Long-Term Macrolides in Chronic Respiratory Diseases: Dusk or a New Dawn? A Narrative Review
Abstract
1. Introduction
2. Methods
3. Bronchiectasis
3.1. Effect on Exacerbations
3.2. Effect on Lung Function and Quality of Life
3.3. Anti-Inflammatory Effects
3.4. Effects on Radiological Alterations and Inflammation
3.5. Safety Profile
3.6. Present and Future of Macrolides in Bronchiectasis
- Greater efficacy than inhaled antibiotics in reducing exacerbations (50–70% vs. ~20–30%) [29]. Inhaled antibiotics achieve only about half the relative reduction observed with macrolides, which explains why guidelines often prefer macrolides as first-line prophylaxis in frequent exacerbators without Pseudomonas aeruginosa; however, such differences should be interpreted with caution given the heterogeneity of available trials;
- Systemic anti-inflammatory effects and immunomodulation, which inhaled antibiotics lack;
- Low cost and wide availability.
- Efficacy: Macrolides reduce the rate of exacerbations particularly in high-risk patients. Brensocatib may be more efficacious than macrolides in broader or macrolide-refractory populations.
- Antimicrobial effects: Macrolides offer both anti-inflammatory and antibacterial activity. Brensocatib does not act on pathogens directly, making it suitable for patients where resistance or infection-related concerns limit macrolide use.
- Comorbid conditions: Macrolides are beneficial in patients with comorbidities like chronic rhinosinusitis [33], COPD [34] or asthma [35]. At present, the effects of Brensocatib on comorbidities are unexplored as patients with asthma or COPD were excluded from the trials [32]. However, in the phase II study of BI1291583, another DPP-1 inhibitor, patients with a primary diagnosis of asthma or COPD were also included; data from future studies will clarify the effect of these drugs on patients with bronchiectasis and concomitant asthma or COPD [36].
- Cost and access: Macrolides are widely available and inexpensive. Brensocatib will likely be more costly and restricted to specific indications upon approval. In contrast, macrolides are often prescribed off-label in this setting, a practice that may decrease once an approved therapy for bronchiectasis becomes available.
4. Asthma
4.1. Effect on Exacerbations
4.2. Effect on Symptoms Control and Quality of Life
4.3. Effect on Lung Function, Airway Hyperresponsiveness and Inflammation
4.4. Effect on Microbiology and Safety Profile
4.5. Current Guidelines and Biologic Therapies: Competition or Combination?
4.6. Future Perspectives: Macrolides at Sunset or a New Dawn in Asthma?
- T2-low or Mixed-phenotype Asthma: Patients with neutrophil-predominant asthma, chronic bronchitis symptoms, or evidence of airway infection may continue to benefit from macrolides.
- Resource-Limited Settings: In many parts of the world, access to biologics is limited by cost or infrastructure.
- Adjunct to Biologics: As illustrated by Lavoie et al., macrolides might play a role as adjunctive therapy in patients who only partially respond to biologics [61].
5. Chronic Obstructive Pulmonary Disease
5.1. Effect on Exacerbations
5.2. Effect on Lung Function, Symptoms, and Inflammation
5.3. Effect on Microbiology and Antibiotic Resistance
5.4. Safety Profile
5.5. Emerging Therapies
5.6. Present and Future of Macrolides in COPD
6. Macrolides in Transplantation and Beyond: A Role in Rare Lung Diseases
6.1. Long-Term Macrolides in the Treatment of Chronic Allograft Lung Dysfunction (CLAD)
6.2. Long-Term Macrolides in the Treatment of Bronchiolitis Obliterans Syndrome (BOS) After Haematopoietic Stem Cell Transplant (HSCT)
6.3. Long-Term Macrolides in the Treatment of Diffuse Lung Parenchymal Diseases (DPLDs)
7. Community and Environmental Risks Associated with Long-Term Use of Macrolides
8. Limitations
9. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
| AQLQ | Asthma Quality of Life Questionnaire |
| ARAD | Azithromycin-responsive Allograft Dysfunction |
| ATS | American Thoracic Society |
| BAL | Bronchoalveolar Lavage |
| BEC | Blood eosinophils count |
| BID | bis in die |
| BOS | Bronchiolitis Obliterans Syndrome |
| BTS | British Thoracic Society |
| CAT | COPD Assessment Test |
| CB | Chronic bronchitis |
| CLAD | Chronic Allograft Lung Dysfunction |
| COP | Cryptogenic Organising Pneumonia |
| COPD | Chronic Obstructive Pulmonary Disease |
| CRP | C-Reactive Protein |
| DPLDs | Diffuse Lung Parenchymal Diseases |
| DPB | Diffuse Panbronchiolitis |
| ECG | Electrocardiogram |
| EOS | Eosinophils |
| EQ-5D | EuroQol 5 Dimensions |
| ERS | European Respiratory Society |
| FAM | treatment with inhaled Fluticasone, Azithromycin and Montelukast |
| FeNO | Fractional exhaled Nitric Oxide |
| FEV1 | Forced Expiratory Volume in 1 Second |
| FVC | Forced Vital Capacity |
| GOLD | Global Initiative for Chronic Obstructive Lung Disease |
| GI | Gastro-intestinal |
| GINA | Global Initiative for Asthma |
| HSCT | Haematopoietic Stem Cell Transplant |
| ICS | Inhaled corticosteroids |
| IL | Interleukin |
| IPF | Idiopathic Pulmonary Fibrosis |
| LABA | Long-Acting Beta2-Agonists |
| LAMA | Long-Acting Muscarinic Antagonist |
| LTx | Lung transplantation |
| MMP-9 | Matrix Metalloproteinase-9 |
| mMRC | Modified Medical Research Council |
| NE | Neutrophil Elastase |
| NTM | Nontuberculous Mycobacteria |
| OCS | Oral corticosteroids |
| PC20 | Provocative Concentration causing a 20% fall in FEV1 |
| PDE | Phosphodiesterase |
| QD | quaque die |
| QoL-B-RSS | Quality-of-Life Bronchiectasis Respiratory Symptoms Score |
| QTc | Corrected QT interval |
| QS | Quorum-sensing |
| RCT | Randomized Controlled Trial |
| rRNA | ribosomal RNA |
| SGRQ | St. George’s Respiratory Questionnaire |
| SIGN | Scottish Intercollegiate Guidelines Network |
| T2 | Type-2 |
| TSLP | Thymic Stromal Lymphopoietin |
References
- Dinos, G.P. The Macrolide Antibiotic Renaissance. Br. J. Pharmacol. 2017, 174, 2967–2983. [Google Scholar] [CrossRef] [PubMed]
- Denis, A.; Agouridas, C.; Auger, J.-M.; Benedetti, Y.; Bonnefoy, A.; Bretin, F.; Chantot, J.-F.; Dussarat, A.; Fromentin, C.; Gouin D’Ambrières, S.; et al. Synthesis and Antibacterial Activity of HMR 3647 a New Ketolide Highly Potent against Erythromycin-Resistant and Susceptible Pathogens. Bioorg. Med. Chem. Lett. 1999, 9, 3075–3080. [Google Scholar] [CrossRef] [PubMed]
- Reijnders, T.D.Y.; Saris, A.; Schultz, M.J.; Van Der Poll, T. Immunomodulation by Macrolides: Therapeutic Potential for Critical Care. Lancet Respir. Med. 2020, 8, 619–630. [Google Scholar] [CrossRef]
- Iwamoto, S.; Kumamoto, T.; Azuma, E.; Hirayama, M.; Ito, M.; Amano, K.; Ido, M.; Komada, Y. The Effect of Azithromycin on the Maturation and Function of Murine Bone Marrow-Derived Dendritic Cells. Clin. Exp. Immunol. 2011, 166, 385–392. [Google Scholar] [CrossRef]
- Hodge, S.; Reynolds, P.N. Low-dose Azithromycin Improves Phagocytosis of Bacteria by Both Alveolar and Monocyte-derived Macrophagesin Chronic Obstructive Pulmonary Disease Subjects. Respirology 2012, 17, 802–807. [Google Scholar] [CrossRef]
- Baines, K.J.; Wright, T.K.; Gibson, P.G.; Powell, H.; Hansbro, P.M.; Simpson, J.L. Azithromycin Treatment Modifies Airway and Blood Gene Expression Networks in Neutrophilic COPD. ERJ Open Res. 2018, 4, 00031–2018. [Google Scholar] [CrossRef]
- Huang, D.; Xie, L.; Luo, T.; Lin, L.; Ren, Q.; Zeng, Z.; Huang, H.; Liao, H.; Chang, X.; Chen, Y.; et al. Effects of Azithromycin on Alleviating Airway Inflammation in Asthmatic Mice by Regulating Airway Microbiota and Metabolites. Microbiol. Spectr. 2025, 13, e0221724. [Google Scholar] [CrossRef]
