Neonatal Infectious Disease: A Major Contributor to Infant Mortality Requiring Advances in Point-of-Care Diagnosis
Abstract
:1. Introduction
Category | Gram Stain | Species | Mortality | AMR Emerging and Present |
---|---|---|---|---|
Bacterial | Gram negative | P. aeruginosa | 56% [19] | Colistin-resistant P. aeruginosa, pan-drug-resistant strain [20,21] |
E. coli | >35% within 30 days for BSIs, 14–25% for meningitis [22] | Aminoglycosides, cephalosporins, penicillin, fluoroquinolones, B-lactam combination agents [21], plasmid mediated colistin resistant [23] | ||
K. pneumoniae | 13% BSI/sepsis [19] | Cephalosporins, fluoroquinolones, trimethoprim/sulfamethoxazole, colistin [20]; extended spectrum beta lactamase (ESBL) detected conferring resistance to penicillins, cephalosporins, including third-generation cephalosporins, plasmid mediated colistin resistant [23] | ||
A. baumannii | 30-day mortality rate 36.3% [24] | Carbapenem-resistant strains that produce metallo-beta-lactamase (MBLs), colistin [24] | ||
N. gonorrhoea | Not determined | Sulphonamides, penicillins, tetracyclines, macrolides, and fluoroquinolones [8] | ||
T. pallidum | 20% [9] in <28-day-old neonates | Macrolide and tetracycline resistance [25] | ||
Gram positive | S. pyogenes | 5–20% and ca. 45% for sepsis [26] | Strains isolated showing resistance to penicillin [26] | |
Enterococcus species—E. faecalis | 20% in septicaemia cases [27] | Vancomycin, beta-lactams such as cephalosporins, aminoglycosides, trimethoprim–sulfamethoxazole, and clindamycin | ||
S. agalactiae (group B Streptococcus) | 8–13% for meningitis [22] | Emerging resistance to erythromycin, clindamycin, and fluoroquinolones [28] | ||
S. aureus | 12% [19] | MRSA, Vancomycin resistant S. aureus (VRSA), [13] | ||
L. monocytogenes | 10–50% early-onset infection [29] | Cephalosporin, fosfomycin, and fluoroquinolones, gentamicin combined with ampicillin/amoxicillin does not affect Listeria within macrophages [29] | ||
Fungal | C. auris | Sepsis 70% [10] | Resistance to azole [30], echinocandins, pyrimidines, and polyenes common in clinical isolates [31] | |
C. albicans | 70% BSI, sepsis [30] | |||
C glabrata | ||||
C. tropicalis | 28.7% [30] | |||
A. fumigatus | ca. 70% IFIs | Emergence of Azole resistance | ||
C. neoformans | 66% in mothers with HIV [32] | Caspofungin [31] |
2. Neonatal Infectious Disease
2.1. Bacterial Pathogens Associated with Neonatal Infectious Disease
Virulence Factor | Pathogen | Mode of Action |
---|---|---|
Capsular polysaccharide | K. pneumoniae, hypervirulent K. pneumoniae, group B Streptococcus, Cryptococcus neoformans [44] | Protects pathogen from opsonization and phagocytosis by macrophages and neutrophils and suppresses the early inflammatory response through the inhibition of IL-8 expression [45] |
Fimbrial adhesins | K. pneumoniae, E. coli, CoNS, Streptococcus species [46] | Mediating the adhesion of the pathogen to the mucosal layer and/or epithelial cells [6] |
Siderophores [45] | GPB and GNP, e.g., K. pneumoniae and most fungal species, e.g., A. fumigatus | Acquisition of iron used for reproduction |
