Exploring Biofilm-Related Traits and Bile Salt Efficacy as Anti-Biofilm Agents in MDR Acinetobacter baumannii
Abstract
:1. Introduction
2. Results
2.1. Biofilm-Related A. baumannii Phenotype Characteristics
2.2. Biofilm-Related A. baumannii Genotype Characteristics
2.3. Effect of Bile Salts on MDR A. baumannii
3. Discussion
4. Materials and Methods
4.1. Bacterial Strains
4.2. Phenotype Traits
4.2.1. Autoaggregation
4.2.2. Hydrophobicity
4.2.3. Twitching Motility
4.2.4. Lectins Production and Semi-Quantification
4.2.5. Biofilm Production
4.3. Genotype Traits
4.4. Examination of Bile Salts Effects on MDR A. baumannii
4.4.1. Effect of Bile Salts on Total Growth
4.4.2. Effect of Bile Salts on Biofilm Formation
4.4.3. Effect of Bile Salts on Planktonic Biofilm Cells
4.5. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Gandham, N.R.; Gupta, N.; Jadhav, S.V.; Misra, R.N. Isolation of Acinetobacter baumannii from cerebrospinal fluid following craniotomy. Med. J. DY. Patil. Univ. 2012, 5, 151–153. [Google Scholar] [CrossRef]
- Lockhart, S.R.; Abramson, M.A.; Beekmann, S.E.; Gallagher, G.; Riedel, S.; Diekema, D.J.; Quinn, J.P.; Doern, G.V. Antimicrobial resistance among Gram-negative bacilli causing infections in intensive care unit patients in the United States between 1993 and 2004. J. Clin. Microbiol. 2007, 45, 3352–3359. [Google Scholar] [CrossRef] [PubMed]
- Harding, C.M.; Hennon, S.W.; Feldman, M.F. Uncovering the mechanisms of Acinetobacter baumannii virulence. Nat. Rev. Microbiol. 2018, 16, 91–102. [Google Scholar] [CrossRef] [PubMed]
- Towner, K. The genus Acinetobacter. In Prokaryotes; Springer: New York, NY, USA, 2006; Volume 6, pp. 746–758. [Google Scholar]
- Cerqueira, G.M.; Peleg, A.Y. Insights into Acinetobacter baumannii pathogenicity. IUBMB Life 2011, 63, 1055–1060. [Google Scholar] [CrossRef] [PubMed]
- Sirijant, N.; Sermswan, R.W.; Wongratanacheewin, S. Burkholderia pseudomallei resistance to antibiotics in biofilm-induced conditions is related to efflux pumps. J. Med. Microbiol. 2016, 65, 1296–1306. [Google Scholar] [CrossRef]
- Tomaras, A.P.; Dorsey, C.W.; Edelmann, R.E.; Actis, L.A. Attachment to and biofilm formation on abiotic surfaces by Acinetobacter baumannii: Involvement of a novel chaperone-usher pili assembly system. Microbiology 2003, 149, 3473–3484. [Google Scholar] [CrossRef]
- Prashanth, K.; Vasanth, T.; Saranathan, R.; Makki, A.R.; Pagal, S. Antibiotic resistance, biofilms and quorum sensing in Acinetobacter species. In Antibiotic Resistant Bacteria—A Continuous Challenge in the New Millennium; Pana, M., Ed.; InTech: Rijeka, Croatia, 2012; pp. 179–212. [Google Scholar]
- Novović, K.; Kuzmanović Nedeljković, S.; Poledica, M.; Nikolić, G.; Grujić, B.; Jovčić, B.; Kojić, M.; Filipić, B. Virulence potential of multidrug-resistant Acinetobacter baumannii isolates from COVID-19 patients on mechanical ventilation: The first report from Serbia. Front. Microbiol. 2023, 14, 1094184. [Google Scholar] [CrossRef]