- Pei, G.; Guo, L.; Liang, S.; Chen, F.; Ma, N.; Bai, J.; Deng, J.; Li, M.; Qin, C.; Feng, T.; et al. Long-Term Erythromycin Treatment Alters the Airway and Gut Microbiota: Data from Chronic Obstructive Pulmonary Disease Patients and Mice with Emphysema. Respiration 2024, 103, 461–479. [Google Scholar] [CrossRef]
- Gijs, P.-J.; Daccord, C.; Bernasconi, E.; Brutsche, M.; Clarenbach, C.F.; Hostettler, K.; Guler, S.A.; Mercier, L.; Ubags, N.; Funke-Chambour, M.; et al. Azithromycin Alters Spatial and Temporal Dynamics of Airway Microbiota in Idiopathic Pulmonary Fibrosis. ERJ Open Res. 2023, 9, 00720–02022. [Google Scholar] [CrossRef]
- O’Loughlin, C.T.; Miller, L.C.; Siryaporn, A.; Drescher, K.; Semmelhack, M.F.; Bassler, B.L. A Quorum-Sensing Inhibitor Blocks Pseudomonas aeruginosa Virulence and Biofilm Formation. Proc. Natl. Acad. Sci. USA 2013, 110, 17981–17986. [Google Scholar] [CrossRef]
- Köhler, T.; Dumas, J.-L.; Van Delden, C. Ribosome Protection Prevents Azithromycin-Mediated Quorum-Sensing Modulation and Stationary-Phase Killing of Pseudomonas aeruginosa. Antimicrob. Agents Chemother. 2007, 51, 4243–4248. [Google Scholar] [CrossRef]
- Suzuki, S.; Morita, Y.; Ishige, S.; Kai, K.; Kawasaki, K.; Matsushita, K.; Ogura, K.; Miyoshi-Akiyama, T.; Shimizu, T. Effects of Quorum Sensing–Interfering Agents, Including Macrolides and Furanone C-30, and an Efflux Pump Inhibitor on Nitrosative Stress Sensitivity in Pseudomonas aeruginosa. Microbiology 2024, 170, 001464. [Google Scholar] [CrossRef]
- Burr, L.D.; Rogers, G.B.; Chen, A.C.-H.; Hamilton, B.R.; Pool, G.F.; Taylor, S.L.; Venter, D.; Bowler, S.D.; Biga, S.; McGuckin, M.A. Macrolide Treatment Inhibits Pseudomonas aeruginosa Quorum Sensing in Non-CF Bronchiectasis: An Analysis from the BLESS Trial. Ann. Am. Thorac. Soc. 2016, 13, 1697–1703. [Google Scholar] [CrossRef] [PubMed]
- Wong, C.; Jayaram, L.; Karalus, N.; Eaton, T.; Tong, C.; Hockey, H.; Milne, D.; Fergusson, W.; Tuffery, C.; Sexton, P.; et al. Azithromycin for Prevention of Exacerbations in Non-Cystic Fibrosis Bronchiectasis (EMBRACE): A Randomised, Double-Blind, Placebo-Controlled Trial. Lancet 2012, 380, 660–667. [Google Scholar] [CrossRef] [PubMed]
- Altenburg, J.; De Graaff, C.S.; Stienstra, Y.; Sloos, J.H.; Van Haren, E.H.J.; Koppers, R.J.H.; Van Der Werf, T.S.; Boersma, W.G. Effect of Azithromycin Maintenance Treatment on Infectious Exacerbations Among Patients with Non–Cystic Fibrosis Bronchiectasis: The BAT Randomized Controlled Trial. JAMA 2013, 309, 1251–1259. [Google Scholar] [CrossRef] [PubMed]
- Diego, A.D.; Milara, J.; Martinez-Moragón, E.; Palop, M.; León, M.; Cortijo, J. Effects of Long-term Azithromycin Therapy on Airway Oxidative Stress Markers in Non-cystic Fibrosis Bronchiectasis. Respirology 2013, 18, 1056–1062. [Google Scholar] [CrossRef]
- Cymbala, A.A.; Edmonds, L.C.; Bauer, M.A.; Jederlinic, P.J.; May, J.J.; Victory, J.M.; Amsden, G.W. The Disease-Modifying Effects of Twice-Weekly Oral Azithromycin in Patients with Bronchiectasis. Treat. Respir. Med. 2005, 4, 117–122. [Google Scholar] [CrossRef]
- Sibila, O.; Stobo, J.; Perea, L.; Gao, Y.-H.; Xu, J.-F.; Lind, H.; Viligorska, K.; Spinou, A.; Polverino, E.; Ringshausen, F.C.; et al. Symptoms, Risk of Future Exacerbations, and Response to Long-Term Macrolide Treatment in Bronchiectasis: An Observational Study. Lancet Respir. Med. 2025, 13, 911–920. [Google Scholar] [CrossRef]
- Nagaoka, K.; Yanagihara, K.; Harada, Y.; Yamada, K.; Migiyama, Y.; Morinaga, Y.; Hasegawa, H.; Izumikawa, K.; Kakeya, H.; Nishimura, M.; et al. Macrolides Inhibit Fusobacterium nucleatum-Induced MUC5AC Production in Human Airway Epithelial Cells. Antimicrob. Agents Chemother. 2013, 57, 1844–1849. [Google Scholar] [CrossRef]
- Serisier, D.J.; Martin, M.L.; McGuckin, M.A.; Lourie, R.; Chen, A.C.; Brain, B.; Biga, S.; Schlebusch, S.; Dash, P.; Bowler, S.D. Effect of Long-Term, Low-Dose Erythromycin on Pulmonary Exacerbations Among Patients with Non–Cystic Fibrosis Bronchiectasis: The BLESS Randomized Controlled Trial. JAMA 2013, 309, 1260–1267. [Google Scholar] [CrossRef]
- Liu, J.; Zhong, X.; He, Z.; Wei, L.; Zheng, X.; Zhang, J.; Bai, J.; Zhong, W.; Zhong, D. Effect of Low-Dose, Long-Term Roxithromycin on Airway Inflammation and Remodeling of Stable Noncystic Fibrosis Bronchiectasis. Mediators Inflamm. 2014, 2014, 708608. [Google Scholar] [CrossRef]
- Hashimoto, K.; Abe, Y.; Fukushima, K.; Niitsu, T.; Komukai, S.; Miyamoto, S.; Nii, T.; Matsuki, T.; Takeuchi, N.; Morimoto, K.; et al. Epidemiology of Bronchiectasis at a Single Center in Japan: A Retrospective Cohort Study. BMC Pulm. Med. 2024, 24, 531. [Google Scholar] [CrossRef] [PubMed]
- Chalmers, J.D.; Boersma, W.; Lonergan, M.; Jayaram, L.; Crichton, M.L.; Karalus, N.; Taylor, S.L.; Martin, M.L.; Burr, L.D.; Wong, C.; et al. Long-Term Macrolide Antibiotics for the Treatment of Bronchiectasis in Adults: An Individual Participant Data Meta-Analysis. Lancet Respir. Med. 2019, 7, 845–854. [Google Scholar] [CrossRef] [PubMed]
- Rogers, G.B.; Bruce, K.D.; Martin, M.L.; Burr, L.D.; Serisier, D.J. The Effect of Long-Term Macrolide Treatment on Respiratory Microbiota Composition in Non-Cystic Fibrosis Bronchiectasis: An Analysis from the Randomised, Double-Blind, Placebo-Controlled BLESS Trial. Lancet Respir. Med. 2014, 2, 988–996. [Google Scholar] [CrossRef] [PubMed]
- Terpstra, L.C.; Altenburg, J.; Mohamed Hoesein, F.A.; Bronsveld, I.; Go, S.; Van Rijn, P.A.C.; De Jong, P.A.; Heijerman, H.G.M.; Boersma, W.G. The Effect of Maintenance Azithromycin on Radiological Features in Patients with Bronchiectasis—Analysis from the BAT Randomized Controlled Trial. Respir. Med. 2022, 192, 106718. [Google Scholar] [CrossRef]
- Guo, R.; Wat, D.; Lam, S.H.M.; Bucci, T.; Tsang, C.T.-W.; Cai, A.-P.; Chan, Y.-H.; Ren, Q.-W.; Huang, J.-Y.; Zhang, J.-N.; et al. Cardiovascular Benefits and Safety Profile of Macrolide Maintenance Therapy in Patients with Bronchiectasis. Eur. Respir. J. 2025, 65, 2401574. [Google Scholar] [CrossRef]
- Polverino, E.; Goeminne, P.C.; McDonnell, M.J.; Aliberti, S.; Marshall, S.E.; Loebinger, M.R.; Murris, M.; Cantón, R.; Torres, A.; Dimakou, K.; et al. European Respiratory Society Guidelines for the Management of Adult Bronchiectasis. Eur. Respir. J. 2017, 50, 1700629. [Google Scholar] [CrossRef]
- Hill, A.T.; Sullivan, A.L.; Chalmers, J.D.; De Soyza, A.; Elborn, S.J.; Floto, A.R.; Grillo, L.; Gruffydd-Jones, K.; Harvey, A.; Haworth, C.S.; et al. British Thoracic Society Guideline for Bronchiectasis in Adults. Thorax 2019, 74, 1–69. [Google Scholar] [CrossRef]
- Cordeiro, R.; Choi, H.; Haworth, C.S.; Chalmers, J.D. The Efficacy and Safety of Inhaled Antibiotics for the Treatment of Bronchiectasis in Adults. Chest 2024, 166, 61–80. [Google Scholar] [CrossRef]
- Long, M.B.; Chotirmall, S.H.; Shteinberg, M.; Chalmers, J.D. Rethinking Bronchiectasis as an Inflammatory Disease. Lancet Respir. Med. 2024, 12, 901–914. [Google Scholar] [CrossRef]
- Chalmers, J.D.; Shoemark, A. Inhaled Corticosteroids in COPD and Bronchiectasis. Chest 2023, 164, 809–811. [Google Scholar] [CrossRef]
- Chalmers, J.D.; Burgel, P.-R.; Daley, C.L.; De Soyza, A.; Haworth, C.S.; Mauger, D.; Loebinger, M.R.; McShane, P.J.; Ringshausen, F.C.; Blasi, F.; et al. Phase 3 Trial of the DPP-1 Inhibitor Brensocatib in Bronchiectasis. N. Engl. J. Med. 2025, 392, 1569–1581. [Google Scholar] [CrossRef]
- Orlandi, R.R.; Kingdom, T.T.; Hwang, P.H. International Consensus Statement on Allergy and Rhinology: Rhinosinusitis Executive Summary. Int. Forum Allergy Rhinol. 2016, 6, S3–S21. [Google Scholar] [CrossRef]
- Global Initiative for Chronic Obstructive Lung Disease (GOLD). Global Strategy for the Diagnosis, Management, and Prevention of Chronic Obstructive Pulmonary Disease. 2025 Report. Available online: https://goldcopd.org/2025-gold-report/ (accessed on 21 August 2025).
