Emerging Challenges in Methicillin Resistance of Coagulase-Negative Staphylococci
Abstract
:1. Introduction
2. Results
2.1. Oxacillin-Susceptible Methicillin-Resistant Coagulase-Negative Staphylococci (OS-MRCoNS)
2.2. Methicillin-Resistant Coagulase-Negative Staphylococci (MRCoNS)
2.3. Borderline Oxacillin-Resistant Coagulase-Negative Staphylococci (BORCoNS)
2.4. Antimicrobial Susceptibility Tests
3. Discussion
4. Materials and Methods
4.1. Bacterial Strains
4.2. Phenotypic Method of Methicillin Resistance Detection
4.2.1. Disk Diffusion Method (DDM)
4.2.2. Agar Dilution Method (ADM)
4.2.3. PBP2a Latex Agglutination Test
4.2.4. CHROMagar MR
4.3. Molecular Analysis of Methicillin Resistance
4.3.1. Genomic DNA Extraction
4.3.2. Detection of mecA, mecB, and mecC Genes
4.3.3. Detection of SCCmec Cassettes
4.3.4. Antimicrobial Susceptibility Testing
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kosecka-Strojek, M.; Buda, A.; Międzobrodzki, J. Staphylococcal Ecology and Epidemiology, in Pet-to-Man Travelling Staphylococci: A World in Progress; Savini, V., Ed.; Elsevier: Cambridge, MA, USA, 2018; pp. 11–24. [Google Scholar] [CrossRef]
- Garbacz, K.; Wierzbowska, M.; Kwapisz, E.; Kosecka-Strojek, M.; Bronk, M.; Saki, M.; Międzobrodzki, J. Distribution and antibiotic-resistance of different Staphylococcus species identified by matrix assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS) isolated from the oral cavity. J. Oral. Microbiol. 2021, 13, 1983322. [Google Scholar] [CrossRef] [PubMed]
- Becker, K.; Heilmann, C.; Peters, G. Coagulase-negative staphylococci. Clin. Microbiol. Rev. 2014, 27, 870–926. [Google Scholar] [CrossRef] [PubMed]
- Pereira, V.C.; Romero, L.C.; Pinheiro-Hubinger, L.; Oliveira, A.; Martins, K.B.; Cunha, M.D.L.R.D.S.D. Coagulase-negative staphylococci: A 20-year study on the antimicrobial resistance profile of blood culture isolates from a teaching hospital. Braz. J. Infect. Dis. 2020, 24, 160–169. [Google Scholar] [CrossRef] [PubMed]
- Casey, A.L.; Lambert, P.A.; Elliott, T.S. Staphylococci. Int. J. Antimicrob. Agents 2007, 29 (Suppl. S3), S23–S32. [Google Scholar] [CrossRef]
- García, A.; Martínez, C.; Juárez, R.I.; Téllez, R.; Paredes, M.A.; Herrera, M.d.R.; Giono, S. Methicillin resistance and biofilm production in clinical isolates of Staphylococcus aureus and coagulase-negative Staphylococcus in México. Biomedica 2019, 39, 513–523. [Google Scholar] [CrossRef]
- Mora-Ochomogo, M.; Lohans, C.T. β-Lactam antibiotic targets and resistance mechanisms: From covalent inhibitors to substrates. RSC Med. Chem. 2021, 12, 1623–1639. [Google Scholar] [CrossRef]
- Lade, H.; Kim, J.S. Molecular Determinants of β-Lactam Resistance in Methicillin-Resistant Staphylococcus aureus (MRSA): An Updated Review. Antibiotics 2023, 12, 1362. [Google Scholar] [CrossRef]
