Antimicrobial Profile of Moldovan Cynara scolymus L.: Insights into Its Natural Antibiotic Potential
Abstract
1. Introduction
2. Results
2.1. Spectrophotometrical Assays for the Quantification of Total Phenolic Compounds
2.2. HPLC-MS Analysis of the Extracts
2.3. Antioxidant Properties of C. scolymus Aerial Part Extracts
2.4. Antimicrobial Activity of C. scolymus Aerial Part Extracts
2.5. Time-Kill Kinetics
3. Discussion
4. Materials and Methods
4.1. Chemicals
4.2. Plant Materials
4.3. Extract Preparation
4.4. Total Poyphenolic Content (TPC) Assessment
4.5. Total Flavonoid Content Assessment
4.6. Analyses Using High-Performance Liquid Chromatography
4.7. Antioxidant Activity Assays
4.7.1. DPPH Free Radical Scavenging Assay
4.7.2. ABTS Assay
4.7.3. Assessment of Ferric-Reducing Antioxidant Power (FRAP)
4.7.4. Nitric Oxide-Reducing Assay
4.7.5. In Vitro Determination of the Capacity to Inhibit Low-Density Lipoprotein Oxidation
4.8. Antimicrobial Activity
4.9. Time-Kill Kinetics Assay
4.10. Statistical Methods
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Koma, P.L.; Matotoka, M.M.; Mazimba, O.; Masoko, P. Isolation and In Vitro Pharmacological Evaluation of Phytochemicals from Medicinal Plants Traditionally Used for Respiratory Infections in Limpopo Province. Antibiotics 2025, 14, 965. [Google Scholar] [CrossRef]
- Mirković, S.; Martinović, M.; Tadić, V.M.; Nešić, I.; Jovanović, A.S.; Žugić, A. Antimicrobial and Antioxidant Activity of Essential Oils from Selected Pinus Species from Bosnia and Herzegovina. Antibiotics 2025, 14, 677. [Google Scholar] [CrossRef]
- Matlala, M.P.; Matotoka, M.M.; Shekwa, W.; Masoko, P. Antioxidant: Antimycobacterial and Antibiofilm Activities of Acetone Extract and Subfraction Artemisia afra Jacq. ex Willd. Against Mycobacterium smegmatis. Antibiotics 2024, 13, 1027. [Google Scholar] [CrossRef]
- Šovljanski, O.; Aćimović, M.; Tomić, A.; Lončar, B.; Miljković, A.; Čabarkapa, I.; Pezo, L. Antibacterial and Antifungal Potential of Helichrysum italicum (Roth) G. Don Essential Oil. Antibiotics 2024, 13, 722. [Google Scholar] [CrossRef]
- Kurćubić, V.S.; Đurović, V.; Stajić, S.B.; Dmitrić, M.; Živković, S.; Kurćubić, L.V.; Mašković, P.Z.; Mašković, J.; Mitić, M.; Živković, V.; et al. Multitarget Phytocomplex: Focus on Antibacterial Profiles of Grape Pomace and Sambucus ebulus L. Lyophilisates Against Extensively Drug-Resistant (XDR) Bacteria and In Vitro Antioxidative Power. Antibiotics 2024, 13, 980. [Google Scholar] [CrossRef] [PubMed]
- Alessandroni, L.; Bellabarba, L.; Corsetti, S.; Sagratini, G. Valorization of Cynara cardunculus L. var. scolymus Processing By-Products of Typical Landrace “Carciofo Di Montelupone” from Marche Region (Italy). Gastronomy 2024, 2, 129–140. [Google Scholar] [CrossRef]
- Ciobanu, N.; Cojocaru-Toma, M.; Pompuș, I.; Chiru, T.; Ciobanu, C.; Benea, A. Plante din Colecția Centrului Științific de Cultivare a Plantelor Medicinale; Compendium; IP Univ. de stat de Medicină și Farmacie Nicolae Testemițanu; Chișinău: Print Caro, Moldova, 2019; pp. 29–30. [Google Scholar]
- Se˻kara, A.; Kalisz, A.; Gruszecki, R.; Grabowska, A.; Kunicki, E. Globe artichoke—A vegetable, herb and ornamental of value in central Europe. J. Hortic. Sci. Biotechnol. 2015, 90, 365–374. [Google Scholar] [CrossRef]
- Sałata, A.; Lombardo, S.; Pandino, G.; Mauromicale, G.; Buczkowska, H.; Nurzyńska-Wierdak, R. Biomass yield and polyphenol compounds profile in globe artichoke as affected by irrigation frequency and drying temperature. Ind. Crops Prod. 2022, 176, 114375. [Google Scholar] [CrossRef]