- Global Initiative for Asthma. Global Strategy for Asthma Management and Prevention, 2025 Report. Updated May 2025. Available online: https://ginasthma.org/2025-gina-strategy-report/ (accessed on 21 August 2025).
- Chalmers, J.D.; Gupta, A.; Chotirmall, S.H.; Armstrong, A.; Eickholz, P.; Hasegawa, N.; McShane, P.J.; O’Donnell, A.E.; Shteinberg, M.; Watz, H.; et al. A Phase 2 Randomised Study to Establish Efficacy, Safety and Dosing of a Novel Oral Cathepsin C Inhibitor, BI 1291583, in Adults with Bronchiectasis: Airleaf. ERJ Open Res. 2023, 9, 00633–02022. [Google Scholar] [CrossRef]
- Brusselle, G.G.; VanderStichele, C.; Jordens, P.; Deman, R.; Slabbynck, H.; Ringoet, V.; Verleden, G.; Demedts, I.K.; Verhamme, K.; Delporte, A.; et al. Azithromycin for Prevention of Exacerbations in Severe Asthma (AZISAST): A Multicentre Randomised Double-Blind Placebo-Controlled Trial. Thorax 2013, 68, 322–329. [Google Scholar] [CrossRef] [PubMed]
- Sutherland, E.R.; King, T.S.; Icitovic, N.; Ameredes, B.T.; Bleecker, E.; Boushey, H.A.; Calhoun, W.J.; Castro, M.; Cherniack, R.M.; Chinchilli, V.M.; et al. A Trial of Clarithromycin for the Treatment of Suboptimally Controlled Asthma. J. Allergy Clin. Immunol. 2010, 126, 747–753. [Google Scholar] [CrossRef] [PubMed]
- Hahn, D.L.; Grasmick, M.; Hetzel, S.; Yale, S.; on behalf of the AZMATICS (AZithroMycin-Asthma Trial In Community Settings) Study Group. Azithromycin for Bronchial Asthma in Adults: An Effectiveness Trial. J. Am. Board Fam. Med. 2012, 25, 442–459. [Google Scholar] [CrossRef] [PubMed]
- Gibson, P.G.; Yang, I.A.; Upham, J.W.; Reynolds, P.N.; Hodge, S.; James, A.L.; Jenkins, C.; Peters, M.J.; Marks, G.B.; Baraket, M.; et al. Effect of Azithromycin on Asthma Exacerbations and Quality of Life in Adults with Persistent Uncontrolled Asthma (AMAZES): A Randomised, Double-Blind, Placebo-Controlled Trial. Lancet 2017, 390, 659–668. [Google Scholar] [CrossRef]
- Sadeghdoust, M.; Mirsadraee, M.; Aligolighasemabadi, F.; Khakzad, M.R.; Hashemi Attar, A.; Naghibi, S. Effect of Azithromycin on Bronchial Wall Thickness in Severe Persistent Asthma: A Double-Blind Placebo-Controlled Randomized Clinical Trial. Respir. Med. 2021, 185, 106494. [Google Scholar] [CrossRef]
- Undela, K.; Goldsmith, L.; Kew, K.M.; Ferrara, G. Macrolides versus Placebo for Chronic Asthma. Cochrane Database Syst. Rev. 2021, 2021, CD002997. [Google Scholar] [CrossRef]
- McDonald, V.M.; Hiles, S.A.; Jones, K.A.; Clark, V.L.; Yorke, J. Health-related Quality of Life Burden in Severe Asthma. Med. J. Aust. 2018, 209, S28–S33. [Google Scholar] [CrossRef]
- Simpson, J.L.; Powell, H.; Boyle, M.J.; Scott, R.J.; Gibson, P.G. Clarithromycin Targets Neutrophilic Airway Inflammation in Refractory Asthma. Am. J. Respir. Crit. Care Med. 2008, 177, 148–155. [Google Scholar] [CrossRef]
- Amayasu, H.; Yoshida, S.; Ebana, S.; Yamamoto, Y.; Nishikawa, T.; Shoji, T.; Nakagawa, H.; Hasegawa, H.; Nakabayashi, M.; Ishizaki, Y. Clarithromycin Suppresses Bronchial Hyperresponsiveness Associated with Eosinophilic Inflammation in Patients with Asthma. Ann. Allergy. Asthma. Immunol. 2000, 84, 594–598. [Google Scholar] [CrossRef]
- Black, P.N.; Blasi, F.; Jenkins, C.R.; Scicchitano, R.; Mills, G.D.; Rubinfeld, A.R.; Ruffin, R.E.; Mullins, P.R.; Dangain, J.; Cooper, B.C.; et al. Trial of Roxithromycin in Subjects with Asthma and Serological Evidence of Infection with Chlamydia pneumoniae. Am. J. Respir. Crit. Care Med. 2001, 164, 536–541. [Google Scholar] [CrossRef] [PubMed]
- Kraft, M.; Cassell, G.H.; Pak, J.; Martin, R.J. Mycoplasma pneumoniae and Chlamydia pneumoniae in Asthma. Chest 2002, 121, 1782–1788. [Google Scholar] [CrossRef] [PubMed]
- Kostadima, E.; Tsiodras, S.; Alexopoulos, E.I.; Kaditis, A.G.; Mavrou, I.; Georgatou, N.; Papamichalopoulos, A. Clarithromycin Reduces the Severity of Bronchial Hyperresponsiveness in Patients with Asthma. Eur. Respir. J. 2004, 23, 714–717. [Google Scholar] [CrossRef]
- Ekici, A.; Ekici, M.; Kemal Erdemoğlu, A. Effect of Azithromycin on the Severity of Bronchial Hyperresponsiveness in Patients with Mild Asthma. J. Asthma 2002, 39, 181–185. [Google Scholar] [CrossRef]
- Niessen, N.M.; Gibson, P.G.; Baines, K.J.; Barker, D.; Yang, I.A.; Upham, J.W.; Reynolds, P.N.; Hodge, S.; James, A.L.; Jenkins, C.; et al. Sputum TNF Markers Are Increased in Neutrophilic and Severe Asthma and Are Reduced by Azithromycin Treatment. Allergy 2021, 76, 2090–2101. [Google Scholar] [CrossRef]
- Martin, R.J.; Kraft, M.; Chu, H.W.; Berns, E.A.; Cassell, G.H. A Link between Chronic Asthma and Chronic Infection. J. Allergy Clin. Immunol. 2001, 107, 595–601. [Google Scholar] [CrossRef]
- Melbye, H.; Kongerud, J.; Vorland, L. Reversible Airflow Limitation in Adults with Respiratory Infection. Eur. Respir. J. 1994, 7, 1239–1245. [Google Scholar] [CrossRef]
- Hahn, D.L.; Plane, M.B.; Mahdi, O.S.; Byrne, G.I. Secondary Outcomes of a Pilot Randomized Trial of Azithromycin Treatment for Asthma. PLoS Clin. Trials 2006, 1, e11. [Google Scholar] [CrossRef] [PubMed]
- Beigelman, A.; Mikols, C.L.; Gunsten, S.P.; Cannon, C.L.; Brody, S.L.; Walter, M.J. Azithromycin Attenuates Airway Inflammation in a Mouse Model of Viral Bronchiolitis. Respir. Res. 2010, 11, 90. [Google Scholar] [CrossRef] [PubMed]
- Taylor, S.L.; Leong, L.E.X.; Mobegi, F.M.; Choo, J.M.; Wesselingh, S.; Yang, I.A.; Upham, J.W.; Reynolds, P.N.; Hodge, S.; James, A.L.; et al. Long-Term Azithromycin Reduces Haemophilus influenzae and Increases Antibiotic Resistance in Severe Asthma. Am. J. Respir. Crit. Care Med. 2019, 200, 309–317. [Google Scholar] [CrossRef] [PubMed]
- British Thoracic Society, Scottish Intercollegiate Guidelines Network. 2024. British Guideline on the Management of Asthma. Available online: https://www.nice.org.uk/Guidance/NG245 (accessed on 21 August 2025).