- Cavallo, I.; Oliva, A.; Pages, R.; Sivori, F.; Truglio, M.; Fabrizio, G.; Pasqua, M.; Pimpinelli, F.; Di Domenico, E.G. Acinetobacter baumannii in the critically ill: Complex infections get complicated. Front. Microbiol. 2023, 14, 1196774. [Google Scholar] [CrossRef]
- Rodríguez-Baño, J.; Martí, S.; Soto, S.; Fernández-Cuenca, F.; Cisneros, J.M.; Pachón, J.; Pascual, A.; Martínez-Martínez, L.; McQueary, C.; Actis, L.A.; et al. Biofilm formation in Acinetobacter baumannii: Associated features and clinical implications. Clin. Microbiol. Infect. 2008, 14, 276–278. [Google Scholar] [CrossRef]
- Gurung, J.; Khyriem, A.B.; Banik, A.; Lyngdoh, W.V.; Choudhury, B.; Bhattacharyya, P. Association of biofilm production with multidrug resistance among clinical isolates of Acinetobacter baumannii and Pseudomonas aeruginosa from intensive care unit. Indian J. Crit. Care Med. 2013, 17, 214–218. [Google Scholar]
- Tacconelli, E.; Carrara, E.; Savoldi, A.; Harbarth, S.; Mendelson, M.; Monnet, D.L.; Zorzet, A. Discovery, research, and development of new antibiotics: The WHO priority list of antibiotic-resistant bacteria and tuberculosis. Lancet Infect. Dis. 2018, 18, 318–327. [Google Scholar] [CrossRef] [PubMed]
- Handal, R.; Qunibi, L.; Sahouri, I.; Juhari, M.; Dawodi, R.; Marzouqa, H.; Hindiyeh, M. Characterization of carbapenem-resistant Acinetobacter baumannii strains isolated from hospitalized patients in Palestine. Int. J. Microbiol. 2017, 2017, 8012104. [Google Scholar] [CrossRef] [PubMed]
- Elnaggar, Y.S.R. Multifaceted applications of bile salts in pharmacy: An emphasis on nanomedicine. Int. J. Nanomed. 2015, 10, 3955–3971. [Google Scholar] [CrossRef] [PubMed]
- Aleksic Sabo, V.; Skoric, D.; Jovanovic-Santa, S.; Nikolic, I.; Csanadi, J.; Knezevic, P. Synergistic activity of bile salts and their derivatives in combination with conventional antimicrobial agents against Acinetobacter baumannii. J. Ethnopharmacol. 2021, 264, 113266. [Google Scholar] [CrossRef] [PubMed]
- Wang, D.Q.; Carey, M.C. Therapeutic uses of animal biles in traditional Chinese medicine: An ethnopharmacological, biophysical chemical and medicinal review. World J. Gastroenterol. 2014, 20, 9952–9975. [Google Scholar] [CrossRef]
- Scholmerich, J.; Becher, M.S.; Schmidt, K.; Schubert, R.; Kremer, B.; Feldhaus, S.; Gerok, W. Influence of hydroxylation and conjugation of bile salts on their membrane-damaging properties—Studies on isolated hepatocytes and lipid membrane vesicles. Hepatology 1984, 4, 661–666. [Google Scholar] [CrossRef]
- Prieto, A.I.; Ramos-Morales, F.; Casadesus, J. Bile-induced DNA damage in Salmonella enterica. Genetics 2004, 168, 1787–1794. [Google Scholar] [CrossRef]