- Alghamdi, B.A.; Al-Johani, I.; Al-Shamrani, J.M.; Alshamrani, H.M.; Al-Otaibi, B.G.; Almazmomi, K.; Yusof, N.Y. Antimicrobial resistance in methicillin-resistant Staphylococcus aureus. Saudi J. Biol. Sci. 2023, 30, 103604. [Google Scholar] [CrossRef]
- García-Álvarez, L.; Holden, M.T.; Lindsay, H.; Webb, C.R.; Brown, D.F.; Curran, M.D.; Walpole, E.; Brooks, K.; Pickard, D.J.; Teale, C.; et al. Meticillin-resistant Staphylococcus aureus with a novel mecA homologue in human and bovine populations in the UK and Denmark: A descriptive study. Lancet Infect. Dis. 2011, 11, 595–603. [Google Scholar] [CrossRef]
- Matsuhashi, M.; Song, M.D.; Ishino, F.; Wachi, M.; Doi, M.; Inoue, M.; Ubukata, K.; Yamashita, N.; Konno, M. Molecular cloning of the gene of a penicillin-binding protein supposed to cause high resistance to beta-lactam antibiotics in Staphylococcus aureus. J. Bacteriol. 1986, 167, 975–980. [Google Scholar] [CrossRef]
- Wolska-Gębarzewska, M.; Międzobrodzki, J.; Kosecka-Strojek, M. Current types of staphylococcal cassette chromosome mec (SCCmec) in clinically relevant coagulase-negative staphylococcal (CoNS) species. Crit. Rev. Microbiol. 2023, 50, 1020–1036. [Google Scholar] [CrossRef] [PubMed]
- Stańkowska, M.; Garbacz, K.; Piechowicz, L.; Bronk, M. Dissemination Of t437-SCCmecIV And Coagulase-Negative t037-SCCmecIII Types Among Borderline Oxacillin-Resistant Staphylococcus aureus Isolated From Skin Infections And Diabetic Foot Ulcers. Infect. Drug Resist. 2019, 12, 3197–3203. [Google Scholar] [CrossRef] [PubMed]
- Hryniewicz, M.M.; Garbacz, K. Borderline oxacillin-resistant Staphylococcus aureus (BORSA)—A more common problem than expected? J. Med. Microbiol. 2017, 66, 1367–1373. [Google Scholar] [CrossRef] [PubMed]
- The European Committee on Antimicrobial Susceptibility Testing. Available online: http://www.eucast.org/fileadmin/src/media/PDFs/EUCAST_files/Expert_Rules/2018/Exprules_Staphylococcus_2018.pdf (accessed on 1 January 2018).
- CLSI. Performance Standards for Antimicrobial Susceptibility Testing, 30th ed.; CLSI Supplement M100; Clinical and Laboratory Standards Institute: Wayne, PA, USA, 2020. [Google Scholar]
- Pinheiro, L.; Mello, P.L.; Abraão, L.M.; Corrente, J.E.; de Lourdes, R.S.C.M. Evaluation of reference values for phenotypic tests to detect oxacillin resistance in coagulase-negative staphylococci. Futur. Microbiol. 2018, 13, 565–575. [Google Scholar] [CrossRef] [PubMed]
- Pefanis, A.; Thauvin-Eliopoulos, C.; Eliopoulos, G.M.; Moellering, R.C. Activity of ampicillin-sulbactam and oxacillin in experimental endocarditis caused by beta-lactamase-hyperproducing Staphylococcus aureus. Antimicrob. Agents Chemother. 1993, 37, 507–511. [Google Scholar] [CrossRef]
- Nelson, L.; Cockram, C.; Lui, G.; Lam, R.; Lam, E.; Lai, R.; Ip, M. Community case of methicillin-resistant Staphylococcus aureus infection. Emerg. Infect. Dis. 2006, 12, 172–174. [Google Scholar] [CrossRef]
