Multidrug-Resistant Staphylococcus haemolyticus ST42 Carrying ΨSCCmec57395-like SCCmec and Resistant Islands with Type I aj1–LP–fusB Structure Emerges in Taiwan Hospitals
Abstract
1. Introduction
2. Results
2.1. MLST and Antimicrobial Resistance
2.2. The SCCmec Cassette Structures
2.3. Phage-Related FA Resistance Islands
3. Discussion
4. Materials and Methods
4.1. Enrolled Isolates, Antimicrobial Testing and MLST
4.2. MGEs Analysis
4.2.1. SCCmec Cassettes Analysis
4.2.2. Phage-Related Islands and FA Resistance Determinants Analysis
4.3. Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
SCCmec | Staphylococcal cassette chromosome mec |
MLST | multilocus sequence typing |
MDR | multidrug-resistant |
ST | sequence type |
PCR | polymerase chain reaction |
LP | leader peptide |
CoNS | coagulase-negative staphylococci |
MGEs | mobile genetic elements |
BLAST | basic local alignment search tool |
CARD | Comprehensive Antibiotic Resistance Database |
FA | fusidic acid |
References
- Schleifer, K.H.; Kloos, W.E. Isolation and characterization of Staphylococci from human skin I. Amended descriptions of Staphylococcus epidermidis and Staphylococcus saprophyticus and descriptions of three new species: Staphylococcus cohnii, Staphylococcus haemolyticus, and Staphylococcus xylosus. Int. J. Syst. Bacteriol. 1975, 25, 50–61. [Google Scholar]
- Becker, K.; Heilmann, C.; Peters, G. Coagulase-negative staphylococci. Clin. Microbiol. Rev. 2014, 27, 870–926. [Google Scholar] [CrossRef]
- Rossi, C.C.; Ahmad, F.; Giambiagi-deMarval, M. Staphylococcus haemolyticus: An updated review on nosocomial infections, antimicrobial resistance, virulence, genetic traits, and strategies for combating this emerging opportunistic pathogen. Microbiol. Res. 2024, 282, 127652. [Google Scholar] [CrossRef] [PubMed]
- Chang, P.H.; Liu, T.P.; Huang, P.Y.; Lin, S.Y.; Lin, J.F.; Yeh, C.F.; Chang, S.C.; Wu, T.S.; Lu, J.J. Clinical features, outcomes, and molecular characteristics of an outbreak of Staphylococcus haemolyticus infection, among a mass-burn casualty patient group, in a tertiary center in northern Taiwan. J. Microbiol. Immunol. Infect. 2018, 51, 847–855. [Google Scholar] [CrossRef]
- Lin, L.C.; Liu, T.P.; Chang, S.C.; Lu, J.J. Characterization of New Staphylococcus haemolyticus ST42 Populations in Northern Taiwan. Microb. Drug Resist. 2022, 28, 56–62. [Google Scholar] [CrossRef]
- Lin, L.C.; Chang, S.C.; Ou, Y.H.; Liu, T.P.; Lu, J.J. Clonal Spreading of ST42 Staphylococcus haemolyticus Strains Occurs Possibly Due to fusB and tetK Resistant Genes and Capsule-Related Genes. Int. J. Mol. Sci. 2023, 24, 6198. [Google Scholar] [CrossRef]
- Partridge, S.R.; Kwong, S.M.; Firth, N.; Jensen, S.O. Mobile Genetic Elements Associated with Antimicrobial Resistance. Clin. Microbiol. Rev. 2018, 31, e00088-17. [Google Scholar] [CrossRef] [PubMed]
- Pain, M.; Hjerde, E.; Klingenberg, C.; Cavanagh, J.P. Comparative Genomic Analysis of Staphylococcus haemolyticus Reveals Key to Hospital Adaptation and Pathogenicity. Front. Microbiol. 2019, 10, 2096. [Google Scholar] [CrossRef]