- Kurdi, P.; Kawanishi, K.; Mizutani, K.; Yokota, A. Mechanism of growth inhibition by free bile acids in lactobacilli and bifidobacteria. J. Bacteriol. 2006, 188, 1979–1986. [Google Scholar] [CrossRef]
- Merritt, M.E.; Donaldson, J.R. Effect of bile salts on the DNA and membrane integrity of enteric bacteria. J. Med. Microbiol. 2009, 58, 1533–1541. [Google Scholar] [CrossRef]
- Gedefie, A.; Demsis, W.; Ashagrie, M.; Kassa, Y.; Tesfaye, M.; Tilahun, M.; Bisetegn, H.; Sahle, Z. Acinetobacter baumannii biofilm formation and its role in disease pathogenesis: A review. Infect. Drug Resist. 2021, 14, 3711–3719. [Google Scholar] [CrossRef]
- Trunk, T.; Khalil, H.S.; Leo, J.C. Bacterial autoaggregation. AIMS Microbiol. 2018, 4, 140–164. [Google Scholar] [CrossRef] [PubMed]
- Koljalg, S.; Vuopio-Varkila, J.; Lyytikainen, O.; Mikelsaar, M.; Wadstrom, T. Cell surface properties of Acinetobacter baumannii. APMIS 1996, 104, 659–665. [Google Scholar] [CrossRef]
- Cerca, N.; Pier, G.B.; Vilanova, M.; Oliveira, R.; Azeredo, J. Quantitative analysis of adhesion and biofilm formation on hydrophilic and hydrophobic surfaces of clinical isolates of Staphylococcus epidermidis. Res. Microbiol. 2005, 156, 506–514. [Google Scholar] [CrossRef]
- Clemmer, K.M.; Bonomo, R.A.; Rather, P.N. Genetic analysis of surface motility in Acinetobacter baumannii. Microbiology 2011, 157, 2534–2544. [Google Scholar] [CrossRef]
- Lee, J.C.; Koerten, H.; van den Broek, P.; Beekhuizen, H.; Wolterbeek, R.; van Barselaar, M.T.; van Reijden, T.J.; van der Meer, J.; van den Gevel, J.; Dijkshoorn, L. Adherence of Acinetobacter baumannii strains to human bronchial epithelial cells. Res. Microbiol. 2006, 157, 360–366. [Google Scholar] [CrossRef]
- Gaddy, J.A.; Actis, L.A. Regulation of Acinetobacter baumannii biofilm formation. Future Microbiol. 2009, 4, 273–278. [Google Scholar] [CrossRef]
- McQueary, C.N.; Actis, L.A. Acinetobacter baumannii biofilms: Variations among strains and correlations with other cell properties. J. Microbiol. 2011, 49, 243–250. [Google Scholar] [CrossRef]
- Chettri, D.; Boro, M.; Sarkar, L.; Verma, A.K. Lectins: Biological significance to biotechnological application. Carbohydr. Res. 2021, 506, 108367. [Google Scholar] [CrossRef]
- Lewis, A.L.; Kohler, J.J.; Aebi, M. Microbial Lectins: Hemagglutinins, Adhesins, and Toxins. In Essentials of Glycobiology, 4th ed.; Varki, A., Cummings, R.D., Esko, J.D., Stanley, P., Hart, G.W., Aebi, M., Mohnen, D., Kinoshita, T., Packer, N.H., Prestegard, J.H., et al., Eds.; Cold Spring Harbor Laboratory Press: Cold Spring Harbor, NY, USA, 2022; Chapter 37. [Google Scholar]
- Patil, J.R.; Jog, N.R.; Chopade, B.A. Isolation and characterization of Acinetobacter spp. from upper respiratory tract of healthy humans and demonstration of lectin activity. Indian J. Med. Microbiol. 2001, 19, 30–35. [Google Scholar]