- Zagoskina, N.V.; Zubova, M.Y.; Nechaeva, T.L.; Kazantseva, V.V.; Goncharuk, E.A.; Katanskaya, V.M.; Baranova, E.N.; Aksenova, M.A. Polyphenols in Plants: Structure, Biosynthesis, Abiotic Stress Regulation, and Practical Applications (Review). Int. J. Mol. Sci. 2023, 9, 13874. [Google Scholar] [CrossRef]
- Lombardo, S.; Pandino, G.; Ierna, A.; Mauromicale, G. Variation of polyphenols in a germplasm collection of globe artichoke. Food Res. Int. 2012, 46, 544–551. [Google Scholar] [CrossRef]
- Crews, T.E.; Carton, W.; Olsson, L. Is the future of agriculture perennial? Imperatives and opportunities to reinvent agriculture by shifting from annual monoculture to perennial polycultures. Glob. Sustain. 2018, 1, 11. [Google Scholar] [CrossRef]
- Vico, G.; Brunsell, N. Tradeoffs between water requirements and yield stability in annual vs. perennial crops. Adv. Water Resour. 2018, 112, 189–202. [Google Scholar] [CrossRef]
- Zhang, Y.; Li, Y.; Jiang, L.; Tian, C.; Li, J.; Xiao, Z. Potential of Perennial Crop on Environmental Sustainability of Agriculture. Procedia Environ. Sci. 2011, 10, 1141–1147. [Google Scholar] [CrossRef]
- Gominho, J.; Dolores Curt, M.; Lourenço, A.; Fernández, J.; Pereira, H. Cynara cardunculus L. as a biomass and multi-purpose crop: A review of 30 years of research. Biomass Bioenergy 2018, 109, 257–275. [Google Scholar] [CrossRef]
- Służały, P.; Paśko, P.; Galanty, A. Natural Products as Hepatoprotective Agents—A Comprehensive Review of Clinical Trials. Plants 2024, 13, 1985. [Google Scholar] [CrossRef] [PubMed]
- Ayuso, P.; Quizhpe, J.; Rosell, M.d.l.Á.; Peñalver, R.; Nieto, G. Bioactive Compounds, Health Benefits and Food Applications of Artichoke (Cynara scolymus L.) and Artichoke By-Products: A Review. J. Appl. Sci. 2024, 14, 4940. [Google Scholar] [CrossRef]
- Jalili, C.; Moradi, S.; Babaei, A.; Boozari, B.; Asbaghi, O.; Lazaridi, A.V.; Hojjati Kermani, M.A.; Miraghajani, M. Effects of Cynara scolymus L. on glycemic indices: A systematic review and meta-analysis of randomized clinical trials. Complement. Ther. Med. 2020, 52, 102496. [Google Scholar] [CrossRef] [PubMed]
- Colombo, R.; Moretto, G.; Pellicorio, V.; Papetti, A. Globe Artichoke (Cynara scolymus L.) By-Products in Food Applications: Functional and Biological Properties. Foods 2024, 13, 1427. [Google Scholar] [CrossRef]
- Al Masalmeh, A.M.; Mallah, E.; Mansoor, K.; Abu-Qatouseh, L.; El-Hajji, F.D.; Idkaidek, N.; Al-Bashiti, I.; Issa, I.H.; Al Meslamani, A.Z.; Aws, S. Pharmacokinetic interaction of rosuvastatin with artichoke (Cynara scolymus L.) leaf extract in rats. J. Appl. Pharm. Sci. 2023, 13, 179–192. [Google Scholar] [CrossRef]
- El Sohafy, S.M.; Shams Eldin, S.M.; Sallam, S.M.; Bakry, R.; Nassra, R.A.; Dawood, H.M. Exploring the ethnopharmacological significance of Cynara scolymus bracts: Integrating metabolomics, in-Vitro cytotoxic studies and network pharmacology for liver and breast anticancer activity assessment. J. Ethnopharmacol. 2024, 334, 118583. [Google Scholar] [CrossRef]
- Ramos, P.A.B.; Guerra, Â.R.; Guerreiro, O.; Santos, S.A.O.; Oliveira, H.; Freire, C.S.R.; Silvestre, A.J.D.; Duarte, M.F. Antiproliferative Effects of Cynara cardunculus L. var. altilis (DC) Lipophilic Extracts. Int. J. Mol. Sci. 2017, 18, 63. [Google Scholar] [CrossRef] [PubMed]
- Mohaddese, M. Cynara scolymus (artichoke) and its efficacy in management of obesity. Bull. Fac. Pharm. Cairo Univ. 2018, 56, 115–120. [Google Scholar] [CrossRef]
- Lattanzio, V.; Kroon Paul, A.; Linsalata, V.; Cardinali, A. Globe artichoke: A functional food and source of nutraceutical ingredients. J. Funct. Foods 2009, 1, 131–144. [Google Scholar] [CrossRef]
- European Pharmacopoeia (Ph. Eur.), 11th ed.; Artichoke Leaf. Cynara cardunculus L. (syn. Cynara scolymus L.), Folium; EMA/268161/2018; Committee on Herbal Medicinal Products (HMPC): Amsterdam, The Netherlands, 2018.
