Correlation Between Antimicrobial Consumption and Resistance in Klebsiella pneumoniae During the COVID-19 Pandemic Using Dynamic Regression Models: A Quasi-Experimental Epidemiological Time-Series Study
Abstract
1. Introduction
2. Results
2.1. Inpatient-Days
2.2. Trends in Antimicrobial Consumption Before and During the COVID-19 Pandemic
2.3. Trends in Antimicrobial Resistance Before and During the COVID-19 Pandemic
2.4. Correlation Between Antimicrobial Consumption and Antimicrobial Resistance During the COVID-19 Pandemic (2020–2021)
3. Discussion
4. Materials and Methods
4.1. Study Design and Setting
4.2. Patients
4.3. Antimicrobial Consumption
4.4. Bacterial Samples
4.5. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
AAPBI | Anti-pseudomonal activity penicillin and beta-lactamase inhibitors |
AMC | Antimicrobial consumption |
AMR | Antimicrobial resistance |
ARIMA | Autoregressive integrated moving average |
ARIMAX | Autoregressive integrated moving average with explanatory variables |
AST | Antimicrobial susceptibility testing |
COVID-19 | Coronavirus disease 2019 |
DDD | Defined daily doses |
DR | Dynamic regression |
DRPC | Dynamic regression by principal component |
LTF | Linear transfer function |
PBI | Penicillin and beta-lactamase inhibitor |
SARS-CoV-2 | Severe acute respiratory syndrome coronavirus 2 |
WHO | World Health Organization |
Appendix A
References
- Murray, C.J.; Ikuta, K.S.; Sharara, F.; Swetschinski, L.; Robles Aguilar, G.; Gray, A.; Han, C.; Bisignano, C.; Rao, P.; Wool, E.; et al. Global Burden of Bacterial Antimicrobial Resistance in 2019: A Systematic Analysis. Lancet 2022, 399, 629–655. [Google Scholar] [CrossRef] [PubMed]
- Lai, C.-C.; Chen, S.-Y.; Ko, W.-C.; Hsueh, P.-R. Increased Antimicrobial Resistance during the COVID-19 Pandemic. Int. J. Antimicrob. Agents 2021, 57, 106324. [Google Scholar] [CrossRef] [PubMed]
- Peñalva, G.; Högberg, L.D.; Weist, K.; Vlahović-Palčevski, V.; Heuer, O.; Monnet, D.L.; ESAC-Net Study Group; EARS-Net Study Group. Decreasing and Stabilising Trends of Antimicrobial Consumption and Resistance in Escherichia coli and Klebsiella pneumoniae in Segmented Regression Analysis, European Union/European Economic Area, 2001 to 2018. Eurosurveillance 2019, 24, 1900656. [Google Scholar] [CrossRef] [PubMed]
- Bhimraj, A.; Morgan, R.; Shumaker, A.; Baden, L.; Cheng, V.; Edwards, K.; Gallagher, J.; Gandhi, R.; Muller, W.; Nakamura, M.; et al. Guidelines on the Treatment and Management of Patients with COVID-19; Infectious Diseases Society of America: Arlington, VA, USA, 2022; Version 10.1.1. [Google Scholar]
- Larcher, R.; Laffont-Lozes, P.; Roger, C.; Doncesco, R.; Groul-Viaud, C.; Martin, A.; Loubet, P.; Lavigne, J.-P.; Pantel, A.; Sotto, A. Last Resort Beta-Lactam Antibiotics for Treatment of New-Delhi Metallo-Beta-Lactamase Producing Enterobacterales and Other Difficult-to-Treat Resistance in Gram-Negative Bacteria: A Real-Life Study. Front. Cell. Infect. Microbiol. 2022, 12, 1048633. [Google Scholar] [CrossRef]