- Mahammed Ali, A.N. Cytotoxic effect of the purified lectin from locally isolate Acinetobacter baumannii on Hep-2 tumor cell line. J. Biol. Agric. Healthc. 2014, 4, 168–173. [Google Scholar]
- Cevahir, N.; Demir, M.; Kaleli, I.; Gurbuz, M.; Tikvesli, S. Evaluation of biofilm production, gelatinase activity, and mannose resistant hemagglutination in Acinetobacter baumannii strains. J. Microbiol. Immunol. Infect. 2009, 41, 513–518. [Google Scholar]
- Pour, N.K.; Dusane, D.H.; Dhakephalkar, P.K.; Zamin, F.R.; Zinjarde, S.S.; Chopade, B.A. Biofilm formation by Acinetobacter baumannii strains isolated from urinary tract infection and urinary catheters. FEMS Immunol. Med. Microbiol. 2011, 62, 328–338. [Google Scholar] [CrossRef]
- Sehree, M.M.; Abdullah, H.N.; Jasim, A.M. Comparison of phenotypic and genotypic assays of biofilm formation in A. baumannii isolates based on gold standard method and related antibiotic resistance. Gene Rep. 2022, 27, 101575. [Google Scholar] [CrossRef]
- Babapour, E.; Haddadi, A.; Mirnejad, R.; Angaji, S.A.; Amirmozafari, N. Biofilm formation in clinical isolates of nosocomial Acinetobacter baumannii and its relationship with multidrug resistance. Asian Pac. J. Trop. Biomed. 2016, 6, 528–533. [Google Scholar] [CrossRef]
- Krzyściak, P.; Chmielarczyk, A.; Pobiega, M.; Romaniszyn, D.; Wójkowska-Mach, J. Acinetobacter baumannii isolated from hospital-acquired infection: Biofilm production and drug susceptibility. APMIS 2017, 125, 1017–1026. [Google Scholar] [CrossRef]
- Van Pelt, A.W.J.; Weerkamp, A.H.; Uyen, M.H.; Busscher, H.J.; de Jong, H.P.; Arends, J. Adhesion of Streptococcus sanguis CH3 to polymers with different surface free energies. Appl. Environ. Microbiol. 1985, 49, 1270–1275. [Google Scholar] [CrossRef]
- Loehfelm, T.W.; Luke, N.R.; Campagnari, A.A. Identification and characterization of an Acinetobacter baumannii biofilm-associated protein. J. Bacteriol. 2008, 190, 1036–1044. [Google Scholar] [CrossRef]
- Goh, H.M.; Beatson, S.A.; Totsika, M.; Moriel, D.G.; Phan, M.D.; Szubert, J.; Runnegar, N.; Sidjabat, H.E.; Paterson, D.L.; Nimmo, G.R.; et al. Molecular analysis of the Acinetobacter baumannii biofilm-associated protein. Appl. Environ. Microbiol. 2013, 79, 6535–6543. [Google Scholar] [CrossRef]
- Vahaboglu, H.; Ozturk, R.; Aygun, G.; Coskunkan, F.; Yaman, A.; Kaygusuz, A.; Leblebicioglu, H.; Balik, I.; Aydin, K.; Otkun, M. Widespread detection of PER-1-type extended-spectrum beta-lactamases among nosocomial Acinetobacter and Pseudomonas aeruginosa isolates in Turkey: A nationwide multicenter study. Antimicrob. Agents Chemother. 1997, 41, 2265–2269. [Google Scholar] [CrossRef]
- Sechi, L.A.; Karadenizli, A.; Deriu, A.; Zanetti, S.; Kolayli, F.; Balikci, E.; Vahaboglu, H. PER-1 type beta-lactamase production in Acinetobacter baumannii is related to cell adhesion. Med. Sci. Monit. 2004, 10, 180–184. [Google Scholar]
