Cefiderocol Resistance in Pseudomonas aeruginosa ST175: A Case Report with Genomic Analysis
Abstract
1. Introduction
2. Case Report
3. Genomic Analysis
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Andrews, S.C.; Robinson, A.K.; Rodríguez-Quiñones, F. Bacterial iron homeostasis. FEMS Microbiol. Rev. 2003, 27, 215–237. [Google Scholar] [CrossRef] [PubMed]
- Hider, R.C.; Kong, X. Chemistry and biology of siderophores. Nat. Prod. Rep. 2010, 27, 637–657. [Google Scholar] [CrossRef] [PubMed]
- Braun, V.; Hantke, K. Recent insights into iron import by bacteria. Curr. Opin. Chem. Biol. 2011, 15, 328–334. [Google Scholar] [CrossRef] [PubMed]
- Noinaj, N.; Guillier, M.; Barnard, T.J.; Buchanan, S.K. TonB-dependent transporters: Regulation, structure, and function. Annu. Rev. Microbiol. 2010, 64, 43–60. [Google Scholar] [CrossRef] [PubMed]
- Postle, K.; Larsen, R.A. TonB-dependent energy transduction between outer and cytoplasmic membranes. Biometals 2007, 20, 453–465. [Google Scholar] [CrossRef] [PubMed]
- Schauer, K.; Rodionov, D.A.; de Reuse, H. New substrates for TonB-dependent transport: Do we only see the ‘tip of the iceberg’? Trends Biochem. Sci. 2008, 33, 330–338. [Google Scholar] [CrossRef] [PubMed]
- Caza, M.; Kronstad, J.W. Shared and distinct mechanisms of iron acquisition by bacterial and fungal pathogens of humans. Front. Cell. Infect. Microbiol. 2013, 3, 80. [Google Scholar] [CrossRef] [PubMed]
- Meyer, J.M.; Neely, A.; Stintzi, A.; Georges, C.; Holder, I.A. Pyoverdin is essential for virulence of Pseudomonas aeruginosa. Infect. Immun. 1996, 64, 518–523. [Google Scholar] [CrossRef] [PubMed]
- Llamas, M.A.; Sparrius, M.; Kloet, R.; Jiménez, C.R.; Vandenbroucke-Grauls, C.; Bitter, W. The heterologous siderophores ferrioxamine B and ferrichrome activate signaling pathways in Pseudomonas aeruginosa. J. Bacteriol. 2006, 188, 1882–1891. [Google Scholar] [CrossRef] [PubMed]
- Mulet, X.; Cabot, G.; Ocampo-Sosa, A.A.; Domínguez, M.A.; Zamorano, L.; Juan, C.; Tubau, F.; Rodríguez, C.; Moyà, B.; Peña, C.; et al. Biological markers of Pseudomonas aeruginosa epidemic high-risk clones. Antimicrob. Agents Chemother. 2013, 57, 5527–5535. [Google Scholar] [CrossRef] [PubMed]
- Del Barrio, E.; López, C.; Cabot, G.; Rivera, A.; Benito, N.; Segura, C.; Montero, M.M.; Sorlí, L.; Tubau, F.; Gómez-Zorrilla, S.; et al. Genomics and susceptibility profiles of extensively drug-resistant Pseudomonas aeruginosa isolates from Spain. Antimicrob. Agents Chemother. 2017, 61, e01589-17. [Google Scholar] [CrossRef] [PubMed]
- Del Barrio, E.; Zamorano, L.; Cortes-Lara, S.; López-Causapé, C.; Sánchez-Diener, I.; Cabot, G.; Bou, G.; Martínez-Martínez, L.; Oliver, A. Spanish nationwide survey on Pseudomonas aeruginosa antimicrobial resistance mechanisms and epidemiology. J. Antimicrob. Chemother. 2019, 74, 1825–1835. [Google Scholar] [CrossRef] [PubMed]
- Zhanel, G.G.; Golden, A.R.; Zelenitsky, S.; Wiebe, K.; Lawrence, C.K.; Adam, H.J.; Idowu, T.; Domalaon, R.; Schweizer, F.; Zhanel, M.A.; et al. Cefiderocol: A siderophore cephalosporin with activity against carbapenem-resistant and multidrug-resistant gram-negative Bacilli. Drugs 2019, 79, 271–289. [Google Scholar] [CrossRef] [PubMed]
- Available online: https://www.cdc.gov/antimicrobial-resistance/index.html (accessed on 23 September 2025).