- Urushibara, N.; Aung, M.S.; Kawaguchiya, M.; Kobayashi, N. Novel staphylococcal cassette chromosome mec (SCCmec) type XIV (5A) and a truncated SCCmec element in SCC composite islands carrying speG in ST5 MRSA in Japan. J. Antimicrob. Chemother. 2020, 75, 46–50. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.; Hu, Y.; Baker, M.; Dottorini, T.; Li, H.; Dong, Y.; Bai, Y.; Fanning, S.; Li, F. Novel SCCmec type XV (7A) and two pseudo-SCCmec variants in foodborne MRSA in China. J. Antimicrob. Chemother. 2022, 77, 903–909. [Google Scholar] [CrossRef]
- Wolska-Gebarzewska, M.; Miedzobrodzki, J.; Kosecka-Strojek, M. Current types of staphylococcal cassette chromosome mec (SCCmec) in clinically relevant coagulase-negative staphylococcal (CoNS) species. Crit. Rev. Microbiol. 2024, 50, 1020–1036. [Google Scholar] [CrossRef]
- Czekaj, T.; Ciszewski, M.; Szewczyk, E.M. Staphylococcus haemolyticus—An emerging threat in the twilight of the antibiotics age. Microbiology 2015, 161, 2061–2068. [Google Scholar] [CrossRef] [PubMed]
- Barros, E.M.; Ceotto, H.; Bastos, M.C.; Dos Santos, K.R.; Giambiagi-Demarval, M. Staphylococcus haemolyticus as an important hospital pathogen and carrier of methicillin resistance genes. J. Clin. Microbiol. 2012, 50, 166–168. [Google Scholar] [CrossRef] [PubMed]
- Qin, M.; Chen, P.; Deng, B.; He, R.; Wu, Y.; Yang, Y.; Deng, W.; Ding, X.; Yang, F.; Xie, C.; et al. The Emergence of a Multidrug-Resistant and Pathogenic ST42 Lineage of Staphylococcus haemolyticus from a Hospital in China. Microbiol. Spectr. 2022, 10, e0234221. [Google Scholar] [CrossRef]
- Lawal, O.U.; Fraqueza, M.J.; Worning, P.; Bouchami, O.; Bartels, M.D.; Goncalves, L.; Paixao, P.; Goncalves, E.; Toscano, C.; Empel, J.; et al. Staphylococcus saprophyticus Causing Infections in Humans Is Associated with High Resistance to Heavy Metals. Antimicrob. Agents Chemother. 2021, 65, e0268520. [Google Scholar] [CrossRef]
- Li, C.; Zong, G.; Chen, X.; Tan, M.; Gao, W.; Fu, J.; Zhang, P.; Wang, B.; Cao, G. Bifunctional protein ArsR(M) contributes to arsenite methylation and resistance in Brevundimonas sp. M20. BMC Microbiol. 2023, 23, 134. [Google Scholar] [CrossRef] [PubMed]
- Zong, Z. Characterization of a complex context containing mecA but lacking genes encoding cassette chromosome recombinases in Staphylococcus haemolyticus. BMC Microbiol. 2013, 13, 64. [Google Scholar] [CrossRef]
- Zhu, X.; Liang, Z.; Ma, J.; Huang, J.; Wang, L.; Yao, H.; Wu, Z. The cadDX operon contributes to cadmium resistance, oxidative stress resistance, and virulence in zoonotic streptococci. Vet. Res. 2024, 55, 119. [Google Scholar] [CrossRef]
- Dissanayake, D.; Kumari, W.; Chandrasekharan, N.V.; Wijayarathna, C.D. Isolation of heavy metal-resistant Staphylococcus epidermidis strain TWSL_22 and evaluation of heavy metal bioremediation potential of recombinant E. coli cloned with isolated cadD. FEMS Microbiol. Lett. 2023, 370, fnad092. [Google Scholar] [CrossRef]