- Aldeyab, M.A.; Monnet, D.L.; Lopez-Lozano, J.M.; Hughes, C.M.; Scott, M.G.; Kearney, M.P.; Magee, F.A.; McElnay, J.C. Modelling the Impact of Antibiotic Use and Infection Control Practices on the Incidence of Hospital-Acquired Methicillin-Resistant Staphylococcus Aureus: A Time-Series Analysis. J. Antimicrob. Chemother. 2008, 62, 593–600. [Google Scholar] [CrossRef]
- Laffont-Lozes, P.; Salipante, F.; Leguelinel-Blache, G.; Dunyach-Remy, C.; Lavigne, J.-P.; Sotto, A.; Larcher, R. Effect of Antimicrobial Consumption on Escherichia coli Resistance: Assessment and Forecasting Using Dynamic Regression Models in a French University Hospital (2014–2019). Int. J. Antimicrob. Agents 2023, 61, 106768. [Google Scholar] [CrossRef]
- Laffont-Lozes, P.; Larcher, R.; Salipante, F.; Leguelinel-Blache, G.; Dunyach-Remy, C.; Lavigne, J.-P.; Sotto, A.; Loubet, P. Usefulness of Dynamic Regression Time Series Models for Studying the Relationship between Antimicrobial Consumption and Bacterial Antimicrobial Resistance in Hospitals: A Systematic Review. Antimicrob. Resist. Infect. Control 2023, 12, 100. [Google Scholar] [CrossRef]
- Wang, Y.; Zhong, H.; Han, X.; Wang, N.; Cai, Y.; Wang, H.; Yu, J.; Zhang, X.; Zhang, K. Impact of Antibiotic Prescription on the Resistance of Klebsiella pneumoniae at a Tertiary Hospital in China, 2012–2019. Am. J. Infect. Control 2021, 49, 65–69. [Google Scholar] [CrossRef]
- Tóth, H.; Buchholcz, G.; Fésüs, A.; Balázs, B.; Nagy, J.B.; Majoros, L.; Szarka, K.; Kardos, G. Evolution of the Gram-Negative Antibiotic Resistance Spiral over Time: A Time-Series Analysis. Antibiotics 2021, 10, 734. [Google Scholar] [CrossRef]
- Pantel, A.; Richaud-Morel, B.; Cazaban, M.; Bouziges, N.; Sotto, A.; Lavigne, J.-P. Environmental Persistence of OXA-48–Producing Klebsiella pneumoniae in a French Intensive Care Unit. Am. J. Infect. Control 2016, 44, 366–368. [Google Scholar] [CrossRef]
- Langford, B.J.; So, M.; Raybardhan, S.; Leung, V.; Westwood, D.; MacFadden, D.R.; Soucy, J.-P.R.; Daneman, N. Bacterial Co-Infection and Secondary Infection in Patients with COVID-19: A Living Rapid Review and Meta-Analysis. Clin. Microbiol. Infect. 2020, 26, 1622–1629. [Google Scholar] [CrossRef]
- Wunsch, H. Mechanical Ventilation in COVID-19: Interpreting the Current Epidemiology. Am. J. Respir. Crit. Care Med. 2020, 202, 1–4. [Google Scholar] [CrossRef]
- Ippolito, M.; Misseri, G.; Catalisano, G.; Marino, C.; Ingoglia, G.; Alessi, M.; Consiglio, E.; Gregoretti, C.; Giarratano, A.; Cortegiani, A. Ventilator-Associated Pneumonia in Patients with COVID-19: A Systematic Review and Meta-Analysis. Antibiotics 2021, 10, 545. [Google Scholar] [CrossRef] [PubMed]
- European Centre for Disease Prevention and Control. Antimicrobial Consumption in the EU/EEA—Annual Epidemiological Report 2021; ECDC: Stockolm, Sweden, 2022.