- Turton, J.F.; Woodford, N.; Glover, J.; Yarde, S.; Kaufmann, M.E.; Pitt, T.L. Identification of Acinetobacter baumannii by detection of the blaOXA-51-like carbapenemase gene intrinsic to this species. J. Clin. Microbiol. 2006, 44, 2974–2976. [Google Scholar] [CrossRef] [PubMed]
- Rodriguez-Martinez, J.M.; Poirel, L.; Nordmann, P. Molecular epidemiology and mechanisms of carbapenem resistance in Pseudomonas aeruginosa. Antimicrob. Agents Chemother. 2009, 53, 4783–4788. [Google Scholar] [CrossRef] [PubMed]
- Choby, J.E.; Ozturk, T.; Satola, S.W.; Jacob, J.T.; Weiss, D.S. Widespread cefiderocol heteroresistance in carbapenem-resistant gram-negative pathogens. Lancet Infect. Dis. 2021, 21, 597–598. [Google Scholar] [CrossRef] [PubMed]
- Bassetti, M.; Echols, R.; Matsunaga, Y.; Ariyasu, M.; Doi, Y.; Ferrer, R.; Lodise, T.P.; Naas, T.; Niki, Y.; Paterson, D.L.; et al. Efficacy and safety of cefiderocol or best available therapy for the treatment of serious infections caused by carbapenem-resistant gram-negative bacteria. Lancet Infect. Dis. 2021, 21, 226–240. [Google Scholar] [CrossRef] [PubMed]
- Mojica, M.F.; Rossi, M.A.; Vila, A.J.; Bonomo, R.A. The urgent need for metallo-β-lactamase inhibitors: An unattended global threat. Lancet Infect. Dis. 2022, 22, e28–e34. [Google Scholar] [CrossRef] [PubMed]
- Warecki, B.A.; Tomatis, P.E.; Mojica, M.F.; Bethel, C.R.; Saravia, M.R.; Drusin, S.I.; Ono, D.; Bahr, G.; Papp-Wallace, K.; Tamma, P.D.; et al. Cefiderocol “under siege”? Understanding the rise of NDM-mediated resistance to novel agents. Chem. Sci. 2025, 16, 12519–12533. [Google Scholar] [CrossRef] [PubMed]
- Sastre-Femenia, M.A.; Fernández-Muñoz, A.; Gomis-Font, M.A.; Taltavull, B.; López-Causapé, C.; Arca-Suárez, J.; Martínez-Martínez, L.; Cantón, R.; Larrosa, N.; Oteo-Iglesias, J.; et al. Spanish nationwide survey of Pseudomonas aeruginosa cefiderocol susceptibility and resistance mechanisms. Int. J. Antimicrob. Agents 2025, 66, 107563. [Google Scholar] [CrossRef] [PubMed]
| Antibiotic | 17 April 2025 | 17 April 2025 | 4 May 2025 | 7 May 2025 | 11 May 2025 | 27 May 2025 |
|---|---|---|---|---|---|---|
| Ceftazidime | >32 (R) | >32 (R) | >32 (R) | >32 (R) | >32 (R) | >64 (R) |
| Cefepime | >8 (R) | >8 (R) | >8 (R) | >8 (R) | >32 (R) | >32 (R) |
| Colistin | ≤2 (S) | 1 (S) | ≤2 (S) | ≤2 (S) | ≤2 (S)S | ≤2 (S)S |
| Aztreonam | 16 (I) | 16 (I) | >16 (R) | >16 (R) | >16 (R) | >16 (R) |
| Aztreonam/Avibactam | ≤4 (S) | ≤4 (S) | S | S | S | 2 (S) |
| Piperacillin/Tazo | 16 (R) | 16 (R) | >16 (R) | >16 (R) | - | >64 (R) |
| Meropenem | >32 (R) | >32 (R) | >32 (R) | >32 (R) | >32 (R) | >32 (R) |