- Aleksic, V.; Mimica-Dukic, N.; Simin, N.; Stankovic Nedeljkovic, N.; Knezevic, P. Synergistic effect of Myrtus communis L. essential oils and conventional antibiotics against multi-drug resistant Acinetobacter baumannii wound isolates. Phytomedicine 2014, 21, 666–1674. [Google Scholar] [CrossRef] [PubMed]
- Rao, R.S.; Karthika, R.U.; Singh, S.P.; Shashikala, P.; Kanungo, R.; Jayachandran, S.; Prashanth, K. Correlation between biofilm production and multiple drug-resistance in imipenem resistant clinical isolates of Acinetobacter baumannii. Indian J. Med. Microbiol. 2008, 26, 333–337. [Google Scholar] [CrossRef] [PubMed]
- Bonaventura, A.; Carbone, F.; Vecchié, A.; Meessen, J.; Ferraris, S.; Beck, E.; Keim, R.; Minetti, S.; Elia, E.; Ferrara, D.; et al. The role of resistin and myeloperoxidase in severe sepsis and septic shock: Results from the ALBIOS trial. Eur. J. Clin. Invest. 2020, 50, e13333. [Google Scholar] [CrossRef] [PubMed]
- Sadiq, S.; Rana, N.F.; Zahid, M.A.; Zargaham, M.K.; Tanweer, T.; Batool, A.; Naeem, A.; Nawaz, A.; Rehman, R.; Muneer, Z.; et al. Virtual screening of FDA-approved drugs against LasR of Pseudomonas aeruginosa for antibiofilm potential. Molecules 2020, 25, 3723. [Google Scholar] [CrossRef] [PubMed]
- Sanchez, L.M.; Cheng, A.T.; Warner, C.J.A.; Townsley, L.; Peach, K.C.; Navarro, G.; Shikuma, N.J.; Bray, W.M.; Riener, R.M.; Yildiz, F.H.; et al. Biofilm formation and detachment in Gram-negative pathogens is modulated by select bile acids. PLoS ONE 2016, 11, e0149603. [Google Scholar] [CrossRef]
- Hamner, S.; McInnerney, K.; Williamson, K.; Franklin, M.J.; Ford, T.E. Bile salts affect expression of Escherichia coli O157 genes for virulence and iron acquisition, and promote growth under iron limiting conditions. PLoS ONE 2013, 8, e74647. [Google Scholar] [CrossRef]
- Lopez, M.; Blasco, L.; Gato, E.; Perez, A.; Fernández-Garcia, L.; Martínez-Martinez, L.; Fernández-Cuenca, F.; Rodríguez-Baño, J.; Pascual, A.; Bou, G.; et al. Response to bile salts in clinical strains of Acinetobacter baumannii lacking the AdeABC efflux pump: Virulence associated with quorum sensing. Front. Cell. Infect. Microbiol. 2017, 7, 143. [Google Scholar] [CrossRef]
- Pumbwe, L.; Skilbeck, C.A.; Nakano, V.; Avila-Campos, M.J.; Piazza, R.M.; Wexler, H.M. Bile salts enhance bacterial co-aggregation, bacterial-intestinal epithelial cell adhesion, biofilm formation and antimicrobial resistance of Bacteroides fragilis. Microb. Pathog. 2007, 43, 78–87. [Google Scholar] [CrossRef]
- Sannasiddappa, T.H.; Lund, P.A.; Clarke, S.R. In vitro antibacterial activity of unconjugated and conjugated bile salts on Staphylococcus aureus. Front. Microbiol. 2017, 8, 1581. [Google Scholar] [CrossRef]
- Mateus, C.; Maia, C.J.; Domingues, F.; Bücker, R.; Oleastro, M.; Ferreira, S. Evaluation of bile salts on the survival and modulation of virulence of Aliarcobacter butzleri. Antibiotics 2023, 12, 1387. [Google Scholar] [CrossRef]