- Romanian Ministry of Health. Romanian Pharmacopoeia, 10th ed.; Romanian Ministry of Health: Bucharest, Romanian, 1993; pp. 334–336. [Google Scholar]
- Zazzali, I.; Gabilondo, J.; Mallmann, L.P.; Rodrigues, E.; Perullini, M.; Santagapita, P.R. Overall evaluation of artichoke leftovers: Agricultural measurement and bioactive properties assessed after green and low-cost extraction methods. Food Biosci. 2021, 41, 100963. [Google Scholar] [CrossRef]
- El-Nashar, H.A.S.; Abbas, H.; Zewail, M.; Noureldin, M.H.; Ali, M.M.; Shamaa, M.M.; Khattab, M.A.; Ibrahim, N. Neuroprotective Effect of Artichoke-Based Nanoformulation in Sporadic Alzheimer’s Disease Mouse Model: Focus on Antioxidant, Anti-Inflammatory, and Amyloidogenic Pathways. Pharmaceuticals 2022, 15, 1202. [Google Scholar] [CrossRef]
- Cioni, E.; Di Stasi, M.; Iacono, E.; Lai, M.; Quaranta, P.; Luminare, A.G.; Gambineri, F.; De Leo, M.; Pistello, M.; Braca, A. Enhancing antimicrobial and antiviral properties of Cynara scolymus L. waste through enzymatic pretreatment and lactic fermentation. Food Biosci. 2024, 57, 103441. [Google Scholar] [CrossRef]
- Pereira, C.; Barros, L.; José Alves, M.; Santos-Buelga, C.; Ferreira, I.C. Artichoke and milk thistle pills and syrups as sources of phenolic compounds with antimicrobial activity. Food Funct. 2016, 7, 3083–3090. [Google Scholar] [CrossRef]
- Baran, A.; Keskin, C.; Baran, M.F.; Huseynova, I.; Khalilov, R.; Eftekhari, A.; Irtegun-Kandemir, S.; Kavak, D.E. Ecofriendly Synthesis of Silver Nanoparticles Using Ananas comosus Fruit Peels: Anticancer and Antimicrobial Activities. J. Biol. Inorg. Chem. 2021, 30, 2058149. [Google Scholar] [CrossRef]
- Erdogan, O.; Abbak, M.; Demirbolat, G.M.; Birtekocak, F.; Aksel, M.; Pasa, S. Green synthesis of silver nanoparticles via Cynara scolymus leaf extracts: The characterization, anticancer potential with photodynamic therapy in MCF7 cells. PLoS ONE 2019, 14, e0216496. [Google Scholar] [CrossRef]
- Balasubramanian, B.; Gangwar, J.; James, N.; Pappuswamy, M.; Anand, A.V.; Al-Dhabi, N.A.; Valan Arasu, M.; Liu, W.-C.; Sebastian, J.K. Green Synthesis of Bioinspired Nanoparticles Mediated from Plant Extracts of Asteraceae Family for Potential Biological Applications. Antibiotics 2023, 12, 543. [Google Scholar] [CrossRef]
- Sampaio, S.; Viana, J. Production of Silver Nanoparticles by Green Synthesis Using Artichoke (Cynara scolymus L.) Aqueous Extract and Measurement of Their Electrical Conductivity. Adv. Nat. Sci. Nanosci. Nanotechnol. 2018, 9, 45002. [Google Scholar] [CrossRef]
- Khedr, A.I.M.; Farrag, A.F.S.; Nasr, A.M.; Swidan, S.A.; Nafie, M.S.; Abdel-Kader, M.S.; Goda, M.S.; Badr, J.M.; Abdelhameed, R.F.A. Comparative Estimation of the Cytotoxic Activity of Different Parts of Cynara scolymus L.: Crude Extracts versus Green Synthesized Silver Nanoparticles with Apoptotic Investigation. Pharmaceutics 2022, 14, 2185. [Google Scholar] [CrossRef]
- Grabowska, A.; Caruso, G.; Mehrafarin, A.; Kalisz, A.; Gruszecki, R.; Kunicki, E.; Sękara, A. Application of modern agronomic and biotechnological strategies to valorise worldwide globe artichoke (Cynara cardunculus L.) potential—An analytical overview. Ital. J. Agron. 2018, 13, 1252. [Google Scholar] [CrossRef]
- Buzzanca, C.; Di Stefano, V.; D’Amico, A.; Gallina, A.; Grazia Melilli, M. A systematic review on Cynara cardunculus L.: Bioactive compounds, nutritional properties and food-industry applications of sustainable food. Nat. Prod. Res. 2024, 1–20. [Google Scholar] [CrossRef]
- Mandim, F.; Petropoulos, S.A.; Giannoulis, K.D.; Santos-Buelga, C.; Ferreira, I.C.F.R.; Barros, L. Chemical Composition of Cynara cardunculus L. var. altilis Bracts Cultivated in Central Greece: The Impact of Harvesting Time. Agronomy 2020, 10, 1976. [Google Scholar] [CrossRef]