- Sawhney, S.S.; Ransom, E.M.; Wallace, M.A.; Reich, P.J.; Dantas, G.; Burnham, C.-A.D. Comparative Genomics of Borderline Oxacillin-Resistant Staphylococcus aureus Detected during a Pseudo-outbreak of Methicillin-Resistant S. aureus in a Neonatal Intensive Care Unit. mBio 2022, 13, e0319621. [Google Scholar] [CrossRef]
- Conceição, T.; Coelho, C.; de Lencastre, H.; Aires-De-Sousa, M. Frequent occurrence of oxacillin-susceptible mecA-positive Staphylococcus aureus (OS-MRSA) strains in two African countries. J. Antimicrob. Chemother. 2015, 70, 3200–3204. [Google Scholar] [CrossRef]
- Liu, J.-L.; Li, T.-M.; Zhong, N.; Wang, X.; Jiang, J.; Zhang, W.-X.; Tang, R.; Guo, Y.-J.; Liu, Y.; Hu, J.; et al. Current status of oxacillin-susceptible mecA-positive Staphylococcus aureus infection in Shanghai, China: A multicenter study. J. Microbiol. Immunol. Infect. 2021, 54, 1070–1077. [Google Scholar] [CrossRef]
- Ho, C.-M.; Lin, C.-Y.; Ho, M.-W.; Lin, H.-C.; Chen, C.-J.; Lin, L.-C.; Lu, J.-J. Methicillin-resistant Staphylococcus aureus isolates with SCCmec type V and spa types t437 or t1081 associated to discordant susceptibility results between oxacillin and cefoxitin, Central Taiwan. Diagn. Microbiol. Infect. Dis. 2016, 86, 405–411. [Google Scholar] [CrossRef]
- Hososaka, Y.; Hanaki, H.; Endo, H.; Suzuki, Y.; Nakae, T.; Nagasawa, Z.; Otsuka, Y.; Sunakawa, K. Characterization of oxacillin-susceptible mecA-positive Staphylococcus aureus: A new type of MRSA. J. Infect. Chemother. 2007, 13, 79–86. [Google Scholar] [CrossRef] [PubMed]
- Petinaki, E.; Kontos, F.; Maniatis, A.N. Emergence of two oxacillin-susceptible mecA-positive Staphylococcus aureus clones in a Greek hospital. J. Antimicrob. Chemother. 2002, 50, 1090–1091. [Google Scholar] [CrossRef] [PubMed]
- Wannet, W.J.B.; Spalburg, E.; Heck, M.E.O.C.; Pluister, G.N.; Willems, R.J.L.; de Neeling, A.J. Widespread dissemination in the Netherlands of the epidemic berlin methicillin-resistant Staphylococcus aureus clone with low-level resistance to oxacillin. J. Clin. Microbiol. 2004, 42, 3077–3082. [Google Scholar] [CrossRef] [PubMed]
- Harrison, E.M.; Ba, X.; Coll, F.; Blane, B.; Restif, O.; Carvell, H.; Köser, C.U.; Jamrozy, D.; Reuter, S.; Lovering, A.; et al. Genomic identification of cryptic susceptibility to penicillins and beta-lactamase inhibitors in methicillin resistant Staphylococcus aureus. Nat. Microbiol. 2019, 4, 1680–1691. [Google Scholar] [CrossRef]
- Ba, X.; Harrison, E.M.; Lovering, A.L.; Gleadall, N.; Zadoks, R.; Parkhill, J.; Peacock, S.J.; Holden, M.T.G.; Paterson, G.K.; Holmes, M.A. Old drugs to treat resistant bugs: Methicillin-resistant Staphylococcus aureus isolates with mecC are susceptible to a combination of Penicillin and Clavulanic acid. Antimicrob. Agents Chemother. 2015, 59, 7396–7404. [Google Scholar] [CrossRef]