- Dissanayake, D.C.; Chandrasekharan, N.V.; Wijayarathna, C.D. Multi-metal-resistant Staphylococcus warneri strain TWSL_1: Revealing heavy metal-resistant genomic features by whole-genome sequencing and analysis. Access Microbiol. 2025, 7, 000954.v5. [Google Scholar] [CrossRef]
- Perreten, V.; Chanchaithong, P.; Prapasarakul, N.; Rossano, A.; Blum, S.E.; Elad, D.; Schwendener, S. Novel pseudo-staphylococcal cassette chromosome mec element (psiSCCmec57395) in methicillin-resistant Staphylococcus pseudintermedius CC45. Antimicrob. Agents Chemother. 2013, 57, 5509–5515. [Google Scholar] [CrossRef]
- Amirsoleimani, A.; Brion, G.; Francois, P. Co-Carriage of Metal and Antibiotic Resistance Genes in Sewage Associated Staphylococci. Genes 2021, 12, 1473. [Google Scholar] [CrossRef]
- Fernandes, P. Fusidic Acid: A Bacterial Elongation Factor Inhibitor for the Oral Treatment of Acute and Chronic Staphylococcal Infections. Cold Spring Harb. Perspect. Med. 2016, 6, a025437. [Google Scholar] [CrossRef]
- Chen, H.J.; Hung, W.C.; Lin, Y.T.; Tsai, J.C.; Chiu, H.C.; Hsueh, P.R.; Teng, L.J. A novel fusidic acid resistance determinant, fusF, in Staphylococcus cohnii. J. Antimicrob. Chemother. 2015, 70, 416–419. [Google Scholar] [CrossRef]
- Norstrom, T.; Lannergard, J.; Hughes, D. Genetic and phenotypic identification of fusidic acid-resistant mutants with the small-colony-variant phenotype in Staphylococcus aureus. Antimicrob. Agents Chemother. 2007, 51, 4438–4446. [Google Scholar] [CrossRef]
- Chen, H.J.; Hung, W.C.; Tseng, S.P.; Tsai, J.C.; Hsueh, P.R.; Teng, L.J. Fusidic acid resistance determinants in Staphylococcus aureus clinical isolates. Antimicrob. Agents Chemother. 2010, 54, 4985–4991. [Google Scholar] [CrossRef]
- Chen, H.J.; Tsai, J.C.; Hung, W.C.; Tseng, S.P.; Hsueh, P.R.; Teng, L.J. Identification of fusB-mediated fusidic acid resistance islands in Staphylococcus epidermidis isolates. Antimicrob. Agents Chemother. 2011, 55, 5842–5849. [Google Scholar] [CrossRef]
- Chen, H.J.; Chang, Y.C.; Tsai, J.C.; Hung, W.C.; Lin, Y.T.; You, S.J.; Tseng, S.P.; Teng, L.J. New structure of phage-related islands carrying fusB and a virulence gene in fusidic acid-resistant Staphylococcus epidermidis. Antimicrob. Agents Chemother. 2013, 57, 5737–5739. [Google Scholar] [CrossRef] [PubMed]
- Hung, W.C.; Chen, H.J.; Lin, Y.T.; Tsai, J.C.; Chen, C.W.; Lu, H.H.; Tseng, S.P.; Jheng, Y.Y.; Leong, K.H.; Teng, L.J. Skin Commensal Staphylococci May Act as Reservoir for Fusidic Acid Resistance Genes. PLoS ONE 2015, 10, e0143106. [Google Scholar] [CrossRef] [PubMed]
- Clinical and Laboratory Standards Institute (CLSI). Performance Standards for Antimicrobial Disk Susceptibility Tests, 13th ed.; CLSI Standard M02; CLSI: Wayne, PA, USA, 2018. [Google Scholar]
- Clinical and Laboratory Standards Institute (CLSI). Performance Standards for Antimicrobial Susceptibility Testing, 32nd ed.; CLSI Supplement M100; CLSI: Wayne, PA, USA, 2022. [Google Scholar]
- European Committee on Antimicrobial Susceptibility Testing (EUCAST). Breakpoint Tables for Interpretation of MICs and Zone Diameters, Version 12.0; 2022. Available online: http://www.eucast.org (accessed on 1 October 2022).