- Shi, L.; Zhao, W.; Yang, Z.; Subbiah, V.; Suleria, H.A.R. Extraction and characterization of phenolic compounds and their potential antioxidant activities. Environ. Sci. Pollut. Res. 2022, 29, 81112–81129. [Google Scholar] [CrossRef] [PubMed]
- Ciobanu, C.; Diug, E.; Calalb, T.; Tomuta, I.; Achim, M. Optimisation of ultrasound-assisted extraction method of biologically active compounds from Cynara scolymus L. Curierul Med. 2015, 58, 23–28. [Google Scholar]
- Riadh, I.; Tlili, I.; R’him, T.; Rached, Z.; Arfaoui, K.; Pék, Z.; Lenucci, M.S.; Daood, H.; Helyes, L. Assessment of The Phenolic and Flavonoid Content in Certain Globe Artichoke (Cynara scolymus L.) Cultivars Grown in Northern Tunisia. Turk. J. Agric.-Food Sci. Technol. 2022, 10, 1125–1129. [Google Scholar] [CrossRef]
- Costea, L.; Chițescu, C.L.; Boscencu, R.; Ghica, M.; Lupuliasa, D.; Mihai, D.P.; Deculescu-Ioniță, T.; Duțu, L.E.; Popescu, M.L.; Luță, E.-A.; et al. The Polyphenolic Profile and Antioxidant Activity of Five Vegetal Extracts with Hepatoprotective Potential. Plants 2022, 11, 1680. [Google Scholar] [CrossRef]
- Vamanu, E.; Vamanu, A.; Niţă, S.; Colceriu, S. Antioxidant and Antimicrobial Activities of Ethanol Extracts of Cynara Scolymus (Cynarae folium, Asteraceae Family). Trop. J. Pharm. Res. 2011, 10, 777–783. [Google Scholar] [CrossRef]
- Sałata, A.; Nurzyńska-Wierdak, R.; Lombardo, S.; Pandino, G.; Mauromicale, G.; Ibáñez-Asensio, S.; Moreno-Ramón, H.; Kalisz, A. Polyphenol Profile, Antioxidant Activity and Yield of Cynara cardunculus altilis in Response to Nitrogen Fertilisation. Agronomy 2024, 14, 739. [Google Scholar] [CrossRef]
- Biel, W.; Witkowicz, R.; Piątkowska, E.; Podsiadło, C. Proximate Composition, Minerals and Antioxidant Activity of Artichoke Leaf Extracts. Biol. Trace Elem. Res. 2020, 194, 589–595. [Google Scholar] [CrossRef] [PubMed]
- Barbosa, C.H.; Duarte, M.P.; Andrade, M.A.; Mateus, A.R.; Vilarinho, F.; Fernando, A.L.; Silva, A.S. Exploring Cynara cardunculus L. by-products potential: Antioxidant and antimicrobial properties. Ind. Crops Prod. 2024, 222, 119559. [Google Scholar] [CrossRef]
- Noriega-Rodríguez, D.; Soto-Maldonado, C.; Torres-Alarcón, C.; Pastrana-Castro, L.; Weinstein-Oppenheimer, C.; Zúñiga-Hansen, M.E. Valorization of Globe Artichoke (Cynara scolymus) Agro-Industrial Discards, Obtaining an Extract with a Selective Effect on Viability of Cancer Cell Lines. Processes 2020, 8, 715. [Google Scholar] [CrossRef]
- Pagano, I.; Piccinelli, A.L.; Celano, R.; Campone, L.; Gazzerro, P.; De Falco, E.; Rastrelli, L. Chemical profile and cellular antioxidant activity of artichoke by-products. Food Funct. 2016, 7, 4841–4850. [Google Scholar] [CrossRef] [PubMed]
- Lavecchia, R.; Maffei, G.; Paccassoni, F.; Piga, L.; Zuorro, A. Artichoke Waste as a Source of Phenolic Antioxidants and Bioenergy. Waste Biomass Valoriza. 2019, 10, 2975–2984. [Google Scholar] [CrossRef]
- Kayahan, S.; Saloglu, D. Comparison of Phenolic Compounds and Antioxidant Activities of Raw and Cooked Turkish Artichoke Cultivars. Front. Sustain. Food Syst. 2021, 5, 761145. [Google Scholar] [CrossRef]
- Mocelin, R.; Marcon, M.; Santo, G.D.; Zanatta, L.; Sachett, A.; Schönell, A.P.; Bevilaqua, F.; Giachini, M.; Chitolina, R.; Wildner, S.M.; et al. Hypolipidemic and antiatherogenic effects of Cynara scolymus in cholesterol-fed rats. Rev. Bras. Farmacogn. 2016, 26, 233–239. [Google Scholar] [CrossRef]
- Zayed, A.; Serag, A.; Farag, M.A. Cynara cardunculus L.: Outgoing and potential trends of phytochemical, industrial, nutritive and medicinal merits. J. Funct. Foods 2020, 69, 103937. [Google Scholar] [CrossRef]