- Ruiz, J.; Gordon, M.; Villarreal, E.; Frasquet, J.; Sánchez, M.Á.; Martín, M.; Castellanos, Á.; Ramirez, P. Influence of Antibiotic Pressure on Multi-Drug Resistant Klebsiella pneumoniae Colonisation in Critically III Patients. Antimicrob. Resist. Infect. Control 2019, 8, 38. [Google Scholar] [CrossRef] [PubMed]
- Ryu, S.; Klein, E.Y.; Chun, B.C. Temporal Association between Antibiotic Use and Resistance in Klebsiella pneumoniae at a Tertiary Care Hospital. Antimicrob. Resist. Infect. Control 2018, 7, 83. [Google Scholar] [CrossRef]
- Wang, H.; Wang, H.; Yu, X.; Zhou, H.; Li, B.; Chen, G.; Ye, Z.; Wang, Y.; Cui, X.; Zheng, Y.; et al. Impact of Antimicrobial Stewardship Managed by Clinical Pharmacists on Antibiotic Use and Drug Resistance in a Chinese Hospital, 2010–2016: A Retrospective Observational Study. BMJ Open 2019, 9, e026072. [Google Scholar] [CrossRef]
- Gharbi, M.; Moore, L.S.P.; Gilchrist, M.; Thomas, C.P.; Bamford, K.; Brannigan, E.T.; Holmes, A.H. Forecasting Carbapenem Resistance from Antimicrobial Consumption Surveillance: Lessons Learnt from an OXA-48-Producing Klebsiella pneumoniae Outbreak in a West London Renal Unit. Int. J. Antimicrob. Agents 2015, 46, 150–156. [Google Scholar] [CrossRef]
- Kaier, K.; Frank, U.; Hagist, C.; Conrad, A.; Meyer, E. The Impact of Antimicrobial Drug Consumption and Alcohol-Based Hand Rub Use on the Emergence and Spread of Extended-spectrum β-lactamase-Producing Strains: A Time-Series Analysis. J. Antimicrob. Chemother. 2009, 63, 609–614. [Google Scholar] [CrossRef]
- THRESHOLDS Study Group; López-Lozano, J.-M.; Lawes, T.; Nebot, C.; Beyaert, A.; Bertrand, X.; Hocquet, D.; Aldeyab, M.; Scott, M.; Conlon-Bingham, G.; et al. A Nonlinear Time-Series Analysis Approach to Identify Thresholds in Associations between Population Antibiotic Use and Rates of Resistance. Nat. Microbiol. 2019, 4, 1160–1172. [Google Scholar] [CrossRef] [PubMed]
- Bara, W.; Brun-Buisson, C.; Coignard, B.; Watier, L. Outpatient Antibiotic Prescriptions in France: Patients and Providers Characteristics and Impact of the COVID-19 Pandemic. Antibiotics 2022, 11, 643. [Google Scholar] [CrossRef]
- WHO Collaborating Centre for Drug Statistics Methodology. Guidelines for ATC Classification and DDD Assignment 2024; WHO Collaborating Centre for Drug Statistics Methodology: Oslo, Norway, 2023.
- Plachouras, D.; Lepape, A.; Suetens, C. ECDC Definitions and Methods for the Surveillance of Healthcare-Associated Infections in Intensive Care Units. Intensive Care Med. 2018, 44, 2216–2218. [Google Scholar] [CrossRef] [PubMed]
- Hyndman, R.J.; Khandakar, Y. Automatic Time Series Forecasting: The Forecast Package for R. J. Stat. Softw. 2008, 27, 1–22. [Google Scholar] [CrossRef]
- del Moral, M.J.; Valderrama, M.J. A Principal Component Approach to Dynamic Regression Models. Int. J. Forecast. 1997, 13, 237–244. [Google Scholar] [CrossRef]