Biofilm formation | All relevant neonatal pathogenic bacterial and fungal species | Colonisation of biotic and abiotic surfaces including medical devices, increased resistance to therapeutics, biocides, and host immunity |
Plasmids | Carries resistance genes in pathogenic species, which can be transmitted, e.g., carbapenem-resistant genes in K. pneumonia | |
Intracellular colonisation of macrophages | L. monocytogenes, Chlamydia, C. albicans, C. neoformans [44] | Immune avoidance [29] |
Toxin production | Candidalysin produced by C. albicans [44], Aspergillus and Fusarium species produce mycotoxins, Lipopolysaccharide (LPS) produced by GNB, selective toxic shock syndrome (TSS) toxin-1 (TSST-1) produced by S. aureus, pyrogenic exotoxins produced by group A Streptococcus [26] | Permeabilization and invasion of epithelial cells [44]; nephrotoxic, genotoxic, teratogenic, carcinogenic, and cytotoxic [21]; binds with cell-mediated immune components, e.g., CD 14, CD 16, CD 18, humoral-mediated antibodies and lactoferrin, and activates Toll-like receptors (TLRs) inducing sepsis [21]; systemic exanthema, fever, low-positive serum C-reactive protein (CRP) values, and thrombocytopenia [37]; tissue invasion, septic shock |
2.2. Fungal Pathogens Associated with Neonatal Infectious Disease
2.3. Intestinal Dysbiosis in Neonatal Patients
3. Advances in the Point-of-Care Detection and Treatment of Infectious Disease
3.1. Biomarkers of Inflammation
3.2. Machine Learning, Artificial Intelligence, and Microfluidics
4. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Harbeson, D.; Ben-Othman, R.; Amenyogbe, N.; Kollmann, T.R. Outgrowing the Immaturity Myth: The Cost of Defending from Neonatal Infectious Disease. Front. Immunol. 2018, 9, 1077. [Google Scholar] [CrossRef] [PubMed]
- Chen, L.; Zhao, Y.; Wei, J.; Huang, W.; Ma, Y.; Yang, X.; Liu, Y.; Wang, J.; Xia, H.; Lou, Z. Metagenomic Next-Generation Sequencing for the Diagnosis of Neonatal Infectious Diseases. Microbiol. Spectr. 2022, 10, e01195-22. [Google Scholar] [CrossRef] [PubMed]
- McCluskey, J.M.; Sato, A.I. Vertical Transplacental Infections. In StatPearls [Internet]; StatPearls Publishing: Treasure Island, FL, USA, 2024. Available online: https://www.ncbi.nlm.nih.gov/books/NBK604195/ (accessed on 6 August 2024).
- Available online: https://www.who.int/teams/maternal-newborn-child-adolescent-health-and-ageing/newborn-health/newborn-infections (accessed on 11 July 2024).
- Oliva, A.; Carmona, Y.; de La C López, E.; Álvarez, R.; Aung, M.S.; Kobayashi, N.; Quiñones, D. Characterization of Neonatal Infections by Gram-Negative Bacilli and Associated Risk Factors, Havana, Cuba. Infect. Dis. Rep. 2021, 13, 219–229. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Mukherjee, S.; Mitra, S.; Dutta, S.; Basu, S. Neonatal Sepsis: The Impact of Carbapenem-Resistant and Hypervirulent Klebsiella pneumoniae. Front. Med. 2021, 8, 634349. [Google Scholar] [CrossRef] [PubMed]
- Kucova, P.; Kantor, L.; Fiserova, K.; Lasak, J.; Röderova, M.; Kolar, M. Bacterial Pathogens and Evaluation of a Cut-Off for Defining Early and Late Neonatal Infection. Antibiotics 2021, 10, 278. [Google Scholar] [CrossRef]