- Luca, S.V.; Kulinowski, L.; Ciobanu, C.; Zengin, G.; Czerwinska, M.E.; Granica, S.; Xiao, J.; Skalicka-Wozniak, K.; Trifan, A. Phytochemical and multi-biological characterization of two Cynara scolymus L. varieties: A glance into their potential large scale cultivation and valorization as bio-functional ingredients. Ind. Crops Prod. 2022, 178, 114623. [Google Scholar] [CrossRef]
- Magdy, A.; Mohamed, A.; Meshrf, W.; Marrez, A.D. In vitro antimicrobial, antioxidant and anticancer activities of globe artichoke (Cynara cardunculus var. scolymus L.) bracts and receptacles ethanolic extract. Biocatal. Agric. Biotechnol. 2020, 29, 101774. [Google Scholar] [CrossRef]
- Ben Salem, M.; Affes, H.; Athmouni, K.; Ksouda, K.; Dhouibi, R.; Sahnoun, Z.; Hammami, S.; Zeghal, K.M. Chemicals Compositions, Antioxidant and Anti-Inflammatory Activity of Cynara scolymus Leaves Extracts, and Analysis of Major Bioactive Polyphenols by HPLC. Evid. -Based Complement. Altern. Med. 2017, 2017, 4951937. [Google Scholar] [CrossRef]
- Kollia, E.; Markaki, P.; Zoumpoulakis, P.; Proestos, C. Antioxidant activity of Cynara scolymus L. and Cynara cardunculus L. extracts obtained by different extraction techniques. Nat. Prod. Res. 2017, 31, 1163–1167. [Google Scholar] [CrossRef] [PubMed]
- Christodoulou, M.C.; Orellana Palacios, J.C.; Hesami, G.; Jafarzadeh, S.; Lorenzo, J.M.; Domínguez, R.; Moreno, A.; Hadidi, M. Spectrophotometric Methods for Measurement of Antioxidant Activity in Food and Pharmaceuticals. Antioxidants 2022, 11, 2213. [Google Scholar] [CrossRef]
- Farnad, N.; Heidari, R.; Aslanipour, B. Phenolic composition and comparison of antioxidant activity of alcoholic extracts of Peppermint (Mentha piperita). Food Meas. 2014, 8, 113–121. [Google Scholar] [CrossRef]
- Porro, C.; Benameur, T.; Cianciulli, A.; Vacca, M.; Chiarini, M.; De Angelis, M.; Panaro, M.A. Functional and Therapeutic Potential of Cynara scolymus in Health Benefits. Nutrients 2024, 16, 872. [Google Scholar] [CrossRef]
- Mokhtari, I.; Shahat, A.A.; Noman, O.M.; Milenkovic, D.; Amrani, S.; Harnafi, H. Effects of Cynara scolymus L. Bract Extract on Lipid Metabolism Disorders Through Modulation of HMG-CoA Reductase, Apo A-1, PCSK-9, p-AMPK, SREBP-2, and CYP2E1 Expression. Metabolites 2024, 14, 728. [Google Scholar] [CrossRef] [PubMed]
- Sun, P.; Zhao, L.; Zhang, N.; Zhou, J.; Zhang, L.; Wu, W.; Ji, B.; Zhou, F. Bioactivity of Dietary Polyphenols: The Role in LDL-C Lowering. Foods 2021, 10, 2666. [Google Scholar] [CrossRef]
- Mandim, F.; Petropoulos, S.A.; Giannoulis, K.D.; Dias, M.I.; Fernandes, A.; Pinela, J.; Kostic, M.; Soković, M.; Barros, L.; Santos-Buelga, C.; et al. Seasonal variation of bioactive properties and phenolic composition of Cynara cardunculus var. altilis. Food Res. Int. 2020, 134, 109281. [Google Scholar] [CrossRef]
- Ali, M.A.; Shallan, M.A.; Meshrf, W.A.; Marrez, D.A. Phenolic Constituents, Antioxidant and Antimicrobial Activities of Globe Artichoke (Cynara scolymus L.) Aqueous Extracts. Trop. J. Nat. Prod. Res. 2021, 5, 1986–1994. [Google Scholar] [CrossRef]
- Alsubaiei, S.R.M.; Alfawaz, H.A.; Amina, M.; Al Musayeib, N.M.; El-Ansary, A.; Ahamad, S.R.; Noman, O.M.; Maini, J.A. Comparative Chemical Profiling and Biological Potential of Essential Oils of Petal, Choke, and Heart Parts of Cynara scolymus L. Head. J. Chem. 2022, 2022, 2355004. [Google Scholar] [CrossRef]
- Scavo, A.; Pandino, G.; Restuccia, C.; Parafati, L.; Cirvilleri, G.; Mauromicale, G. Antimicrobial activity of cultivated cardoon (Cynara cardunculus L. var. altilis DC.) leaf extracts against bacterial species of agricultural and food interest. Ind. Crops Prod. 2019, 129, 206–211. [Google Scholar] [CrossRef]