- Gostev, V.; Sabinova, K.; Sopova, J.; Kalinogorskaya, O.; Sulian, O.; Chulkova, P.; Velizhanina, M.; Pavlova, P.; Danilov, L.; Kraeva, L.; et al. Phenotypic and genomic characteristics of oxacillin-susceptible mecA-positive Staphylococcus aureus, rapid selection of high-level resistance to beta-lactams. Eur. J. Clin. Microbiol. Infect. Dis. 2023, 42, 1125–1133. [Google Scholar] [CrossRef]
- Maalej, S.M.; Rhimi, F.M.; Fines, M.; Mnif, B.; Leclercq, R.; Hammami, A. Analysis of borderline oxacillin-resistant Staphylococcus aureus (BORSA) strains isolated in Tunisia. J. Clin. Microbiol. 2012, 50, 3345–3348. [Google Scholar] [CrossRef]
- Chambers, H.F. Methicillin resistance in staphylococci: Molecular and biochemical basis and clinical implications. Clin. Microbiol. Rev. 1997, 10, 781–791. [Google Scholar] [CrossRef]
- Balslev, U.; Bremmelgaard, A.; Svejgaard, E.; Havstreym, J.; Westh, H. An outbreak of borderline oxacillin-resistant Staphylococcus aureus (BORSA) in a dermatological unit. Microb. Drug Resist. 2005, 11, 78–81. [Google Scholar] [CrossRef]
- Khorvash, F.; Mostafavizadeh, K.; Mobasherizadeh, S. Frequency of mecA gene and borderline oxacillin resistant Staphylococcus aureus in nosocomial acquired methicillin resistance Staphylococcus aureus infections. Pak. J. Biol. Sci. 2008, 11, 1282–1285. [Google Scholar] [CrossRef]
- Leahy, T.R.; Yau, Y.C.; Atenafu, E.; Corey, M.; Ratjen, F.; Waters, V. Epidemiology of borderline oxacillin-resistant Staphylococcus aureus in pediatric cystic fibrosis. Pediatr. Pulmonol. 2011, 46, 489–496. [Google Scholar] [CrossRef] [PubMed]
- Konstantinovski, M.M.; Veldkamp, K.E.; Lavrijsen, A.P.M.; Bosch, T.; Kraakman, M.E.M.; Nooij, S.; Claas, E.C.J.; Gooskens, J. Hospital transmission of borderline oxacillin-resistant Staphylococcus aureus evaluated by whole-genome sequencing. J. Med. Microbiol. 2021, 70, 001384. [Google Scholar] [CrossRef] [PubMed]
- Skinner, S.; Murray, M.; Walus, T.; Karlowsky, J.A. Failure of cloxacillin in treatment of a patient with borderline oxacillin-resistant Staphylococcus aureus endocarditis. J. Clin. Microbiol. 2009, 47, 859–861. [Google Scholar] [CrossRef]
- Szczuka, E.; Koznowski, A. Zróżnicowanie kaset SCCmec u metycylinoopornych gronkowców koagulazo-ujemnych. Post. Mikrobiol. 2014, 53, 223–228. [Google Scholar]
- Secchi, C.; Antunes, A.L.S.; Perez, L.R.R.; Cantarelli, V.V.; D’Azevedo, P.A. Identification and detection of methicillin resistance in non-epidermidis coagulase-negative staphylococci. Braz. J. Infect. Dis. 2008, 12, 316–320. [Google Scholar] [CrossRef]
- Swenson, J.M.; Tenover, F.C.; Cefoxitin Disk Study Group. Results of disk diffusion testing with cefoxitin correlate with presence of mecA in Staphylococcus spp. J. Clin. Microbiol. 2005, 43, 3818–3823. [Google Scholar] [CrossRef]