- Pace, J.L.; Chai, T.J.; Rossi, H.A.; Jiang, X. Effect of bile on Vibrio parahaemolyticus. Appl. Environ. Microbiol. 1997, 63, 2372–2377. [Google Scholar] [CrossRef] [PubMed]
- Prouty, A.M.; Gunn, J.S. Salmonella enterica serovar Typhimurium invasion is repressed in the presence of bile. Infect. Immun. 2000, 68, 6763–6769. [Google Scholar] [CrossRef] [PubMed]
- Rivera-Amill, V.; Kim, B.J.; Seshu, J.; Konkel, M.E. Secretion of the virulence-associated Campylobacter invasion antigens from Campylobacter jejuni requires a stimulatory signal. J. Infect. Dis. 2001, 183, 1607–1616. [Google Scholar] [CrossRef] [PubMed]
- De Jesus, M.C.; Urban, A.A.; Marasigan, M.E.; Foster, D.E.B. Acid and bile-salt stress of enteropathogenic Escherichia coli enhances adhesion to epithelial cells and alters glycolipid receptor binding specificity. J. Infect. Dis. 2005, 192, 1430–1440. [Google Scholar] [CrossRef] [PubMed]
- Nickerson, K.P.; Chanin, R.B.; Sistrunk, J.R.; Rasko, D.A.; Fink, P.J.; Barry, E.M.; Nataro, J.P.; Faherty, C.S. Analysis of Shigella flexneri resistance, biofilm formation, and transcriptional profile in response to bile salts. Infect. Immun. 2017, 85, e01067-16. [Google Scholar] [CrossRef]
- Joffre, E.; Nicklasson, M.; Álvarez-Carretero, S.; Xiao, X.; Sun, L.; Nookaew, I.; Zhu, B.; Sjöling, Å. The bile salt glycocholate induces global changes in gene and protein expression and activates virulence in enterotoxigenic Escherichia coli. Sci. Rep. 2019, 9, 108. [Google Scholar] [CrossRef]
- Ferreira, S.; Queiroz, J.A.; Oleastro, M.; Domingues, F.C. Insights in the pathogenesis and resistance of Arcobacter: A review. Crit. Rev. Microbiol. 2016, 42, 364–383. [Google Scholar]
- Qvortrup, K.; Hultqvist, L.D.; Nilsson, M.; Jakobsen, T.H.; Jansen, C.U.; Uhd, J.; Andersen, J.B.; Nielsen, T.E.; Givskov, M.; Tolker-Nielsen, T. Small molecule anti-biofilm agents developed on the basis of mechanistic understanding of biofilm formation. Front. Chem. 2019, 7, 742. [Google Scholar] [CrossRef]
- Valenta, C.; Nowack, E.; Bernkop-Schnurch, A. Deoxycholate-hydrogels: Novel drug carrier systems for topical use. Int. J. Pharm. 1999, 185, 103–111. [Google Scholar] [CrossRef]
- Aleksic Sabo, V.; Gavric, D.; Pejic, J.; Knezevic, P. Acinetobacter calcoaceticus-A. baumannii complex: Isolation, identification and characterisation of environmental and clinical strains. Biologia Serbica 2022, 44, 3–17. [Google Scholar]
- Basson, A.; Flemming, L.A.; Chenia, H.Y. Evaluation of adherence, hydrophobicity, aggregation and biofilm development of Flavobacterium johnsoniae-like isolates. Microb. Ecol. 2008, 55, 1–14. [Google Scholar] [CrossRef] [PubMed]
- Malik, A.; Sakamoto, M.; Hanazaki, S.; Osawa, M.; Suzuki, T.; Tochigi, M.; Kakii, K. Coaggregation among nonflocculating bacteria isolated from activated sludge. Appl. Environ. Microbiol. 2003, 69, 6056–6063. [Google Scholar] [CrossRef] [PubMed]