Antimicrobial Class | AMC | Trends | ||||||
---|---|---|---|---|---|---|---|---|
2014 | 2015 | 2016 | 2017 | 2018 | 2019 | 2014–2019 | p-Value | |
Aminoglycosides | 14 | 14 | 11 | 13 | 12 | 12 | No | 0.08 |
Carbapenems | 7 | 11 | 9 | 9 | 9 | 9 | No | 0.12 |
Fourth-generation cephalosporin | 0.5 | 0.3 | 0.5 | 0.6 | 1 | 1 | Increase | <0.001 * |
Cephalosporins | 34 | 36 | 34 | 35 | 36 | 37 | No | 0.11 |
PBI | 62 | 62 | 63 | 63 | 63 | 62 | No | 0.74 |
AAPBI | 9 | 9 | 18 | 11 | 14 | 15 | Increase | <0.001 * |
Fluoroquinolones | 34 | 27 | 23 | 22 | 22 | 18 | Decrease | <0.001 * |
Sulfonamides | 3 | 4 | 5 | 3 | 5 | 2 | Increase | 0.006 * |
Antimicrobial Class | AMC | Trends | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
2014 | 2015 | 2016 | 2017 | 2018 | 2019 | 2020 | 2021 | 2014–2021 | p-Value | |
Aminoglycosides | 14 | 14 | 11 | 13 | 12 | 12 | 14 | 11 | No | 0.12 |
Carbapenems | 7 | 11 | 9 | 9 | 9 | 9 | 13 | 15 | Increase | <0.001 * |
Fourth-generation cephalosporin | 0.5 | 0.3 | 0.5 | 0.6 | 1 | 1 | 3 | 3 | Increase | <0.001 * |
Cephalosporins | 34 | 36 | 34 | 35 | 36 | 37 | 43 | 43 | Increase | <0.001 * |
PBI | 62 | 62 | 63 | 63 | 63 | 62 | 61 | 48 | Decrease | 0.002 * |
AAPBI | 9 | 9 | 18 | 11 | 14 | 15 | 20 | 22 | Increase | <0.001 * |
Fluoroquinolones | 34 | 27 | 23 | 22 | 22 | 18 | 20 | 20 | Decrease | <0.001 * |
Sulfonamides | 3 | 4 | 5 | 3 | 5 | 2 | 6 | 5 | Increase | 0.006 * |
Antimicrobial Class | Resistance Rate in Klebsiella pneumoniae Strains (%) | Trends | p-Value * | |||||||
---|---|---|---|---|---|---|---|---|---|---|
2014 | 2015 | 2016 | 2017 | 2018 | 2019 | 2020 | 2021 | |||
Aminoglycosides | 20 | 33 | 30 | 20 | 17 | 11 | 16 | 11 | Decrease | <0.001 * |
Carbapenems | 5 | 1.4 | 1.6 | 2 | 1.5 | 0.6 | 2.2 | 4.2 | No | 0.242 |
Fourth-generation cephalosporin | 46 | 58 | 35 | 34 | 38 | 15 | 27 | 18 | Decrease | <0.001 * |
Cephalosporins | 28 | 45 | 35 | 25 | 24 | 20 | 27 | 20 | Decrease | <0.001 * |
PBIs | 45 | 55 | 45 | 35 | 33 | 41 | 47 | 38 | Decrease | <0.001 * |
AABPIs | 33 | 52 | 43 | 32 | 31 | 32 | 39 | 26 | Decrease | <0.001 * |
Fluoroquinolones | 46 | 53 | 41 | 31 | 29 | 26 | 30 | 25 | Decrease | <0.001 * |
Sulfonamides | 26 | 39 | 33 | 25 | 24 | 18 | 25 | 18 | Decrease | <0.001 * |
Antimicrobial Resistance | Significant Correlation with Antimicrobial Consumption | Lag Time (Month) | Coefficient of Correlation (r) |
---|---|---|---|
Aminoglycosides | Aminoglycosides | 3 | 0.44 |
Cephalosporins | Fourth-generation cephalosporin | 3 | −0.48 |
4 | −0.45 | ||
5 | −0.44 | ||
Cephalosporins | 1 | 0.43 | |
Fluoroquinolones | 1 | 0.38 | |
2 | 0.45 | ||
3 | 0.35 | ||
Anti-pseudomonal activity penicillin and beta-lactamase inhibitors | Fourth-generation cephalosporin | 1 | −0.47 |
2 | −0.49 | ||
3 | −0.43 | ||
Cephalosporins | 1 | 0.46 | |
Fluoroquinolones | 1 | 0.47 | |
2 | 0.40 | ||
3 | 0.33 | ||