- Balaji, S.; Kamble, B.; Ambalkar, D.; Kundapur, R.; Aggarwal, S. The Public Health Perspective of Gonococcal Infection in Neonates. Indian J. Community Med. 2023, 48, 372–374. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Paixao, E.S.; Ferreira, A.J.F.; dos Santos, I.O.; Rodrigues, L.C.; Fiaccone, R.; Salvi, L. Mortality in children under 5 years of age with congenital syphilis in Brazil: A nationwide cohort study. PLoS Med. 2023, 20, e1004209. [Google Scholar] [CrossRef]
- Kotey, F.C.; Dayie, N.T.; Tetteh-Uarcoo, P.B.; Donkor, E.S. Candida Bloodstream Infections: Changes in Epidemiology and Increase in Drug Resistance. Infect. Dis. Auckl. 2021, 14, 11786337211026927. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Barber, C.M.; Fahrenkopf, M.P.; Dietze-Fiedler, M.L.; Nguyen, J.L.; Girotto, J.A. Cutaneous Aspergillus fumigatus infection in a Newborn. Eplasty 2019, 19, ic13. [Google Scholar] [PubMed] [PubMed Central]
- Aneja, A.; Johnson, J.; Prochaska, E.C. Microbiome dysbiosis: A modifiable state and target to prevent Staphylococcus aureus infections and other diseases in neonates. J. Perinatol. 2024, 44, 125–130. [Google Scholar] [CrossRef]
- Bhatta, D.R.; Hosuru Subramanya, S.; Hamal, D. Bacterial contamination of neonatal intensive care units: How safe are the neonates? Antimicrob. Resist. Infect. Control 2021, 10, 26. [Google Scholar] [CrossRef] [PubMed]
- NICE. Evidence Reviews for Maternal and Neonatal Risk Factors for Early-Onset Neonatal Infection: Neonatal Infection: Antibiotics for Prevention and Treatment: Evidence Review D; NICE Guideline, No. 195; National Institute for Health and Care Excellence (NICE): London, UK, 2021; Available online: https://www.nice.org.uk/guidance/ng195 (accessed on 11 July 2024).
- Zhang, Y.; Cui, P.; Zhang, H.C.; Wu, H.L.; Ye, M.Z.; Zhu, Y.M.; Ai, J.W.; Zhang, W.H. Clinical application and evaluation of metagenomic next-generation sequencing in suspected adult central nervous system infection. J. Transl. Med. 2020, 18, 199. [Google Scholar] [CrossRef] [PubMed]
- WHO. 2015. Available online: https://iris.who.int/bitstream/handle/10665/181426/9789241509268_eng.pdf?sequence=1 (accessed on 5 August 2024).
- Fuchs, A.; Bielicki, J.; Mathur, S.; Sharland, M.; Van Den Anker, J.N. Reviewing the WHO guidelines for antibiotic use for sepsis in neonates and children. Paediatr. Int. Child Health 2018, 38 (Suppl. S1), S3–S15. [Google Scholar] [CrossRef] [PubMed]
- WHO. 2024. Available online: https://www.who.int/europe/about-us/our-work/sustainable-development-goals/targets-of-sustainable-development-goal-3 (accessed on 5 August 2024).
- Jansen, S.J.; Lopriore, E.; van der Beek, M.T.; Veldkamp, K.E.; Steggerda, S.J.; Bekker, V. The road to zero nosocomial infections in neonates-a narrative review. Acta Paediatr. 2021, 110, 2326–2335. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Garvey, M. Medical Device-Associated Healthcare Infections: Sterilization and the Potential of Novel Biological Approaches to Ensure Patient Safety. Int. J. Mol. Sci. 2024, 25, 201. [Google Scholar] [CrossRef]
- Garvey, M. Hospital Acquired Sepsis, Disease Prevalence, and Recent Advances in Sepsis Mitigation. Pathogens 2024, 13, 461. [Google Scholar] [CrossRef]