- Mattos-Guaraldi, A.L.; Formiga, L.C.D.; Andrade, A.F.B. Cell surface hydrophobicity of sucrose fermenting and nonfermenting Corynebacterium diphtheriae strains evaluated by different methods. Curr. Microbiol. 1999, 38, 37–42. [Google Scholar] [CrossRef] [PubMed]
- Rashid, M.H.; Kornberg, A. Inorganic polyphosphate is needed for swimming, swarming and twitching motilities of Pseudomonas aeruginosa. Proc. Natl. Acad. Sci. USA 2000, 97, 4885–4890. [Google Scholar] [CrossRef]
- Knezevic, P.; Petrovic, O. A colorimetric microtiter plate method for assessment of phage effect on Pseudomonas aeruginosa biofilm. J. Microbiol. Methods 2008, 74, 114–118. [Google Scholar] [CrossRef]
- Stepanović, S.; Vuković, D.; Davić, I.; Savić, B.; Švabić-Vlahović, M. A modified microtiter plate test for quantification of staphylococcal biofilm formation. J. Microbiol. Methods 2000, 40, 175–179. [Google Scholar] [CrossRef]
- Brossard, K.A.; Campagnari, A.A. The Acinetobacter baumannii biofilm-associated protein plays a role in adherence to human epithelial cells. Infect. Immun. 2011, 80, 228–233. [Google Scholar] [CrossRef]
- Poirel, L.; Karim, A.; Mercat, A.; Le Thomas, I.; Vahaboglu, H.; Richard, C.; Nordmann, P. Extended-spectrum β-lactamase-producing strain of Acinetobacter baumannii isolated from a patient in France. J. Antimicrob. Chemother. 1999, 43, 157–158. [Google Scholar] [CrossRef]
- Clinical and Laboratory Standards Institute (CLSI). Performance Standards for Antimicrobial Susceptibility Testing, 28th ed.; CLSI Supplement M100; Clinical and Laboratory Standards Institute: Wayne, PA, USA, 2018. [Google Scholar]
Origin of the Isolates | Isolate Designation | Diffuse Blur Zone Diameter (mm) | Classification 1 | Titre of the Lectins | Blood Types 2 | Genes | |||
---|---|---|---|---|---|---|---|---|---|
O Rh+ | A Rh+ | B Rh+ | bap | blaPER-1 | |||||
Reference strains | ATCC BAA747 | 22.0 ± 1.8 | HM | 1/16 | + | + | + | + | − |
ATCC 19606 | 20.5 ± 1.3 | HM | 1/4 | + | + | + | + | − | |
NCTC 13423 | 7.5 ± 1.3 | IM | 1/16 | + | + | + | + | − | |
PAO1 | 26.0 ± 1.8 | HM | 1/32 | + | + | + | / | / | |
Human pathological material isolates | Aba-2572 | 18.0 ± 5.2 | IM | 1/4 | + | + | + | + | − |
Aba-2793 | 25.5 ± 5.3 | HM | 1/16 | + | + | + | + | − | |
Aba-4156 | 33.0 ± 7.2 | HM | 1/16 | + | + | + | + | − | |
Aba-4727 | 20.5 ± 2.0 | HM | 1/32 | + | + | + | + | + | |
Aba-4779 | 16.0 ± 1.8 | IM | 1/32 | + | + | + | + | + | |
Aba-4803 | 51.5 ± 6.0 | HM | 1/32 | + | + | + | + | − | |
Aba-4804 | 21.5 ± 5.7 | HM | 1/64 | + | + | + | + | − | |
Aba-4890 | 23.8 ± 4.6 | HM | 1/64 | + | + | + | + | − | |
Aba-4914 | 9.5 ± 1.3 | IM | 1/16 | + | + | + | + | − | |
Aba-5055 | 14.5 ± 0.6 | IM | 1/32 | + | + | + | + | − | |
Aba-5074 | 11.5 ± 1.3 | IM | 1/32 | + | + | + | + | + | |
Aba-5081 | 19.3 ± 0.3 | IM | 1/16 | + | + | + | + | + | |