- Holguin, F.; Cardet, J.C.; Chung, K.F.; Diver, S.; Ferreira, D.S.; Fitzpatrick, A.; Gaga, M.; Kellermeyer, L.; Khurana, S.; Knight, S.; et al. Management of Severe Asthma: A European Respiratory Society/American Thoracic Society Guideline. Eur. Respir. J. 2020, 55, 1900588. [Google Scholar] [CrossRef]
- Agache, I.; Beltran, J.; Akdis, C.; Akdis, M.; Canelo-Aybar, C.; Canonica, G.W.; Casale, T.; Chivato, T.; Corren, J.; Del Giacco, S.; et al. Efficacy and Safety of Treatment with Biologicals (Benralizumab, Dupilumab, Mepolizumab, Omalizumab and Reslizumab) for Severe Eosinophilic Asthma. A Systematic Review for the EAACI Guidelines—Recommendations on the Use of Biologicals in Severe Asthma. Allergy 2020, 75, 1023–1042. [Google Scholar] [CrossRef]
- Menzies-Gow, A.; Corren, J.; Bourdin, A.; Chupp, G.; Israel, E.; Wechsler, M.E.; Brightling, C.E.; Griffiths, J.M.; Hellqvist, Å.; Bowen, K.; et al. Tezepelumab in Adults and Adolescents with Severe, Uncontrolled Asthma. N. Engl. J. Med. 2021, 384, 1800–1809. [Google Scholar] [CrossRef]
- Corren, J.; Menzies-Gow, A.; Chupp, G.; Israel, E.; Korn, S.; Cook, B.; Ambrose, C.S.; Hellqvist, Å.; Roseti, S.L.; Molfino, N.A.; et al. Efficacy of Tezepelumab in Severe, Uncontrolled Asthma: Pooled Analysis of the PATHWAY and NAVIGATOR Clinical Trials. Am. J. Respir. Crit. Care Med. 2023, 208, 13–24. [Google Scholar] [CrossRef]
- Lavoie, G.; Howell, I.; Melhorn, J.; Borg, C.; Bermejo-Sanchez, L.; Seymour, J.; Jabeen, M.F.; Fries, A.; Hynes, G.; Pavord, I.D.; et al. Effects of Azithromycin in Severe Eosinophilic Asthma with Concomitant Monoclonal Antibody Treatment. Thorax 2025, 80, 113–116. [Google Scholar] [CrossRef]
- Thomas, D.; McDonald, V.M.; Stevens, S.; Baraket, M.; Hodge, S.; James, A.; Jenkins, C.; Marks, G.B.; Peters, M.; Reynolds, P.N.; et al. Effect of Azithromycin on Asthma Remission in Adults with Persistent Uncontrolled Asthma. Chest 2024, 166, 262–270. [Google Scholar] [CrossRef]
- Hansen, S.; Baastrup Søndergaard, M.; Von Bülow, A.; Bjerrum, A.-S.; Schmid, J.; Rasmussen, L.M.; Johnsen, C.R.; Ingebrigtsen, T.; Håkansson, K.E.J.; Johansson, S.L.; et al. Clinical Response and Remission in Patients with Severe Asthma Treated with Biologic Therapies. Chest 2024, 165, 253–266. [Google Scholar] [CrossRef]
- Menzies-Gow, A.; Colice, G.; Griffiths, J.M.; Almqvist, G.; Ponnarambil, S.; Kaur, P.; Ruberto, G.; Bowen, K.; Hellqvist, Å.; Mo, M.; et al. NAVIGATOR: A Phase 3 Multicentre, Randomized, Double-Blind, Placebo-Controlled, Parallel-Group Trial to Evaluate the Efficacy and Safety of Tezepelumab in Adults and Adolescents with Severe, Uncontrolled Asthma. Respir. Res. 2020, 21, 266. [Google Scholar] [CrossRef] [PubMed]
- Seemungal, T.A.R.; Wilkinson, T.M.A.; Hurst, J.R.; Perera, W.R.; Sapsford, R.J.; Wedzicha, J.A. Long-Term Erythromycin Therapy Is Associated with Decreased Chronic Obstructive Pulmonary Disease Exacerbations. Am. J. Respir. Crit. Care Med. 2008, 178, 1139–1147. [Google Scholar] [CrossRef] [PubMed]
- Suzuki, T.; Yanai, M.; Yamaya, M.; Satoh-Nakagawa, T.; Sekizawa, K.; Ishida, S.; Sasaki, H. Erythromycin and Common Cold in COPD. Chest 2001, 120, 730–733. [Google Scholar] [CrossRef] [PubMed]
- Hurst, J.R.; Donaldson, G.C.; Wilkinson, T.M.A.; Perera, W.R.; Wedzicha, J.A. Epidemiological Relationships between the Common Cold and Exacerbation Frequency in COPD. Eur. Respir. J. 2005, 26, 846–852. [Google Scholar] [CrossRef]
- Banerjee, D.; Khair, O.A.; Honeybourne, D. The Effect of Oral Clarithromycin on Health Status and Sputum Bacteriology in Stable COPD. Respir. Med. 2005, 99, 208–215. [Google Scholar] [CrossRef]
- Albert, R.K.; Connett, J.; Bailey, W.C.; Casaburi, R.; Cooper, J.A.D.; Criner, G.J.; Curtis, J.L.; Dransfield, M.T.; Han, M.K.; Lazarus, S.C.; et al. Azithromycin for Prevention of Exacerbations of COPD. N. Engl. J. Med. 2011, 365, 689–698. [Google Scholar] [CrossRef]
- Han, M.K.; Tayob, N.; Murray, S.; Dransfield, M.T.; Washko, G.; Scanlon, P.D.; Criner, G.J.; Casaburi, R.; Connett, J.; Lazarus, S.C.; et al. Predictors of Chronic Obstructive Pulmonary Disease Exacerbation Reduction in Response to Daily Azithromycin Therapy. Am. J. Respir. Crit. Care Med. 2014, 189, 1503–1508. [Google Scholar] [CrossRef]
- Uzun, S.; Djamin, R.S.; Kluytmans, J.A.J.W.; Mulder, P.G.H.; Van’T Veer, N.E.; Ermens, A.A.M.; Pelle, A.J.; Hoogsteden, H.C.; Aerts, J.G.J.V.; Van Der Eerden, M.M. Azithromycin Maintenance Treatment in Patients with Frequent Exacerbations of Chronic Obstructive Pulmonary Disease (COLUMBUS): A Randomised, Double-Blind, Placebo-Controlled Trial. Lancet Respir. Med. 2014, 2, 361–368. [Google Scholar] [CrossRef]
- Talman, S.; Uzun, S.; Djamin, R.S.; Baart, S.J.; Grootenboers, M.J.; Aerts, J.; Van Der Eerden, M. Long-Term Azithromycin Maintenance Treatment in Patients with Frequent Exacerbations of Chronic Obstructive Pulmonary Disease. Int. J. Chron. Obstruct. Pulmon. Dis. 2021, 16, 495–498. [Google Scholar] [CrossRef]
- Vermeersch, K.; Gabrovska, M.; Aumann, J.; Demedts, I.K.; Corhay, J.-L.; Marchand, E.; Slabbynck, H.; Haenebalcke, C.; Haerens, M.; Hanon, S.; et al. Azithromycin during Acute Chronic Obstructive Pulmonary Disease Exacerbations Requiring Hospitalization (BACE). A Multicenter, Randomized, Double-Blind, Placebo-Controlled Trial. Am. J. Respir. Crit. Care Med. 2019, 200, 857–868. [Google Scholar] [CrossRef]
- Vermeersch, K.; Belmans, A.; Bogaerts, K.; Gyselinck, I.; Cardinaels, N.; Gabrovska, M.; Aumann, J.; Demedts, I.K.; Corhay, J.-L.; Marchand, E.; et al. Treatment Failure and Hospital Readmissions in Severe COPD Exacerbations Treated with Azithromycin versus Placebo—A Post-Hoc Analysis of the BACE Randomized Controlled Trial. Respir. Res. 2019, 20, 237. [Google Scholar] [CrossRef] [PubMed]
- Cuevas, E.; Huertas, D.; Montón, C.; Marin, A.; Carrera-Salinas, A.; Pomares, X.; García-Nuñez, M.; Martí, S.; Santos, S. Systemic and Functional Effects of Continuous Azithromycin Treatment in Patients with Severe Chronic Obstructive Pulmonary Disease and Frequent Exacerbations. Front. Med. 2023, 10, 1229463. [Google Scholar] [CrossRef] [PubMed]
- Pomares, X.; Montón, C.; Bullich, M.; Cuevas, O.; Oliva, J.C.; Gallego, M.; Monsó, E. Clinical and Safety Outcomes of Long-Term Azithromycin Therapy in Severe COPD Beyond the First Year of Treatment. Chest 2018, 153, 1125–1133. [Google Scholar] [CrossRef] [PubMed]
- Djamin, R.S.; Bafadhel, M.; Uzun, S.; Russell, R.E.K.; Ermens, A.A.M.; Kerstens, R.; Aerts, J.G.J.V.; Pavord, I.D.; Van Der Eerden, M.M. Blood Eosinophil Count and GOLD Stage Predict Response to Maintenance Azithromycin Treatment in COPD Patients with Frequent Exacerbations. Respir. Med. 2019, 154, 27–33. [Google Scholar] [CrossRef]
- Blasi, F.; Bonardi, D.; Aliberti, S.; Tarsia, P.; Confalonieri, M.; Amir, O.; Carone, M.; Di Marco, F.; Centanni, S.; Guffanti, E. Long-Term Azithromycin Use in Patients with Chronic Obstructive Pulmonary Disease and Tracheostomy. Pulm. Pharmacol. Ther. 2010, 23, 200–207. [Google Scholar] [CrossRef]