- Ou-Yang, M.C.; Tsai, M.H.; Chu, S.M.; Chen, C.C.; Yang, P.H.; Huang, H.R.; Chang, C.M.; Fu, R.H.; Hsu, J.F. The Clinical Characteristics, Microbiology and Risk Factors for Adverse Outcomes in Neonates with Gram-Negative Bacillary Meningitis. Antibiotics 2023, 12, 1131. [Google Scholar] [CrossRef]
- Rallis, D.; Giapros, V.; Serbis, A.; Kosmeri, C.; Baltogianni, M. Fighting Antimicrobial Resistance in Neonatal Intensive Care Units: Rational Use of Antibiotics in Neonatal Sepsis. Antibiotics 2023, 12, 508. [Google Scholar] [CrossRef]
- Thatrimontrichai, A.; Tonjit, P.; Janjindamai, W.; Dissaneevate, S.; Maneenil, G.; Phatigomet, M. Risk Factors Associated with 30-Day Mortality among Neonates with A. baumannii Sepsis. Pediatr. Infect. Dis. J. 2021, 40, 1111–1114. [Google Scholar] [CrossRef] [PubMed]
- Tantalo, L.C.; Lieberman, N.A.P.; Perez-Mana, C.; Suner, C.; Vall Mayans, M.; Ubals, M.; Gonzalez-Beiras, C.; Rodriguez-Gascon, A.; Canut, A.; Gonzalez-Candelax, F.; et al. Antimicrobial susceptibility of Treponema pallidum subspecies pallidum: An in-vitro study. Lancet Microbe 2023, 4, 994–1004. [Google Scholar] [CrossRef]
- Sokou, R.; Filippatos, F.; Daniil, V.; Bikouli, E.D.; Tsantes, A.G.; Piovani, D.; Bonovas, S.; Iliodromiti, Z.; Boutsikou, T.; Tsantes, A.E.; et al. Group A Streptococcus Infection in Neonatal Population: A Systematic Review of The Literature. J. Clin. Med. 2023, 12, 6974. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Lahbabi, M.S.; Wafi, M.; Benbachir, M.; Benomar, S.; Nejjari, C. Infections néonatales à Enterococcus fæcalis: Analyse de 29 observations Enterococcus fæcalis neonatal infection: Analysis of 29 cases. Réanimation Urgences 2000, 9, 169–175. [Google Scholar] [CrossRef]
- Lohrmann, F.; Hufnagel, M.; Kunze, M.; Afshar, B.; Creti, R.; Detcheva, A.; Kozakova, J.; Rodriguez-Granger, J.; Sørensen, U.B.S.; Margarit, I.; et al. Neonatal invasive disease caused by Streptococcus agalactiae in Europe: The DEVANI multi-center study. Infection 2023, 51, 981–991. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Wang, Z.; Tao, X.; Liu, S.; Zhao, Y.; Yang, X. An Update Review on Listeria Infection in Pregnancy. Infect. Drug Resist. 2021, 14, 1967–1978. [Google Scholar] [CrossRef] [PubMed]
- Chakrabarti, A.; Sood, P.; Rudramurthy, S.M.; Chen, S.; Jillwin, T.J.; Iyer, R. Characteristics, outcome and risk factors for mortality of pediatric patients with ICU-acquired candidemia in India: A multicenter prospective study. Mycoses 2020, 63, 1149–1163. [Google Scholar] [CrossRef]
- Meade, E.; Savage, M.; Slattery, M.; Garvey, M. Investigation of Alternative Therapeutic and Biocidal Options to Combat Antifungal-Resistant Zoonotic Fungal Pathogens Isolated from Companion Animals. Infect. Dis. Rep. 2021, 13, 348–366. [Google Scholar] [CrossRef]
- Pastick, K.A.; Nalintya, E.; Tugume, L.; Ssebambulidde, K.; Stephens, N.; Evans, E.E.; Ndyetukira, J.F.; Nuwagira, E.; Skipper, C.; Muzoora, C.; et al. Cryptococcosis in pregnancy and the postpartum period: Case series and systematic review with recommendations for management. Med. Mycol. 2020, 58, 282–292. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Bondarev, D.J.; Ryan, R.M.; Mukherjee, D. The spectrum of pneumonia among intubated neonates in the neonatal intensive care unit. J. Perinatol. 2024, 44, 1235–1243. [Google Scholar] [CrossRef]