- Nair, D.; Shashindran, N.; Kumar, A.; Vinodh, V.; Biswas, L.; Biswas, R. Comparison of Phenotypic MRSA Detection Methods with PCR for mecA Gene in the Background of Emergence of Oxacillin-Susceptible MRSA. Microb. Drug Resist. 2021, 27, 1190–1194. [Google Scholar] [CrossRef]
- Ito, T.; Kuwahara-Arai, K.; Katayama, Y.; Uehara, Y.; Han, X.; Kondo, Y.; Hiramatsu, K. Staphylococcal Cassette Chromosome mec (SCCmec) analysis of MRSA. Methods Mol. Biol. 2014, 1085, 131–148. [Google Scholar] [CrossRef]
- Becker, K.; van Alen, S.; Idelevich, E.A.; Schleimer, N.; Seggewiß, J.; Mellmann, A.; Kaspar, U.; Peters, G. Plasmid-Encoded Transferable mecB-Mediated Methicillin Resistance in Staphylococcus aureus. Emerg. Infect. Dis. 2018, 24, 242–248. [Google Scholar] [CrossRef]
- Milheiriço, C.; Oliveira, D.C.; de Lencastre, H. Update to the multiplex PCR strategy for assignment of mec element types in Staphylococcus aureus. Antimicrob. Agents Chemother. 2007, 51, 3374–3377. [Google Scholar] [CrossRef]
- Kondo, Y.; Ito, T.; Ma, X.X.; Watanabe, S.; Kreiswirth, B.N.; Etienne, J.; Hiramatsu, K. Combination of multiplex PCRs for staphylococcal cassette chromosome mec type assignment: Rapid identification system for mec, ccr, and major differences in junkyard regions. Antimicrob. Agents Chemother. 2007, 51, 264–274. [Google Scholar] [CrossRef] [PubMed]
Methods | Sensitivity (%) | Specificity (%) | PPV (%) | NPV (%) |
---|---|---|---|---|
OXA DDM | 100 | 87.1 | 57.7 | 100.0 |
FOX DDM | 68.8 | 94.1 | 68.8 | 94.1 |
OXA ADM | 81.3 | 90.6 | 61.9 | 96.3 |
CHROMagar | 61.5 | 100.0 | 100.0 | 94.4 |
PBP2A | 81.3 | 100.0 | 100.0 | 96.6 |
Species | Disc Diffusion | OXA MIC [mg/L] | PBP2A | mecA | SCCmec | Antimicrobial Resistance Profile | Chromagar MR | |
---|---|---|---|---|---|---|---|---|
FOX | OXA | |||||||
S. epidermidis | S | R | 2 | + | + | I | OXA-ERY | + |
S. haemolyticus | R | S | 1 | − | + | unique | FOX-ERY | + |
S. pasteurii | R | R | 0.5 | + | + | I | FOX-OXA-ERY-GMN | − |
S. saprophyticus | S | R | 1 | − | + | II | OXA-GMN | − |
S. saprophyticus | S | R | 0.5 | + | + | NT | OXA-ERY-TET-SXT | − |
S. saprophyticus | S | R | 1 | + | + | I | OXA | − |
S. warneri | R | R | 0.5 | − | + | NT | FOX-OXA-GMN-P | + |
Species | Disc Diffusion | OXA MIC [mg/L] | PBP2A | mecA | SCCmec | Antimicrobial Resistance Profile | Chromagar MR | |
---|---|---|---|---|---|---|---|---|
FOX | OXA | |||||||
S. epidermidis | R | R | 32 | + | + | IV | FOX-OXA-ERY-CMN-TET-GMN-SXT | + |
S. haemolyticus | S | R | 32 | + | + | NT | OXA-ERY-CMN-GMN | + |
S. hominis | R | R | 1 | + | + | I | FOX-OXA-ERY-P-SXT | + |
S. haemolyticus | R | R | 32 | + | + | V | FOX-OXA | + |
S. haemolyticus | R | R | 32 | + | + | V | FOX-OXA-ERY-TET-GMN | + |
S. haemolyticus | R | R | 32 | + | + | I | FOX-OXA-ERY-CIP-GMN-SXT | + |