- Zhu, X.; Zhang, H.; Lo, R.; Lu, Y. Antimicrobial Activities of Cynara scolymus L.; Leaf, Head, and Stem Extracts. J. Food Sci. 2005, 70, 45. [Google Scholar] [CrossRef]
- Mejri, F.; Baati, T.; Martins, A.; Selmi, S.; Serralheiro, M.L.; Falé, P.L.; Rauter, A.; Casabianca, H.; Hosni, K. Phytochemical analysis and in vitro and in vivo evaluation of biological activities of artichoke (Cynara scolymus L.) floral stems: Towards the valorization of food by-products. Food Chem. 2020, 333, 127506. [Google Scholar] [CrossRef] [PubMed]
- Aiyegoro, O.A.; Afolayan, A.J.; Okoh, A.I. In vitro antibacterial time kill studies of leaves extracts of Helichrysum longifolium. J. Med. Plant Res. 2009, 3, 462–467. [Google Scholar]
- Benedec, D.; Oniga, I.; Hanganu, D.; Tiperciuc, B.; Nistor, A.; Vlase, A.-M.; Vlase, L.; Pușcaș, C.; Duma, M.; Login, C.C.; et al. Stachys Species: Comparative Evaluation of Phenolic Profile and Antimicrobial and Antioxidant Potential. Antibiotics 2023, 12, 1644. [Google Scholar] [CrossRef]
- Singleton, V.L.; Orthofer, R.; Lamuela-Raventos, R.M. Analysis of total phenols and other oxidation substrates and antioxidants by means of Folin-Ciocalteu reagent. Methods Enzymol. 1999, 299, 152–178. [Google Scholar] [CrossRef]
- Vlase, L.; Benedec, D.; Hanganu, D.; Damian, G.; Csillag, I.; Sevastre, B.; Mot, A.C.; Silaghi-Dumitrescu, R.; Tilea, I. Evaluation of Antioxidant and Antimicrobial Activities and Phenolic Profile for Hyssopus officinalis, Ocimum basilicum and Teucrium chamaedrys. Molecules 2014, 19, 5490–5507. [Google Scholar] [CrossRef]
- Cano, A.; Maestre, A.B.; Hernández-Ruiz, J.; Arnao, M.B. ABTS/TAC Methodology: Main Milestones and Recent Applications. Processes 2023, 11, 185. [Google Scholar] [CrossRef]
- Benzie, I.F.; Strain, J.J. The ferric reducing ability of plasma (FRAP) as a measure of “antioxidant power”: The FRAP assay. Anal. J. Biochem. 1996, 239, 70–76. [Google Scholar] [CrossRef]
- Abeyrathne, E.D.N.S.; Nam, K.; Ahn, D.U. Analytical Methods for Lipid Oxidation and Antioxidant Capacity in Food Systems. Antioxidants 2021, 10, 1587. [Google Scholar] [CrossRef] [PubMed]
- Georgiev, V.; Ananga, A.; Dincheva, I.; Badjakov, I.; Gochev, V.; Tsolova, V. Chemical Composition, In Vitro Antioxidant Potential, and Antimicrobial Activities of Essential Oils and Hydrosols from Native American Muscadine Grapes. Molecules 2019, 24, 3355. [Google Scholar] [CrossRef] [PubMed]
- Ghani, A.; Barril, C.; Bedgood, D.R.; Prenzler, P.D. Measurement of antioxidant activity with the thiobarbituric acid reactive substances assay. Food Chem. 2017, 230, 195–207. [Google Scholar] [CrossRef] [PubMed]
- Janero, D.R. Malondialdehyde and thiobarbituric acid-reactivity as diagnostic indices of lipid peroxidation and peroxidative tissue injury. Free. Radic. Biol. Med. 1990, 9, 515–540. [Google Scholar] [CrossRef]
- Popescu, L.; Cojocari, D.; Ghendov-Mosanu, A.; Lung, I.; Soran, M.-L.; Opriş, O.; Kacso, I.; Ciorîţă, A.; Balan, G.; Pintea, A.; et al. The Effect of Aromatic Plant Extracts Encapsulated in Alginate on the Bioactivity, Textural Characteristics and Shelf Life of Yogurt. Antioxidants 2023, 12, 893. [Google Scholar] [CrossRef]
- Macari, A.; Sturza, R.; Lung, I.; Soran, M.-L.; Opriş, O.; Balan, G.; Ghendov-Mosanu, A.; Vodnar, D.C.; Cojocari, D. Antimicrobial Effects of Basil, Summer Savory and Tarragon Lyophilized Extracts in Cold Storage Sausages. Molecules 2021, 26, 6678. [Google Scholar] [CrossRef]
- Performance Standars for Antimicrobial Susceptibility Testing, 29th ed.; M100; Clinical and Laboratory Standards Institute: Wayne, PA, USA, 2019.