- Oldendorff, F.; Nordberg, V.; Giske, C.G. A decade of neonatal sepsis in Stockholm, Sweden: Gram-positive pathogens were four times as common as Gram-negatives. Eur. J. Clin. Microbiol. Infect. Dis. 2024, 43, 959–968. [Google Scholar] [CrossRef]
- Bulkowstein, S.; Ben-Shimol, S.; Givon-Lavi, N.; Melamed, R.; Shany, E.; Greenberg, D. Comparison of early onset sepsis and community-acquired late onset sepsis in infants less than 3 months of age. BMC Pediatr. 2016, 16, 1–8. [Google Scholar] [CrossRef]
- Zelellw, D.A.; Dessie, G.; Mengesha, E.W.; Shiferaw, M.B.; Merhaba, M.M.; Emishaw, S. A Systemic Review and Meta-analysis of the Leading Pathogens Causing Neonatal Sepsis in Developing Countries. BioMed Res. Int. 2021, 2021, 6626983. [Google Scholar] [CrossRef] [PubMed]
- Bešić, H.; Paro-Panjan, D.; Nosan, G. Neonatal Toxic Shock Syndrome-like Exanthematous Disease: A Report of Two Cases. Pediatr. Infect. Dis. J. 2023, 42, e114–e115. [Google Scholar] [CrossRef] [PubMed]
- Bundy, L.M.; Rajnik, M.; Noor, A. Neonatal Meningitis. In StatPearls [Internet]; StatPearls Publishing: Treasure Island, FL, USA, 2024. Available online: https://www.ncbi.nlm.nih.gov/books/NBK532264/ (accessed on 16 July 2024).
- Tesini, B.L. Neonatal Listeriosis. 2022. Available online: https://www.msdmanuals.com/professional/pediatrics/infections-in-neonates/neonatal-listeriosis (accessed on 6 August 2024).
- van der Flier, M. Neonatal meningitis: Small babies, big problem. Lancet Child Adolesc. Health 2021, 5, 386–387. [Google Scholar] [CrossRef] [PubMed]
- Krgystan, L. Measures of Mortality in Patients with Neonatal Pneumonia in a Hospital. Neonat. Pediatr. Med. 2023, 9, 308. [Google Scholar] [CrossRef]
- McDonald, R.; O’Callaghan, K.; Torrone, E. Vital Signs: Missed Opportunities for Preventing Congenital Syphilis—United States, 2022. MMWR Morb. Mortal Wkly. Rep. 2023, 72, 1269–1274. [Google Scholar] [CrossRef]
- Adachi, K.N.; Nielsen-Saines, K.; Klausner, J.D. Chlamydia Screening and Treatment in Pregnancy to Reduce Adverse Pregnancy and Neonatal Outcomes: A Review. Front. Public 2021, 9, 531073. [Google Scholar] [CrossRef]
- May, R.C.; Casadevall, A. In Fungal Intracellular Pathogenesis, Form Determines Fate. mBio 2018, 9, e02092-18. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Khaertynov, K.S.; Anokhin, V.A.; Davidyuk, Y.N.; Nicolaeva, I.V.; Khalioullina, S.V.; Semyenova, D.R.; Alatyrev, E.Y.; Skvortsova, N.N.; Abrahamyan, L.G. Case of Meningitis in a Neonate Caused by an Extended-Spectrum-Beta-Lactamase-Producing Strain of Hypervirulent Klebsiella pneumoniae. Front. Microbiol. 2017, 8, 1576. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Mix, A.K.; Goob, G.; Sontowski, E. Microscale communication between bacterial pathogens and the host epithelium. Genes Immun. 2021, 22, 247–254. [Google Scholar] [CrossRef]