Penicillin and beta-lactamase inhibitors | Penicillin and beta-lactamase inhibitor | 0 | 0.43 |
1 | 0.52 | ||
2 | 0.52 | ||
Cephalosporins | 1 | 0.50 | |
Fluoroquinolones | 1 | 0.57 | |
Fluoroquinolones | Cephalosporins | 1 | 0.43 |
Models | Lag-Time (Month) | Adjustment | Parameters (SE) | AIC | R2 |
---|---|---|---|---|---|
Aminoglycoside resistance | |||||
Moving average | 1 | - | −0.65 (0.20) | 101.5 | 58% |
Aminoglycosides | 1 | - | 0.98 (0.04) | ||
Cephalosporin resistance | |||||
Cephalosporins | 1 | Adjustment in 2 principal components | −4.6 (1.2) | 145.5 | 47% |
Fourth-generation cephalosporin | 3 to 5 | ||||
Fluoroquinolones | 1 to 3 | −0.95 (1.4) | |||
AAPBI resistance | |||||
Cephalosporins | 1 | Adjustment in 2 principal components | 6.47 (1.54) | 165.5 | 48% |
Fourth-generation cephalosporin | 1 to 3 | 2.15 (1.94) | |||
Fluoroquinolones | 1 to 3 | ||||
PBI resistance | |||||
Cephalosporins | 1 | Adjustment in 2 principal components | 5.6 (1.1) | 169.2 | 55% |
PBIs | 0 to 2 | ||||
Fluoroquinolones | 1 | −0.16 (1.48) | |||
Fluoroquinolone resistance | |||||
Cephalosporins | 1 | Adjustment in 1 principal component | 4.6 (2.13) | 175.2 | 46% |
Fluoroquinolones | 0 to 2 | ||||
Moving average | 1 | 0.65 (0.14) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Laffont-Lozes, P.; Salipante, F.; Loubet, P.; Dunyach-Remy, C.; Lavigne, J.-P.; Sotto, A.; Larcher, R. Correlation Between Antimicrobial Consumption and Resistance in Klebsiella pneumoniae During the COVID-19 Pandemic Using Dynamic Regression Models: A Quasi-Experimental Epidemiological Time-Series Study. Antibiotics 2025, 14, 1020. https://doi.org/10.3390/antibiotics14101020
Laffont-Lozes P, Salipante F, Loubet P, Dunyach-Remy C, Lavigne J-P, Sotto A, Larcher R. Correlation Between Antimicrobial Consumption and Resistance in Klebsiella pneumoniae During the COVID-19 Pandemic Using Dynamic Regression Models: A Quasi-Experimental Epidemiological Time-Series Study. Antibiotics. 2025; 14(10):1020. https://doi.org/10.3390/antibiotics14101020
Chicago/Turabian StyleLaffont-Lozes, Paul, Florian Salipante, Paul Loubet, Catherine Dunyach-Remy, Jean-Philippe Lavigne, Albert Sotto, and Romaric Larcher. 2025. "Correlation Between Antimicrobial Consumption and Resistance in Klebsiella pneumoniae During the COVID-19 Pandemic Using Dynamic Regression Models: A Quasi-Experimental Epidemiological Time-Series Study" Antibiotics 14, no. 10: 1020. https://doi.org/10.3390/antibiotics14101020
APA StyleLaffont-Lozes, P., Salipante, F., Loubet, P., Dunyach-Remy, C., Lavigne, J.-P., Sotto, A., & Larcher, R. (2025). Correlation Between Antimicrobial Consumption and Resistance in Klebsiella pneumoniae During the COVID-19 Pandemic Using Dynamic Regression Models: A Quasi-Experimental Epidemiological Time-Series Study. Antibiotics, 14(10), 1020. https://doi.org/10.3390/antibiotics14101020