| Amikacin | >16 (R) | >16 (R) | >16 (R) | >16 (R) | >16 (R) | >16 (R) |
| Ceftolozane/Tazo | >4 (R) | >4 (R) | >4 (R) | >4 (R) | >8 (R) | >8 (R) |
| Cefiderocol | 2 (S) | S | 3 (R) | R | R | R |
| Acquired Resistance Determinants | ||
| Gene | Antibiotic class affected | Enzyme/protein type |
| GES-5 | Carbapenems, cephalosporins, penams | GES-type β-lactamase |
| IMP-23 | Carbapenems, cephalosporins, cephamycins, penams, penems | IMP-type metallo-β-lactamase |
| Mutations potentially affecting cefiderocol activity | ||
| Gene | Mutation type | Functional consequence |
| fptA | Frameshift (Val66fs) | Disrupts ferric-pyochelin uptake |
| pvdE | Frameshift (Ala347fs) | Disrupts pyoverdine uptake |
| nirL | Start lost (His173Arg) | Affects heme d1 biosynthesis |
| tpsA [1] | Premature stop (Ser3039*) | Impairs heme utilization pathways |
| tpsA [4] | Frameshift (Gly951fs) | Same as above |
| cdrA | Frameshift (Ala456fs) | Same as above |
| ftpC | Frameshift (Gly497fs) | Same as above |
| ShlA/HecA/FhaA | Frameshift (Gly815fs) | Same as above |
| oprD | 15 mutations (1 high-impact) | Linked to carbapenem resistance |
| mexA, mexC, mexE, mexS, mexX, mexY | Various mutations | Affect efflux pump systems (antibiotic export) |
| gyrA, parC, parS | Various mutations | Impair DNA replication processes |
| nalC | Various mutations | Involved in quinolone resistance |
| ampD, ampR | Various mutations | Regulate β-lactamase production |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fernández, R.F.; Carrasco, A.B.; Porcuna, N.C.; Cabezas, A.M.; Ruiz, M.C. Cefiderocol Resistance in Pseudomonas aeruginosa ST175: A Case Report with Genomic Analysis. Antibiotics 2025, 14, 1162. https://doi.org/10.3390/antibiotics14111162
Fernández RF, Carrasco AB, Porcuna NC, Cabezas AM, Ruiz MC. Cefiderocol Resistance in Pseudomonas aeruginosa ST175: A Case Report with Genomic Analysis. Antibiotics. 2025; 14(11):1162. https://doi.org/10.3390/antibiotics14111162
Chicago/Turabian StyleFernández, Rosario Fernández, Alberto Badillo Carrasco, Natalia Chueca Porcuna, Antonio Martínez Cabezas, and Manuel Colmenero Ruiz. 2025. "Cefiderocol Resistance in Pseudomonas aeruginosa ST175: A Case Report with Genomic Analysis" Antibiotics 14, no. 11: 1162. https://doi.org/10.3390/antibiotics14111162
APA StyleFernández, R. F., Carrasco, A. B., Porcuna, N. C., Cabezas, A. M., & Ruiz, M. C. (2025). Cefiderocol Resistance in Pseudomonas aeruginosa ST175: A Case Report with Genomic Analysis. Antibiotics, 14(11), 1162. https://doi.org/10.3390/antibiotics14111162