| Samples | Yield (%) | TPC (mg/g dw GAE) | TFC (mg/g dw RE) |
|---|---|---|---|
| Basal leaves | 17.24 | 15.47 ± 0.86 | 7.47 ± 1.32 |
| Cauline leaves | 17.14 | 13.18 ± 0.73 | 5.84 ± 0.66 |
| Stems | 13.12 | 6.62 ± 0.39 | 1.95 ± 0.92 |
| Bracts | 14.96 | 2.56 ± 0.40 | 1.39 ± 0.37 |
| Inflorescences | 3.88 | 0.94 ± 0.44 | 0.11 ± 0.08 |
| Polyphenolic Compounds | RT ± SD (min) | [M-H]- Exp. (m/z) | Basal leaves (µg/mL) | Cauline leaves (µg/mL) | Stems (µg/mL) | Bracts (µg/mL) | Inflorescences (µg/mL) |
|---|---|---|---|---|---|---|---|
| Gentisic acid | 2.15 ± 0.07 | 179 | BLQ | BLQ | BLQ | BLQ | ND |
| Caffeic acid | 5.60 ± 0.04 | 173 | 138.944 ± 0.79 | 123.469 ± 0.654 | 11.031 ± 0.253 | 4.202 ± 1.085 | 0.190 ± 0.216 |
| Myricetin | 21.13 ± 0.06 | 179 | BLQ | BLQ | BLQ | BLQ | ND |
| Quercitrin | 23.00 ± 0.13 | 447 | BLQ | BLQ | BLQ | BLQ | ND |
| Luteolin-7-O-glucoside | 29.10 ± 0.19 | 285 | 74.981 ± 0.184 | 24.411 ± 0.356 | 2.289 ± 0.332 | 1.897 ± 0.036 | 0.673 ± 0.077 |
| Kaempferol | 31.60 ± 0.17 | 595 | BLQ | BLQ | BLQ | BLQ | BLQ |
| Apigenin | 33.10 ± 0.15 | 269 | 13.791 ± 0.723 | 23.179 ± 1.73 | 2.201 ± 0.22 | 3.991 ± 0.2 | 4.740 ± 0.24 |
| Chlorogenic acid | 5.62 ± 0.05 | 353 | 515.93 ± 8.966 | 485.74 ± 9.097 | 115.07 ± 6.679 | 3.98 ± 0.301 | 12.25 ± 0.488 |
| p-coumaric acid | 8.7 ± 0.08 | 163 | 1.397 ± 0.019 | 1.255 ± 0.07 | 0,292 ± 0,07 | 0,419 ± 0,024 | ND |
| Ferulic acid | 12.2 ± 0.10 | 193 | 1.495 ± 0.028 | 0.789 ± 0.028 | 0.313 ± 0.04 | 0.749 ± 0.035 | ND |
| Izoquercitrin | 19.60 ± 0.10 | 463 | BLQ | BLQ | BLQ | BLQ | ND |
| Samples | DPPH˙ IC50 (µg/mL) | ABTS˙+ IC50 (µg/mL) | FRAP (μM/g dw) | NO˙ I % | LDL Oxidation I % |
|---|---|---|---|---|---|
| Basal leaves | 96.14 ± 0.17 | 29.1 ± 0.37 | 67.7 ± 0.7 | 60.1 ± 0.12 | 61.2 ± 0.40 |
| Cauline leaves | 125.82 ± 0.22 | 32.9 ± 0.23 | 56.97 ± 1.31 | 57.52 ± 0.13 | 60.8 ± 0.38 |
| Stems | 412.89 ± 0.48 | 80.03 ± 1.17 | 33.58 ± 0.39 | 50.27 ± 0.06 | 54.13 ± 0.87 |
| Bracts | 2182.68 ± 0.65 | 1446 ± 1.55 | 22.45 ± 0.32 | 50.18 ± 0.003 | 57.82 ± 0.39 |
| Inflorescences | 6960.92 ± 0.21 | 1011.39 ± 1.07 | N/E | 50.45 ± 0.05 | N/E |
| Trolox | 12.08 ± 0.03 | 2.55 ± 0.08 | - | - | - |
| EDTA | - | - | 99.58 ± 0.01 | - | - |
| Ascorbic acid | - | - | - | 85.7 ± 0.05 | 58.2 ± 0.01 |
| Test Strains | Zone of Inhibition, (mm) | MIC, (mg/mL) | MBC/MFC, (mg/mL) | ||||||||||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| BL | CL | ST | BC | IF | TC | MC | BL | CL | ST | BC | IF | TC | MC | BL | CL | ST | BC | IF | TC | MC | |
| B. cereus | 10.2 ± 0.20 | 9.3 ± 0.58 | 9.2 ± 0.7 | 8.1 ± 0.10 | N/E | 21.0 ± 1.00 | N/A | 0.301 ± 0.03 | 0.259 ± 0.05 | 0.344 ± 0.02 | 0.448 ± 0.03 | N/E | 0.001 ± 0.00 | N/A | 0.301 ± 0.03 | 0.592 ± 0.06 | 0.793 ± 0.01 | 0.879 ± 0.06 | N/E | 0.001 ± 0.00 | N/A |
