M.; Coenen, S.; Cohen, J.; Findlay, D.M.; Gyssens, I.C.; Heure, O.E.; et al. The global threat of antimicrobial resistance: Science for. New Microbes New Infect. 2015, 6, 22. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Novakovic, J.; Milosavljevic, I.; Stepanova, M.; Ramenskaya, G.; Jeremic, N. Safe Meat, Smart Science: Biotechnology’s Role in Antibiotic Residue Removal. Antibiotics 2025, 14, 1264. https://doi.org/10.3390/antibiotics14121264
Novakovic J, Milosavljevic I, Stepanova M, Ramenskaya G, Jeremic N. Safe Meat, Smart Science: Biotechnology’s Role in Antibiotic Residue Removal. Antibiotics. 2025; 14(12):1264. https://doi.org/10.3390/antibiotics14121264
Chicago/Turabian StyleNovakovic, Jovana, Isidora Milosavljevic, Maria Stepanova, Galina Ramenskaya, and Nevena Jeremic. 2025. "Safe Meat, Smart Science: Biotechnology’s Role in Antibiotic Residue Removal" Antibiotics 14, no. 12: 1264. https://doi.org/10.3390/antibiotics14121264
APA StyleNovakovic, J., Milosavljevic, I., Stepanova, M., Ramenskaya, G., & Jeremic, N. (2025). Safe Meat, Smart Science: Biotechnology’s Role in Antibiotic Residue Removal. Antibiotics, 14(12), 1264. https://doi.org/10.3390/antibiotics14121264