- Panda, S.; Jena, S.; Sharma, S.; Dhawan, B.; Nath, G.; Singh, D.V. Identification of Novel Sequence Types among Staphylococcus haemolyticus Isolated from Variety of Infections in India. PLoS ONE 2016, 11, e0166193. [Google Scholar] [CrossRef] [PubMed]
- Jolley, K.A.; Bray, J.E.; Maiden, M.C.J. Open-access bacterial population genomics: BIGSdb software, the PubMLST.org website and their applications. Wellcome Open Res. 2018, 3, 124. [Google Scholar] [CrossRef] [PubMed]
- Zankari, E.; Hasman, H.; Cosentino, S.; Vestergaard, M.; Rasmussen, S.; Lund, O.; Aarestrup, F.M.; Larsen, M.V. Identification of acquired antimicrobial resistance genes. J. Antimicrob. Chemother. 2012, 67, 2640–2644. [Google Scholar] [CrossRef] [PubMed]
- Jia, B.; Raphenya, A.R.; Alcock, B.; Waglechner, N.; Guo, P.; Tsang, K.K.; Lago, B.A.; Dave, B.M.; Pereira, S.; Sharma, A.N.; et al. CARD 2017: Expansion and model-centric curation of the comprehensive antibiotic resistance database. Nucleic Acids Res. 2017, 45, D566–D573. [Google Scholar] [CrossRef] [PubMed]
- Ministry of Health and Welfare, Taiwan. Taiwan Health and Welfare Report 2023; Ministry of Health and Welfare: Taipei, Taiwan, 2023.
Antimicrobial Agents | ST3 (n = 48) | ST42 (n = 92) | p Value a |
---|---|---|---|
Penicillin | 100% | 100% | - |
Oxacillin | 100% | 100% | - |
Clindamycin | 66.7% | 60.9% | 0.53 |
Erythromycin | 100% | 100% | - |
Tetracycline | 4.3% | 70.7% | <0.0001 * |
Chloramphenicol | 14.6% | 4.3% | 0.048 * |
Vancomycin | 0% | 0% | - |
Fusidic acid | 22.9% | 46.7% | 0.015 * |
Trimethoprim-sulfamethoxazole | 62.5% | 76.1% | 0.12 |
Heavy-metal-resistant gene segments with similar size to SH53 or SH51 strains | ST3 (n = 48) | ST42 (n = 92) | p value |
A5/A5-A6 segment (cadD, cadX, arsC, arsB, arsR) | 89.6% | 90.2% | 0.91 |
D segment (copA) | 64.6% | 71.7% | 0.39 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ho, C.-M.; Lin, L.-C.; Ou, Y.-H.; Lin, K.-H.; Lu, J.-J. Multidrug-Resistant Staphylococcus haemolyticus ST42 Carrying ΨSCCmec57395-like SCCmec and Resistant Islands with Type I aj1–LP–fusB Structure Emerges in Taiwan Hospitals. Antibiotics 2025, 14, 1015. https://doi.org/10.3390/antibiotics14101015
Ho C-M, Lin L-C, Ou Y-H, Lin K-H, Lu J-J. Multidrug-Resistant Staphylococcus haemolyticus ST42 Carrying ΨSCCmec57395-like SCCmec and Resistant Islands with Type I aj1–LP–fusB Structure Emerges in Taiwan Hospitals. Antibiotics. 2025; 14(10):1015. https://doi.org/10.3390/antibiotics14101015
Chicago/Turabian StyleHo, Cheng-Mao, Lee-Chung Lin, Yu-Hsiang Ou, Kai-Hsiang Lin, and Jang-Jih Lu. 2025. "Multidrug-Resistant Staphylococcus haemolyticus ST42 Carrying ΨSCCmec57395-like SCCmec and Resistant Islands with Type I aj1–LP–fusB Structure Emerges in Taiwan Hospitals" Antibiotics 14, no. 10: 1015. https://doi.org/10.3390/antibiotics14101015
APA StyleHo, C.-M., Lin, L.-C., Ou, Y.-H., Lin, K.-H., & Lu, J.-J. (2025). Multidrug-Resistant Staphylococcus haemolyticus ST42 Carrying ΨSCCmec57395-like SCCmec and Resistant Islands with Type I aj1–LP–fusB Structure Emerges in Taiwan Hospitals. Antibiotics, 14(10), 1015. https://doi.org/10.3390/antibiotics14101015