Aba-5372 | 22.5 ± 2.1 | HM | 1/8 | + | + | + | + | + | |
Aba-6673 | 27.8 ± 1.2 | HM | 1/16 | + | + | + | + | + | |
Aba-7860 | 34.0 ± 5.9 | HM | 1/32 | + | + | + | + | + | |
Aba-8255 | 21.0 ± 7.0 | HM | 1/16 | + | + | + | + | + | |
Aba-8781 | 46.0 ± 1.63 | HM | 1/4 | + | + | + | + | − | |
Aba-8833 | 26.8 ± 1.2 | HM | 1/4 | + | + | + | + | − | |
Aba-3496 | 26.5 ± 1.3 | HM | 1/4 | + | + | + | + | − | |
Aba-4010 | 16.5 ± 3.9 | IM | 1/8 | + | + | + | + | − | |
Environmental isolates | Aba-S-Ace | 12.0 ± 1.6 | IM | 1/16 | + | + | + | + | − |
Aba-S-Tyr | 19.0 ± 4.2 | IM | 1/32 | + | + | + | + | − | |
Aba-DZ-Ace | 15.0 ± 1.8 | IM | 1/4 | + | + | + | + | − | |
Aba-DN-Ace | 52.5 ± 11.1 | HM | 1/8 | + | + | + | + | + | |
Aba-M-Ace | 14.5 ± 1.3 | IM | 1/16 | + | + | + | + | − | |
Aba-DP-Phe | 19.8 ± 4.4 | IM | 1/4 | + | + | + | + | − | |
Aba-DTD-Tyr | 28.8 ± 3.9 | HM | 1/32 | + | + | + | + | − | |
Aba-B-Phe | 17.0 ± 1.8 | IM | 1/32 | + | + | + | + | − |
A. baumannii Strains | Bile Salts MIC 1 | Bile Salts BIC50 2 | Bile Salts BIC90 3 | ||||||
---|---|---|---|---|---|---|---|---|---|
Na-CA 4 | Na-DCA 5 | Na-CDCA 6 | Na-CA | Na-DCA | Na-CDCA | Na-CA | Na-DCA | Na-CDCA | |
ATCC 19606 8 | 10.1 | 0.8 | 1.0 | 1.0 | 1.0 | 4.0 | 32.0 | 2.0 | 8.0 |
Aba-2572 | 0.7 | 0.25 | 0.5 | 4.0 | 0.5 | 1.0 | 32.0 | 8.0 | 8.0 |
Aba-4804 | 8.0 | 0.35 | 0.5 | 16.0 | 1.0 | 1.0 | NA | 2.0 | 4.0 |
Aba-4914 8 | 8.0 | 0.5 | 1.4 | NA | 2.0 | 1.0 | NA | 8.0 | 4.0 |
Aba-5055 8 | 8.0 | 0.7 | 1.0 | 32.0 | 2.0 | 2.0 | 32.0 | 8.0 | 4.0 |
Aba-8781 | 5.7 | 0.5 | 2.0 | 32.0 | 2.0 | 4.0 | NA 7 | 8.0 | 8.0 |
Aba-8833 | 0.7 | 0.25 | 0.35 | 1.0 | 0.25 | 0.25 | 16.0 | 1.0 | 1.0 |
Aba-3496 | 0.7 | 0.25 | 0.35 | 4.0 | 0.25 | 1.0 | 16.0 | 1.0 | 4.0 |
Aba-4010 | 4.0 | 0.35 | 0.7 | 8.0 | 1.0 | 1.0 | 16.0 | 2.0 | 2.0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Aleksic Sabo, V.; Škorić, D.; Jovanović-Šanta, S.; Knezevic, P. Exploring Biofilm-Related Traits and Bile Salt Efficacy as Anti-Biofilm Agents in MDR Acinetobacter baumannii. Antibiotics 2024, 13, 880. https://doi.org/10.3390/antibiotics13090880
Aleksic Sabo V, Škorić D, Jovanović-Šanta S, Knezevic P. Exploring Biofilm-Related Traits and Bile Salt Efficacy as Anti-Biofilm Agents in MDR Acinetobacter baumannii. Antibiotics. 2024; 13(9):880. https://doi.org/10.3390/antibiotics13090880
Chicago/Turabian StyleAleksic Sabo, Verica, Dušan Škorić, Suzana Jovanović-Šanta, and Petar Knezevic. 2024. "Exploring Biofilm-Related Traits and Bile Salt Efficacy as Anti-Biofilm Agents in MDR Acinetobacter baumannii" Antibiotics 13, no. 9: 880. https://doi.org/10.3390/antibiotics13090880
APA StyleAleksic Sabo, V., Škorić, D., Jovanović-Šanta, S., & Knezevic, P. (2024). Exploring Biofilm-Related Traits and Bile Salt Efficacy as Anti-Biofilm Agents in MDR Acinetobacter baumannii. Antibiotics, 13(9), 880. https://doi.org/10.3390/antibiotics13090880