- Tan, C.; Huang, H.; Zhang, J.; He, Z.; Zhong, X.; Bai, J. Effects of Low-Dose and Long-Term Treatment with Erythromycin on Interleukin-17 and Interleukin-23 in Peripheral Blood and Induced Sputum in Patients with Stable Chronic Obstructive Pulmonary Disease. Mediators Inflamm. 2016, 2016, 4173962. [Google Scholar] [CrossRef]
- Berkhof, F.F.; Hertog, N.E.; Uil, S.M.; Kerstjens, H.A.; Van Den Berg, J.W. Azithromycin and Cough-Specific Health Status in Patients with Chronic Obstructive Pulmonary Disease and Chronic Cough: A Randomised Controlled Trial. Respir. Res. 2013, 14, 125. [Google Scholar] [CrossRef]
- Djamin, R.S.; Talman, S.; Schrauwen, E.J.A.; Von Wintersdorff, C.J.H.; Wolffs, P.F.; Savelkoul, P.H.M.; Uzun, S.; Kerstens, R.; Van Der Eerden, M.M.; Kluytmans, J.A.J.W. Prevalence and Abundance of Selected Genes Conferring Macrolide Resistance Genes in COPD Patients During Maintenance Treatment with Azithromycin. Antimicrob. Resist. Infect. Control 2020, 9, 116. [Google Scholar] [CrossRef]
- Carrera-Salinas, A.; González-Díaz, A.; Ehrlich, R.L.; Berbel, D.; Tubau, F.; Pomares, X.; Garmendia, J.; Domínguez, M.Á.; Ardanuy, C.; Huertas, D.; et al. Genetic Adaptation and Acquisition of Macrolide Resistance in Haemophilus Spp. During Persistent Respiratory Tract Colonization in Chronic Obstructive Pulmonary Disease (COPD) Patients Receiving Long-Term Azithromycin Treatment. Microbiol. Spectr. 2023, 11, e0386022. [Google Scholar] [CrossRef]
- Rennard, S.I.; Calverley, P.M.; Goehring, U.M.; Bredenbröker, D.; Martinez, F.J. Reduction of Exacerbations by the PDE4 Inhibitor Roflumilast—The Importance of Defining Different Subsets of Patients with COPD. Respir. Res. 2011, 12, 18. [Google Scholar] [CrossRef]
- Martinez, F.J.; Calverley, P.M.A.; Goehring, U.-M.; Brose, M.; Fabbri, L.M.; Rabe, K.F. Effect of Roflumilast on Exacerbations in Patients with Severe Chronic Obstructive Pulmonary Disease Uncontrolled by Combination Therapy (REACT): A Multicentre Randomised Controlled Trial. The Lancet 2015, 385, 857–866. [Google Scholar] [CrossRef]
- Kim, K.H.; Kang, H.S.; Kim, J.S.; Yoon, H.K.; Kim, S.K.; Rhee, C.K. Risk Factors for the Discontinuation of Roflumilast in Patients with Chronic Obstructive Pulmonary Disease. Int. J. Chron. Obstruct. Pulmon. Dis. 2017, 12, 3449–3456. [Google Scholar] [CrossRef] [PubMed]
- Lam, J.; Tonnu-Mihara, I.; Kenyon, N.J.; Kuhn, B.T. Comparative Effectiveness of Roflumilast and Azithromycin for the Treatment of Chronic Obstructive Pulmonary Disease. Chronic Obstr. Pulm. Dis. J. COPD Found. 2021, 8, 450–463. [Google Scholar] [CrossRef] [PubMed]
- NCT04069312. Roflumilast or Azithromycin to Prevent COPD Exacerbations (RELIANCE) Study. Available online: https://clinicaltrials.gov/study/NCT04069312 (accessed on 21 August 2025).
- Turato, G.; Semenzato, U.; Bazzan, E.; Biondini, D.; Tinè, M.; Torrecilla, N.; Forner, M.; Marin, J.M.; Cosio, M.G.; Saetta, M. Blood Eosinophilia Neither Reflects Tissue Eosinophils nor Worsens Clinical Outcomes in Chronic Obstructive Pulmonary Disease. Am. J. Respir. Crit. Care Med. 2018, 197, 1216–1219. [Google Scholar] [CrossRef] [PubMed]
- Tinè, M.; Biondini, D.; Semenzato, U.; Bazzan, E.; Cosio, M.G.; Saetta, M.; Turato, G. Reassessing the Role of Eosinophils as a Biomarker in Chronic Obstructive Pulmonary Disease. J. Clin. Med. 2019, 8, 962. [Google Scholar] [CrossRef]
- Eltboli, O.; Mistry, V.; Barker, B.; Brightling, C.E. Relationship between Blood and Bronchial Submucosal Eosinophilia and Reticular Basement Membrane Thickening in Chronic Obstructive Pulmonary Disease. Respirology 2015, 20, 667–670. [Google Scholar] [CrossRef]
- Pavord, I.D.; Chanez, P.; Criner, G.J.; Kerstjens, H.A.M.; Korn, S.; Lugogo, N.; Martinot, J.-B.; Sagara, H.; Albers, F.C.; Bradford, E.S.; et al. Mepolizumab for Eosinophilic Chronic Obstructive Pulmonary Disease. N. Engl. J. Med. 2017, 377, 1613–1629. [Google Scholar] [CrossRef]
- Pavord, I.; Chapman, K.; Bafadhel, M.; Sciurba, F.C.; Bradford, E.S.; Schweiker Harris, S.; Mayer, B.; Rubin, D.B.; Yancey, S.W.; Paggiaro, P. Mepolizumab for Eosinophil-Associated COPD: Analysis of METREX and METREO. Int. J. Chron. Obstruct. Pulmon. Dis. 2021, 16, 1755–1770. [Google Scholar] [CrossRef]
- Sciurba, F.C.; Criner, G.J.; Christenson, S.A.; Martinez, F.J.; Papi, A.; Roche, N.; Bourbeau, J.; Korn, S.; Bafadhel, M.; Han, M.K.; et al. Mepolizumab to Prevent Exacerbations of COPD with an Eosinophilic Phenotype. N. Engl. J. Med. 2025, 392, 1710–1720. [Google Scholar] [CrossRef]
- Bhatt, S.P.; Rabe, K.F.; Hanania, N.A.; Vogelmeier, C.F.; Bafadhel, M.; Christenson, S.A.; Papi, A.; Singh, D.; Laws, E.; Patel, N.; et al. Dupilumab for COPD with Blood Eosinophil Evidence of Type 2 Inflammation. N. Engl. J. Med. 2024, 390, 2274–2283. [Google Scholar] [CrossRef]
- Bhatt, S.P.; Rabe, K.F.; Hanania, N.A.; Vogelmeier, C.F.; Cole, J.; Bafadhel, M.; Christenson, S.A.; Papi, A.; Singh, D.; Laws, E.; et al. Dupilumab for COPD with Type 2 Inflammation Indicated by Eosinophil Counts. N. Engl. J. Med. 2023, 389, 205–214. [Google Scholar] [CrossRef] [PubMed]
- Anzueto, A.; Barjaktarevic, I.Z.; Siler, T.M.; Rheault, T.; Bengtsson, T.; Rickard, K.; Sciurba, F. Ensifentrine, a Novel Phosphodiesterase 3 and 4 Inhibitor for the Treatment of Chronic Obstructive Pulmonary Disease: Randomized, Double-Blind, Placebo-Controlled, Multicenter Phase III Trials (the ENHANCE Trials). Am. J. Respir. Crit. Care Med. 2023, 208, 406–416. [Google Scholar] [CrossRef] [PubMed]
- Sciurba, F.C.; Christenson, S.A.; Rheault, T.; Bengtsson, T.; Rickard, K.; Barjaktarevic, I.Z. Effect of Dual Phosphodiesterase 3 and 4 Inhibitor Ensifentrine on Exacerbation Rate and Risk in Patients with Moderate to Severe COPD. Chest 2025, 167, 425–435. [Google Scholar] [CrossRef]
- Singh, D.; Emirova, A.; Francisco, C.; Santoro, D.; Govoni, M.; Nandeuil, M.A. Efficacy and Safety of CHF6001, a Novel Inhaled PDE4 Inhibitor in COPD: The PIONEER Study. Respir. Res. 2020, 21, 246. [Google Scholar] [CrossRef]
- Watz, H.; Korn, S.; Kornmann, O.; Singh, D.; Wilkinson, T.; Hanrott, K.; Norris, V. Late Breaking Abstract—A Novel Macrolide, EP395, in Patients with Stable COPD: A RCT. Eur. Respir. J. 2024, 64, PA3923. [Google Scholar] [CrossRef]
- Basyigit, I.; Yildiz, F.; Ozkara, S.K.; Yildirim, E.; Boyaci, H.; Ilgazli, A. The Effect of Clarithromycin on Inflammatory Markers in Chronic Obstructive Pulmonary Disease: Preliminary Data. Ann. Pharmacother. 2004, 38, 1400–1405. [Google Scholar] [CrossRef]
- Pollock, J.; Chalmers, J.D. The Immunomodulatory Effects of Macrolide Antibiotics in Respiratory Disease. Pulm. Pharmacol. Ther. 2021, 71, 102095. [Google Scholar] [CrossRef]
- Leard, L.E.; Holm, A.M.; Valapour, M.; Glanville, A.R.; Attawar, S.; Aversa, M.; Campos, S.V.; Christon, L.M.; Cypel, M.; Dellgren, G.; et al. Consensus Document for the Selection of Lung Transplant Candidates: An Update from the International Society for Heart and Lung Transplantation. J. Heart Lung Transplant. 2021, 40, 1349–1379. [Google Scholar] [CrossRef]