| C. diphtheriae | 12.4 ± 0.47 | 11.1 ± 0.40 | 6.2 ± 0.20 | 7.2 ± 0.20 | N/E | 22.0 ± 0.00 | N/A | 0.301 ± 0.03 | 0.592 ± 0.06 | 0.793 ± 0.01 | 1.649 ± 0.03 | N/E | 0.005 ± 0.00 | N/A | 1.489 ± 0.02 | 1.545 ± 0.01 | 3.430 ± 0.01 | N/E | N/E | 0.016 ± 0.00 | N/A |
| E. coli | 8.5 ± 0.30 | 7.3 ± 0.25 | 4.5 ± 0.18 | 5.7 ± 0.25 | N/E | 18.0 ± 0.57 | N/A | 0.301 ± 0.03 | 0.592 ± 0.06 | 1.366 ± 0.16 | 1.649 ± 0.03 | N/E | 0.005 ± 0.00 | N/A | 1.489 ± 0.02 | 1.545 ± 0.01 | 3.430 ± 0.01 | 3.430 ± 0.01 | N/E | 0.005 ± 0.00 | N/A |
| E. faecalis | 9.6 ± 0.32 | 9.2 ± 0.20 | 5.7 ± 0.17 | 6.9 ± 0.10 | N/E | 22.0 ± 0.00 | N/A | 0.762 ± 0.02 | 0.592 ± 0.06 | 1.366 ± 0.16 | 1.649 ± 0.03 | N/E | 0.005 ± 0.00 | N/A | 1.489 ± 0.02 | 1.545 ± 0.01 | 3.430 ± 0.01 | N/E | N/E | 0.008 ± 0.00 | N/A |
| P. aeruginosa | 6.2 ± 0.29 | 5.9 ± 0.20 | 4.1 ± 0.10 | N/E | N/E | 24.0 ± 1.12 | N/A | 1.489 ± 0.02 | 1.545 ± 0.01 | 1.366 ± 0.16 | N/E | N/E | 0.005 ± 0.00 | N/A | 3.505 ± 0.01 | 3.642 ± 0.04 | 3.430 ± 0.01 | N/E | N/E | 0.012 ± 0.00 | N/A |
| S. aureus | 10.7 ± 0.30 | 10.2 ± 0.29 | 8.6 ± 0.21 | 7.5 ± 0.10 | N/E | 19.0 ± 1.22 | N/A | 0.301 ± 0.03 | 0.592 ± 0.06 | 0.793 ± 0.01 | 0.448 ± 0.03 | N/E | 0.001 ± 0.00 | N/A | 0.762 ± 0.02 | 1.545 ± 0.01 | 3.430 ± 0.01 | 1.649 ± 0.03 | N/E | 0.001 ± 0.00 | N/A |
| C. albicans | 8.1 ± 0.10 | 7.7 ± 0.12 | 7.2 ± 0.12 | 6.2 ± 0.25 | N/E | N/A | 22.0 ± 0.00 | 1.466 ± 0.02 | 1.532 ± 0.01 | 3.435 ± 0.01 | 1.635 ± 0.03 | N/E | N/A | 0.012 ± 0.00 | 3.517 ± 0.01 | 3.624 ± 0.04 | 3.435 ± 0.01 | N/E | N/E | N/A | 0.016 ± 0.00 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ciobanu, C.; Rudi, L.; Vlase, L.; Balan, G.; Benedec, D.; Calalb, T. Antimicrobial Profile of Moldovan Cynara scolymus L.: Insights into Its Natural Antibiotic Potential. Antibiotics 2025, 14, 1258. https://doi.org/10.3390/antibiotics14121258
Ciobanu C, Rudi L, Vlase L, Balan G, Benedec D, Calalb T. Antimicrobial Profile of Moldovan Cynara scolymus L.: Insights into Its Natural Antibiotic Potential. Antibiotics. 2025; 14(12):1258. https://doi.org/10.3390/antibiotics14121258
Chicago/Turabian StyleCiobanu, Cristina, Ludmila Rudi, Laurian Vlase, Greta Balan, Daniela Benedec, and Tatiana Calalb. 2025. "Antimicrobial Profile of Moldovan Cynara scolymus L.: Insights into Its Natural Antibiotic Potential" Antibiotics 14, no. 12: 1258. https://doi.org/10.3390/antibiotics14121258
APA StyleCiobanu, C., Rudi, L., Vlase, L., Balan, G., Benedec, D., & Calalb, T. (2025). Antimicrobial Profile of Moldovan Cynara scolymus L.: Insights into Its Natural Antibiotic Potential. Antibiotics, 14(12), 1258. https://doi.org/10.3390/antibiotics14121258