S. saprophyticus | R | R | 2 | + | + | NT | FOX-OXA | − |
S. haemolyticus | R | R | 32 | + | + | V | FOX-OXA-ERY-CIP-TET-GMN | + |
S. warneri | R | R | 1 | + | + | unique | FOX-OXA-GMN | + |
Species | Disc Diffusion | OXA MIC [mg/L] | PBP2A | mecA | Antimicrobial Resistance Profile | Chromagar MR | |
---|---|---|---|---|---|---|---|
FOX | OXA | ||||||
S. cohnii | S | R | 2 | - | - | OXA-ERY-P | - |
S. equorum | S | R | 1 | - | - | OXA-ERY-CMN-P | - |
S. equorum | R | R | 1 | - | - | FOX-OXA | - |
S. saprophyticus | S | R | 2 | - | - | OXA-CHL-ERY-TET-P | - |
S. saprophyticus | R | R | 1 | - | - | FOX-OXA-CHL-ERY-TET-P | - |
S. succinus | S | R | 1 | - | - | FOX-OXA-ERY-CMN-GMN-P | - |
S. succinus | R | R | 1 | - | - | FOX-OXA-GMN-TET-P | - |
S. warneri | S | R | 0.5 | - | - | OXA | - |
S. warneri | R | S | 0.5 | - | - | FOX-GMN-TET-P | - |
S. warneri | S | R | 0.5 | - | - | OXA-ERY-GMN-P | - |
S. warneri | R | R | 0.5 | - | - | FOX-OXA-GMN-TET-P | - |
S. xylosus | S | R | 1 | - | - | OXA-GMN-P | - |
Antimicrobial Agents | OS-MRCoNS (n = 7) | MRCNS (n = 9) | BORCoNS (n = 12) |
---|---|---|---|
chloramphenicol | 0 (0.0%) | 0 (0.0%) | 2 (16.7%) |
ciprofloxacin | 0 (0.0%) | 2 (22.2%) | 0 (0.0%) |
clindamycin | 0 (0.0%) | 2 (22.2%) | 2 (16.7%) |
erythromycin | 4 (57.1%) | 6 (66.7%) | 6 (50.0%) |
gentamycin | 3 (42.9%) | 6 (66.7%) | 6 (50.0%) |
penicillin | 7 (100%) | 8(88.9%) | 12 (100%) |
trimethoprim/sulfamethoxazole | 1 (14.3%) | 3 (33.3%) | 0 (0.0%) |
tetracyclin | 1 (14.3%) | 3 (33.3%) | 5 (41.7%) |
daptomycin | 0 (0.0%) | 0 (0.0%) | 0 (0.0%) |
linezolid | 0 (0.0%) | 0 (0.0%) | 0 (0.0%) |
vancomycin | 0 (0.0%) | 0 (0.0%) | 0 (0.0%) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Katkowska, M.; Kosecka-Strojek, M.; Wolska-Gębarzewska, M.; Kwapisz, E.; Wierzbowska, M.; Międzobrodzki, J.; Garbacz, K. Emerging Challenges in Methicillin Resistance of Coagulase-Negative Staphylococci. Antibiotics 2025, 14, 37. https://doi.org/10.3390/antibiotics14010037
Katkowska M, Kosecka-Strojek M, Wolska-Gębarzewska M, Kwapisz E, Wierzbowska M, Międzobrodzki J, Garbacz K. Emerging Challenges in Methicillin Resistance of Coagulase-Negative Staphylococci. Antibiotics. 2025; 14(1):37. https://doi.org/10.3390/antibiotics14010037
Chicago/Turabian StyleKatkowska, Marta, Maja Kosecka-Strojek, Mariola Wolska-Gębarzewska, Ewa Kwapisz, Maria Wierzbowska, Jacek Międzobrodzki, and Katarzyna Garbacz. 2025. "Emerging Challenges in Methicillin Resistance of Coagulase-Negative Staphylococci" Antibiotics 14, no. 1: 37. https://doi.org/10.3390/antibiotics14010037
APA StyleKatkowska, M., Kosecka-Strojek, M., Wolska-Gębarzewska, M., Kwapisz, E., Wierzbowska, M., Międzobrodzki, J., & Garbacz, K. (2025). Emerging Challenges in Methicillin Resistance of Coagulase-Negative Staphylococci. Antibiotics, 14(1), 37. https://doi.org/10.3390/antibiotics14010037