- Verleden, G.M.; Glanville, A.R.; Lease, E.D.; Fisher, A.J.; Calabrese, F.; Corris, P.A.; Ensor, C.R.; Gottlieb, J.; Hachem, R.R.; Lama, V.; et al. Chronic Lung Allograft Dysfunction: Definition, Diagnostic Criteria, and Approaches to treatment―A Consensus Report from the Pulmonary Council of the ISHLT. J. Heart Lung Transplant. 2019, 38, 493–503. [Google Scholar] [CrossRef]
- Verleden, G.M.; Bos, S. The ABC of Transplant: ALAD, BLAD, and CLAD: Definition and Significance. Curr. Opin. Pulm. Med. 2025, 31, 397–403. [Google Scholar] [CrossRef]
- Gerhardt, S.G.; McDyer, J.F.; Girgis, R.E.; Conte, J.V.; Yang, S.C.; Orens, J.B. Maintenance Azithromycin Therapy for Bronchiolitis Obliterans Syndrome: Results of a Pilot Study. Am. J. Respir. Crit. Care Med. 2003, 168, 121–125. [Google Scholar] [CrossRef]
- Verleden, G.M.; Dupont, L.J. Azithromycin therapy for patients with bronchiolitis obliterans syndrome after lung transplantation. Transplantation 2004, 77, 1465–1467. [Google Scholar] [CrossRef]
- Shitrit, D.; Bendayan, D.; Gidon, S.; Saute, M.; Bakal, I.; Kramer, M.R. Long-Term Azithromycin Use for Treatment of Bronchiolitis Obliterans Syndrome in Lung Transplant Recipients. J. Heart Lung Transplant. 2005, 24, 1440–1443. [Google Scholar] [CrossRef]
- Verleden, G.M.; Vanaudenaerde, B.M.; Dupont, L.J.; Van Raemdonck, D.E. Azithromycin Reduces Airway Neutrophilia and Interleukin-8 in Patients with Bronchiolitis Obliterans Syndrome. Am. J. Respir. Crit. Care Med. 2006, 174, 566–570. [Google Scholar] [CrossRef]
- Gottlieb, J.; Szangolies, J.; Koehnlein, T.; Golpon, H.; Simon, A.; Welte, T. Long-Term Azithromycin for Bronchiolitis Obliterans Syndrome After Lung Transplantation. Transplantation 2008, 85, 36–41. [Google Scholar] [CrossRef]
- Federica, M.; Nadia, S.; Monica, M.; Alessandro, C.; Tiberio, O.; Francesco, B.; Mario, V.; Maria, F.A. Clinical and Immunological Evaluation of 12-Month Azithromycin Therapy in Chronic Lung Allograft Rejection. Clin. Transplant. 2011, 25, E381–E389. [Google Scholar] [CrossRef]
- Benden, C.; Boehler, A. Long-Term Clarithromycin Therapy in the Management of Lung Transplant Recipients. Transplantation 2009, 87, 1538–1540. [Google Scholar] [CrossRef] [PubMed]
- Corris, P.A.; Ryan, V.A.; Small, T.; Lordan, J.; Fisher, A.J.; Meachery, G.; Johnson, G.; Ward, C. A Randomised Controlled Trial of Azithromycin Therapy in Bronchiolitis Obliterans Syndrome (BOS) Post Lung Transplantation. Thorax 2015, 70, 442–450. [Google Scholar] [CrossRef] [PubMed]
- Gan, C.T.-J.; Ward, C.; Meachery, G.; Lordan, J.L.; Fisher, A.J.; Corris, P.A. Long-Term Effect of Azithromycin in Bronchiolitis Obliterans Syndrome. BMJ Open Respir. Res. 2019, 6, e000465. [Google Scholar] [CrossRef] [PubMed]
- Kingah, P.L.; Muma, G.; Soubani, A. Azithromycin Improves Lung Function in Patients with Post-lung Transplant Bronchiolitis Obliterans Syndrome: A Meta-analysis. Clin. Transplant. 2014, 28, 906–910. [Google Scholar] [CrossRef]
- Verleden, G.M.; Raghu, G.; Meyer, K.C.; Glanville, A.R.; Corris, P. A New Classification System for Chronic Lung Allograft Dysfunction. J. Heart Lung Transplant. 2014, 33, 127–133. [Google Scholar] [CrossRef]
- Vos, R.; Vanaudenaerde, B.M.; Verleden, S.E.; De Vleeschauwer, S.I.; Willems-Widyastuti, A.; Van Raemdonck, D.E.; Schoonis, A.; Nawrot, T.S.; Dupont, L.J.; Verleden, G.M. A Randomised Controlled Trial of Azithromycin to Prevent Chronic Rejection after Lung Transplantation. Eur. Respir. J. 2011, 37, 164–172. [Google Scholar] [CrossRef]
- Ruttens, D.; Verleden, S.E.; Vandermeulen, E.; Bellon, H.; Vanaudenaerde, B.M.; Somers, J.; Schoonis, A.; Schaevers, V.; Van Raemdonck, D.E.; Neyrinck, A.; et al. Prophylactic Azithromycin Therapy After Lung Transplantation: Post Hoc Analysis of a Randomized Controlled Trial. Am. J. Transplant. 2016, 16, 254–261. [Google Scholar] [CrossRef] [PubMed]
- Van Herck, A.; Frick, A.E.; Schaevers, V.; Vranckx, A.; Verbeken, E.K.; Vanaudenaerde, B.M.; Sacreas, A.; Heigl, T.; Neyrinck, A.P.; Van Raemdonck, D.; et al. Azithromycin and Early Allograft Function after Lung Transplantation: A Randomized, Controlled Trial. J. Heart Lung Transplant. 2019, 38, 252–259. [Google Scholar] [CrossRef] [PubMed]
- Cristeto Porras, M.; Mora Cuesta, V.M.; Iturbe Fernández, D.; Tello Mena, S.; Alonso Lecue, P.; Sánchez Moreno, L.; Miñambres García, E.; Naranjo Gozalo, S.; Izquierdo Cuervo, S.; Cifrián Martínez, J.M. Early Onset of Azithromycin to Prevent CLAD in Lung Transplantation: Promising Results of a Retrospective Single Centre Experience. Clin. Transplant. 2023, 37, e14832. [Google Scholar] [CrossRef] [PubMed]
- Santos, J.; Hays, S.R.; Golden, J.A.; Calabrese, D.R.; Kolaitis, N.; Kleinhenz, M.E.; Shah, R.; Estrada, A.V.; Leard, L.E.; Kukreja, J.; et al. Decreased Lymphocytic Bronchitis Severity in the Era of Azithromycin Prophylaxis. Transplant. Direct 2023, 9, e1495. [Google Scholar] [CrossRef]
- Spence, C.D.; Vanaudenaerde, B.; Einarsson, G.G.; Mcdonough, J.; Lee, A.J.; Johnston, E.; Verleden, G.M.; Elborn, J.S.; Dupont, L.J.; Van Herck, A.; et al. Influence of Azithromycin and Allograft Rejection on the Post–Lung Transplant Microbiota. J. Heart Lung Transplant. 2020, 39, 176–183. [Google Scholar] [CrossRef]
- Combs, M.P.; Luth, J.E.; Falkowski, N.R.; Wheeler, D.S.; Walker, N.M.; Erb-Downward, J.R.; Wakeam, E.; Sjoding, M.W.; Dunlap, D.G.; Admon, A.J.; et al. The Lung Microbiome Predicts Mortality and Response to Azithromycin in Lung Transplant Recipients with Chronic Rejection. Am. J. Respir. Crit. Care Med. 2024, 209, 1360–1375. [Google Scholar] [CrossRef]
- Kapnadak, S.G.; Morrell, E.D.; Wai, T.H.; Goss, C.H.; Shah, P.D.; Merlo, C.A.; Hachem, R.R.; Ramos, K.J. Variability in Azithromycin Practices among Lung Transplant Providers in the International Society for Heart and Lung Transplantation Community. J. Heart Lung Transplant. 2022, 41, 20–23. [Google Scholar] [CrossRef]
- Jagasia, M.H.; Greinix, H.T.; Arora, M.; Williams, K.M.; Wolff, D.; Cowen, E.W.; Palmer, J.; Weisdorf, D.; Treister, N.S.; Cheng, G.-S.; et al. National Institutes of Health Consensus Development Project on Criteria for Clinical Trials in Chronic Graft-versus-Host Disease: I. The 2014 Diagnosis and Staging Working Group Report. Biol. Blood Marrow Transplant. 2015, 21, 389–401.e1. [Google Scholar] [CrossRef]
- Glanville, A.R.; Benden, C.; Bergeron, A.; Cheng, G.-S.; Gottlieb, J.; Lease, E.D.; Perch, M.; Todd, J.L.; Williams, K.M.; Verleden, G.M. Bronchiolitis Obliterans Syndrome after Lung or Haematopoietic Stem Cell Transplantation: Current Management and Future Directions. ERJ Open Res. 2022, 8, 00185–02022. [Google Scholar] [CrossRef]
- Khalid, M.; Al Saghir, A.; Saleemi, S.; Al Dammas, S.; Zeitouni, M.; Al Mobeireek, A.; Chaudhry, N.; Sahovic, E. Azithromycin in Bronchiolitis Obliterans Complicating Bone Marrow Transplantation: A Preliminary Study. Eur. Respir. J. 2005, 25, 490–493. [Google Scholar] [CrossRef] [PubMed]
- Lam, D.C.L.; Lam, B.; Wong, M.K.Y.; Lu, C.; Au, W.Y.; Tse, E.W.C.; Leung, A.Y.H.; Kwong, Y.L.; Liang, R.H.S.; Lam, W.K.; et al. Effects of Azithromycin in Bronchiolitis Obliterans Syndrome after Hematopoietic SCT—A Randomized Double-Blinded Placebo-Controlled Study. Bone Marrow Transplant. 2011, 46, 1551–1556. [Google Scholar] [CrossRef] [PubMed]
- Jo, K.-W.; Yoon, S.; Song, J.W.; Shim, T.S.; Lee, S.W.; Lee, J.S.; Kim, D.-Y.; Lee, J.-H.; Lee, J.-H.; Choi, Y.; et al. The Efficacy of Prophylactic Azithromycin on Bronchiolitis Obliterans Syndrome after Hematopoietic Stem Cell Transplantation. Int. J. Hematol. 2015, 102, 357–363. [Google Scholar] [CrossRef] [PubMed]
- Bergeron, A.; Chevret, S.; Granata, A.; Chevallier, P.; Vincent, L.; Huynh, A.; Tabrizi, R.; Labussiere-Wallet, H.; Bernard, M.; Chantepie, S.; et al. Effect of Azithromycin on Airflow Decline–Free Survival After Allogeneic Hematopoietic Stem Cell Transplant: The ALLOZITHRO Randomized Clinical Trial. JAMA 2017, 318, 557–566. [Google Scholar] [CrossRef]
- Yadav, H.; Peters, S.G.; Keogh, K.A.; Hogan, W.J.; Erwin, P.J.; West, C.P.; Kennedy, C.C. Azithromycin for the Treatment of Obliterative Bronchiolitis after Hematopoietic Stem Cell Transplantation: A Systematic Review and Meta-Analysis. Biol. Blood Marrow Transplant. 2016, 22, 2264–2269. [Google Scholar] [CrossRef]
- Cheng, G.-S.; Bondeelle, L.; Gooley, T.; He, Q.; Jamani, K.; Krakow, E.F.; Flowers, M.E.D.; De Latour, R.P.; Michonneau, D.; Socié, G.; et al. Azithromycin Use and Increased Cancer Risk among Patients with Bronchiolitis Obliterans after Hematopoietic Cell Transplantation. Biol. Blood Marrow Transplant. 2020, 26, 392–400. [Google Scholar] [CrossRef]
- Sheshadri, A.; Saliba, R.; Patel, B.; Ahmed, T.; Bueno, L.C.; Arain, M.H.; Mehta, R.S.; Popat, U.R.; Hosing, C.M.; Rondon, G.; et al. Azithromycin May Increase Hematologic Relapse Rates in Matched Unrelated Donor Hematopoietic Cell Transplant Recipients Who Receive Anti-Thymocyte Globulin, but Not in Most Other Recipients. Bone Marrow Transplant. 2021, 56, 745–748. [Google Scholar] [CrossRef]
- Williams, K.M.; Cheng, G.-S.; Pusic, I.; Jagasia, M.; Burns, L.; Ho, V.T.; Pidala, J.; Palmer, J.; Johnston, L.; Mayer, S.; et al. Fluticasone, Azithromycin, and Montelukast Treatment for New-Onset Bronchiolitis Obliterans Syndrome after Hematopoietic Cell Transplantation. Biol. Blood Marrow Transplant. 2016, 22, 710–716. [Google Scholar] [CrossRef]
- Bos, S.; Murray, J.; Marchetti, M.; Cheng, G.-S.; Bergeron, A.; Wolff, D.; Sander, C.; Sharma, A.; Badawy, S.M.; Peric, Z.; et al. ERS/EBMT Clinical Practice Guidelines on Treatment of Pulmonary Chronic Graft-versus-Host Disease in Adults. Eur. Respir. J. 2024, 63, 2301727. [Google Scholar] [CrossRef]
- Cheng, G.-S.; Storer, B.; Chien, J.W.; Jagasia, M.; Hubbard, J.J.; Burns, L.; Ho, V.T.; Pidala, J.; Palmer, J.; Johnston, L.; et al. Lung Function Trajectory in Bronchiolitis Obliterans Syndrome after Allogeneic Hematopoietic Cell Transplant. Ann. Am. Thorac. Soc. 2016, 13, 1932–1939. [Google Scholar] [CrossRef]
- Spagnolo, P.; Ryerson, C.J.; Putman, R.; Oldham, J.; Salisbury, M.; Sverzellati, N.; Valenzuela, C.; Guler, S.; Jones, S.; Wijsenbeek, M.; et al. Early Diagnosis of Fibrotic Interstitial Lung Disease: Challenges and Opportunities. Lancet Respir. Med. 2021, 9, 1065–1076. [Google Scholar] [CrossRef] [PubMed]
- Krempaska, K.; Barnowski, S.; Gavini, J.; Hobi, N.; Ebener, S.; Simillion, C.; Stokes, A.; Schliep, R.; Knudsen, L.; Geiser, T.K.; et al. Azithromycin Has Enhanced Effects on Lung Fibroblasts from Idiopathic Pulmonary Fibrosis (IPF) Patients Compared to Controls. Respir. Res. 2020, 21, 25. [Google Scholar] [CrossRef] [PubMed]
- Kawashima, M.; Yatsunami, J.; Fukuno, Y.; Nagata, M.; Tominaga, M.; Hayashi, S. Inhibitory Effects of 14-Membered Ring Macrolide Antibiotics on Bleomycin-Induced Acute Lung Injury. Lung 2002, 180, 73–89. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Dong, Y.; Li, W.; Tang, B.; Li, J.; Zang, Y. Roxithromycin Attenuates Bleomycin-Induced Pulmonary Fibrosis by Targeting Senescent Cells. Acta Pharmacol. Sin. 2021, 42, 2058–2068. [Google Scholar] [CrossRef]
- Li, Y.J.; Azuma, A.; Usuki, J.; Abe, S.; Matsuda, K.; Sunazuka, T.; Shimizu, T.; Hirata, Y.; Inagaki, H.; Kawada, T.; et al. EM703 Improves Bleomycin-Induced Pulmonary Fibrosis in Mice by the Inhibition of TGF-β Signaling in Lung Fibroblasts. Respir. Res. 2006, 7, 16. [Google Scholar] [CrossRef]
- Macaluso, C.; Maritano Furcada, J.; Alzaher, O.; Chaube, R.; Chua, F.; Wells, A.U.; Maher, T.M.; George, P.M.; Renzoni, E.A.; Molyneaux, P.L. The Potential Impact of Azithromycin in Idiopathic Pulmonary Fibrosis. Eur. Respir. J. 2019, 53, 1800628. [Google Scholar] [CrossRef]
- Guler, S.A.; Clarenbach, C.; Brutsche, M.; Hostettler, K.; Brill, A.-K.; Schertel, A.; Geiser, T.K.; Funke-Chambour, M. Azithromycin for the Treatment of Chronic Cough in Idiopathic Pulmonary Fibrosis: A Randomized Controlled Crossover Trial. Ann. Am. Thorac. Soc. 2021, 18, 2018–2026. [Google Scholar] [CrossRef]
- Drake, W.P.; Richmond, B.W.; Oswald-Richter, K.; Yu, C.; Isom, J.M.; Worrell, J.A.; Shipley, G.R. Effects of Broad-Spectrum Antimycobacterial Therapy on Chronic Pulmonary Sarcoidosis. Sarcoidosis Vasc. Diffus. Lung Dis. 2013, 30, 201–211. [Google Scholar] [PubMed] [PubMed Central]
- Drake, W.P.; Oswald-Richter, K.; Richmond, B.W.; Isom, J.; Burke, V.E.; Algood, H.; Braun, N.; Taylor, T.; Pandit, K.V.; Aboud, C.; et al. Oral Antimycobacterial Therapy in Chronic Cutaneous Sarcoidosis: A Randomized, Single-Masked, Placebo-Controlled Study. JAMA Dermatol. 2013, 149, 1040–1049. [Google Scholar] [CrossRef]
- Drake, W.P.; Culver, D.A.; Baughman, R.P.; Judson, M.A.; Crouser, E.D.; James, W.E.; Ayers, G.D.; Ding, T.; Abel, K.; Green, A.; et al. Phase II Investigation of the Efficacy of Antimycobacterial Therapy in Chronic Pulmonary Sarcoidosis. Chest 2021, 159, 1902–1912. [Google Scholar] [CrossRef]
- Fraser, S.D.; Thackray-Nocera, S.; Shepherd, M.; Flockton, R.; Wright, C.; Sheedy, W.; Brindle, K.; Morice, A.H.; Kaye, P.M.; Crooks, M.G.; et al. Azithromycin for Sarcoidosis Cough: An Open-Label Exploratory Clinical Trial. ERJ Open Res. 2020, 6, 00534–02020, Erratum in ERJ Open Res. 2024, 10, 50534–52020. [Google Scholar] [CrossRef]
- Fraser, S.D.; Thackray-Nocera, S.; Wright, C.; Flockton, R.; James, S.R.; Crooks, M.G.; Kaye, P.M.; Hart, S.P. Effects of Azithromycin on Blood Inflammatory Gene Expression and Cytokine Production in Sarcoidosis. Lung 2024, 202, 683–693. [Google Scholar] [CrossRef]
- Radzikowska, E.; Wiatr, E.; Gawryluk, D.; Langfort, R.; Bestry, I.; Rudzinski, P.; Szczepulska-Wójcik, E.; Roszkowski-Sliz, K. Cryptogenic Organizing Pneumonia—Results of Treatment with Clarithromycin versus Corticosteroids. In Proceedings of In Proceedings of the European Respiratory Society International Congress 2016; London, UK, 3–7 September 2016, p. PA3907.
- Lin, X.; Lu, J.; Yang, M.; Dong, B.R.; Wu, H.M. Macrolides for Diffuse Panbronchiolitis. Cochrane Database Syst. Rev. 2015, 2015, CD007716. [Google Scholar] [CrossRef] [PubMed]
- Kadota, J.; Mukae, H.; Ishii, H.; Nagata, T.; Kaida, H.; Tomono, K.; Kohno, S. Long-Term Efficacy and Safety of Clarithromycin Treatment in Patients with Diffuse Panbronchiolitis. Respir. Med. 2003, 97, 844–850. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Zhou, Y.; Fan, F.; Zhang, Y.; Li, X.; Yu, H.; Zhao, L.; Yi, X.; He, G.; Fujita, J.; et al. Effect of Azithromycin on Patients with Diffuse Panbronchiolitis: Retrospective Study of 51 Cases. Intern. Med. 2011, 50, 1663–1669. [Google Scholar] [CrossRef] [PubMed]
- Choo, J.M.; Abell, G.C.J.; Thomson, R.; Morgan, L.; Waterer, G.; Gordon, D.L.; Taylor, S.L.; Leong, L.E.X.; Wesselingh, S.L.; Burr, L.D.; et al. Impact of Long-Term Erythromycin Therapy on the Oropharyngeal Microbiome and Resistance Gene Reservoir in Non-Cystic Fibrosis Bronchiectasis. mSphere 2018, 3, e00103-18. [Google Scholar] [CrossRef]
- Burr, L.D.; Taylor, S.L.; Richard, A.; Schreiber, V.; Lingman, S.; Martin, M.; Papanicolas, L.E.; Choo, J.M.; Rogers, G.B. Assessment of Long-Term Macrolide Exposure on the Oropharyngeal Microbiome and Macrolide Resistance in Healthy Adults and Consequences for Onward Transmission of Resistance. Antimicrob. Agents Chemother. 2022, 66, e02246-21. [Google Scholar] [CrossRef]
- Kim, K.; Jung, S.; Kim, M.; Park, S.; Yang, H.-J.; Lee, E. Global Trends in the Proportion of Macrolide-Resistant Mycoplasma pneumoniae Infections: A Systematic Review and Meta-Analysis. JAMA Netw. Open 2022, 5, e2220949. [Google Scholar] [CrossRef]
- Vieno, N.M.; Härkki, H.; Tuhkanen, T.; Kronberg, L. Occurrence of Pharmaceuticals in River Water and Their Elimination in a Pilot-Scale Drinking Water Treatment Plant. Environ. Sci. Technol. 2007, 41, 5077–5084. [Google Scholar] [CrossRef]
- Bijlsma, L.; Xu, L.; Gracia-Marín, E.; Pitarch, E.; Serrano, R.; Kasprzyk-Hordern, B. Understanding Associations between Antimicrobial Agents Usage and Antimicrobial Resistance Genes Prevalence at the Community Level Using Wastewater-Based Epidemiology: A Spanish Pilot Study. Sci. Total Environ. 2024, 926, 171996. [Google Scholar] [CrossRef]
- Xu, L.; Ceolotto, N.; Jagadeesan, K.; Standerwick, R.; Robertson, M.; Barden, R.; Kasprzyk-Hordern, B. Antimicrobials and Antimicrobial Resistance Genes in the Shadow of COVID-19 Pandemic: A Wastewater-Based Epidemiology Perspective. Water Res. 2024, 257, 121665. [Google Scholar] [CrossRef]
- Brown, L.P.; Murray, R.; Scott, A.; Tien, Y.-C.; Lau, C.H.-F.; Tai, V.; Topp, E. Responses of the Soil Bacterial Community, Resistome, and Mobilome to a Decade of Annual Exposure to Macrolide Antibiotics. Appl. Environ. Microbiol. 2022, 88, e0031622. [Google Scholar] [CrossRef]


| Clinical Scenario | Rationale |
|---|---|
| ≥3 exacerbations/year without (and with) P. aeruginosa colonization | Macrolides reduce exacerbation rates with higher efficacy in frequent exacerbators [14,15,20]. |
| 1–2 exacerbations/year or early-stage disease | Significant benefit even in patients with fewer exacerbations [23,30]. |
| High symptom burden (e.g., daily cough, sputum production, low QoL-B-RSS) | Macrolides improve sputum purulence, reduce daily sputum volume, and patients with high symptom burden but few prior exacerbations derive similar benefits in reducing exacerbations as frequent exacerbators [13,15,16,17,18,20,21]. |
| Therapy | Description | Relative Reduction in Exacerbations |
|---|---|---|
| Macrolides | Oral azithromycin (dosing ranging from 250 mg daily, 250 or 500 mg three times weekly), and erythromycin (dose ranging from 250 to 400 mg twice daily) [16,28]; anti-inflammatory and antimicrobial activity. | 43–78% [14,15,20,21] |
| Inhaled antibiotics (colistin, gentamycin, tobramycin) | Indicated in Pseudomonas aeruginosa colonization; local antibacterial effect; requires nebulization device. | 22–25% [29] |
| Brensocatib | Oral DPP-1 inhibitor; targets neutrophilic inflammation; no antimicrobial effect; approved for frequent exacerbators. | 20–21% [32] |
| Inhaled corticosteroids | Consider only in eosinophilic inflammation or asthma overlap. | 30% * [31] |
| Clinical Scenario | Rationale |
|---|---|
| T2-low asthma phenotype | Greater benefit observed in non-eosinophilic asthma [37,44]. |
| Negative or partial response to biologics (both in T2-high and T2-low phenotype) | Azithromycin may provide added control even with biologics ongoing [61]. |
| Access or cost constraints limiting biologic use | Azithromycin is a low-cost and widely available option. |
| Therapy | Description | Relative Reduction in Exacerbations |
|---|---|---|
| Macrolides | Oral azithromycin three times weekly for ≥ 6 months [35]; broad efficacy among different phenotypes, possibly higher among non-eosinophilic phenotype. | 0–41% [37,39,40] |
| Omalizumab | Humanized monoclonal anti-IgE antibody; indicated for allergic asthma [58]. | 23–60% [58] |
| Mepolizumab | Humanized monoclonal anti-IL-5 antibody; indicated for eosinophilic asthma [58]. | 34–62% [58] |
| Benralizumab | Humanized monoclonal anti-IL-5Rα antibody; indicated for eosinophilic asthma [58]. | 28–61% [58] |
| Dupilumab | Humanized monoclonal anti-IL-4Rα antibody; indicated for T2-high asthma [58]. | 41–68% [58] |
| Tezepelumab | Humanized monoclonal anti-TSLP antibody; indicated for both T2-high and T2-low asthma [64]. | 47–63% [64] |
| Clinical Scenario | Rationale |
|---|---|
| Frequent exacerbations despite optimized inhaler therapy (triple therapy or LABA/LAMA if ICS contraindicated) | Macrolides reduce exacerbation frequency by 25–50% (in selected patients and with a tendency to diminish over time), comparable to or greater than other preventive strategies [65,66,69,71,75,76,78]. |
| Former smoker | Efficacy is reduced in current smokers [70]. |
| Neutrophilic inflammation or frequent bacterial infections/colonization | Macrolides offer both immunomodulatory and antimicrobial effects, efficacious in patients prone to infection or neutrophilic phenotypes [100,101]. Conflicting data in eosinophilic phenotype [74,77]. |
| Therapy | Description | Relative Reduction in Exacerbations |
|---|---|---|
| Macrolides | Oral azithromycin (250 mg daily or 500 mg three times weekly) or erythromycin (250 mg twice daily) [34]; broad efficacy among different phenotypes. | ~25–50% in selected patients [65,66,69,71,75,76,78] |
| Roflumilast | Oral PDE4 inhibitor; indicated for CB phenotype and frequent exacerbations. | 14–26% (higher efficacy in CB) [83,84] |
| Dupilumab | Biologic targeting IL-4Rα; for COPD with blood eos ≥ 300 cells/µL, CB and frequent exacerbations despite triple therapy [34]. | 30–34% [94,95] |
| Mepolizumab | Biologic targeting IL-5; for COPD with blood eos ≥ 300 cells/µL and frequent exacerbations despite triple therapy. | 21% [93] |
| Ensifentrine | Inhaled dual PDE3/4 inhibitor; bronchodilator with anti-inflammatory effect. | ~40% (context-dependent) [96,97] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Previtero, D.; Castelli, G.; Padrin, Y.; Santello, V.; Mengato, D.; Biondini, D.; Turato, G.; Tiné, M.; Spagnolo, P.; Semenzato, U. Long-Term Macrolides in Chronic Respiratory Diseases: Dusk or a New Dawn? A Narrative Review. Antibiotics 2025, 14, 1061. https://doi.org/10.3390/antibiotics14111061
Previtero D, Castelli G, Padrin Y, Santello V, Mengato D, Biondini D, Turato G, Tiné M, Spagnolo P, Semenzato U. Long-Term Macrolides in Chronic Respiratory Diseases: Dusk or a New Dawn? A Narrative Review. Antibiotics. 2025; 14(11):1061. https://doi.org/10.3390/antibiotics14111061
Chicago/Turabian StylePrevitero, Daniele, Gioele Castelli, Ylenia Padrin, Virginia Santello, Daniele Mengato, Davide Biondini, Graziella Turato, Mariaenrica Tiné, Paolo Spagnolo, and Umberto Semenzato. 2025. "Long-Term Macrolides in Chronic Respiratory Diseases: Dusk or a New Dawn? A Narrative Review" Antibiotics 14, no. 11: 1061. https://doi.org/10.3390/antibiotics14111061
APA StylePrevitero, D., Castelli, G., Padrin, Y., Santello, V., Mengato, D., Biondini, D., Turato, G., Tiné, M., Spagnolo, P., & Semenzato, U. (2025). Long-Term Macrolides in Chronic Respiratory Diseases: Dusk or a New Dawn? A Narrative Review. Antibiotics, 14(11), 1061. https://doi.org/10.3390/antibiotics14111061