- Cook, A.; Ferreras-Antolin, L.; Adhisivam, B.; Ballot, D.; Berkley, J.A.; Bernaschi, P.; Carvalheiro, C.G.; Chaikittisuk, N.; Chen, Y.; Chibabhai, V.; et al. Neonatal invasive candidiasis in low- and middle-income countries: Data from the NeoOBS study. Med. Mycol. 2023, 61, myad010. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Zhou, Q.; Kelly, E.; Luu, T.M.; Ye, X.Y.; Ting, J.; Shah, P.S.; Lee, S.K. Fungal infection and neurodevelopmental outcomes at 18–30 months in preterm infants. Front. Pediatr. 2023, 11, 1145252. [Google Scholar] [CrossRef] [PubMed]
- Weimer, K.E.D.; Smith, P.B.; Puia-Dumitrescu, M. Invasive fungal infections in neonates: A review. Pediatr. Res. 2022, 91, 404–412. [Google Scholar] [CrossRef]
- Han, T.; Qiu, M.; Niu, X. End-organ damage from neonatal invasive fungal infection: A 14-year retrospective study from a tertiary center in China. BMC Infect. Dis. 2024, 24, 521. [Google Scholar] [CrossRef] [PubMed]
- Ferrando, G.; Castagnola, E. Prophylaxis of Invasive Fungal Infection in Neonates: A Narrative Review for Practical Purposes. J. Fungi 2023, 9, 164. [Google Scholar] [CrossRef] [PubMed]
- Yeoh, D.K.; McMullan, B.J.; Clark, J.E. The Challenge of Diagnosing Invasive Pulmonary Aspergillosis in Children: A Review of Existing and Emerging Tools. Mycopathologia 2023, 188, 731–743. [Google Scholar] [CrossRef] [PubMed]
- Mohammad, N.; Huguenin, A.; Lefebvre, A.; Menvielle, L.; Toubas, D.; Ranque, S.; Tannier, I.V.X.; Normand, A.C.; Piarroux, R. Nosocomial transmission of Aspergillus flavus in a neonatal intensive care unit: Long-term persistence in environment and interest of MALDI–ToF mass-spectrometry coupled with convolutional neural network for rapid clone recognition. Med. Mycol. 2024, 62, 1. [Google Scholar] [CrossRef]
- Daniel, K.; Greenberg, R.G.; Boutzoukas, A.; Katakam, L. Updated Perspectives on the Diagnosis and Management of Neonatal Invasive Candidiasis. Res. Rep. Neonatol. 2023, 13, 45–63. [Google Scholar] [CrossRef]
- Cohen-Wolkowiez, M.; Smith, P.B.; Mangum, B. Neonatal Candida meningitis: Significance of cerebrospinal fluid parameters and blood cultures. J. Perinatol. 2007, 27, 97–100. [Google Scholar] [CrossRef]
- Mehler, K.; Cornely, O.; Seifert, H.; Zweigner, J.; Janssen, S.; Oberthuer, A. Molds and More: Rare Fungal Infections in Preterm Infants <24 Weeks of Gestation. Pediatr. Infect. Dis. J. 2022, 41, 352–357. [Google Scholar] [CrossRef]
- Garvey, M. The Association between Dysbiosis and Neurological Conditions Often Manifesting with Chronic Pain. Biomedicines 2023, 11, 748. [Google Scholar] [CrossRef]
- Underwood, M.A.; Mukhopadhyay, S.; Lakshminrusimha, S.; Bevins, C.L. Neonatal intestinal dysbiosis. J. Perinatol. 2020, 40, 1597–1608. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Groer, M.W.; Miller, E.M.; D’Agata, A.; Ho, T.T.B.; Dutra, S.V.; Yoo, J.Y.; Yee, A.L.; Gilbert, J.A.; Dishaw, L.J. Contributors to Dysbiosis in Very-Low-Birth-Weight Infants. J. Obstet. Gynecol. Neonatal Nurs. 2020, 49, 232–242. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Hill, L.; Sharma, R.; Hart, L.; Popov, J.; Moshkovich, M.; Pai, N. The neonatal microbiome in utero and beyond: Perinatal influences and long-term impacts. J. Lab. Med. 2021, 45, 275–291. [Google Scholar] [CrossRef]
- Abu, Y.F.; Singh, S.; Tao, J.; Chupikova, I.; Singh, P.; Meng, J.; Roy, S. Opioid-induced dysbiosis of maternal gut microbiota during gestation alters offspring gut microbiota and pain sensitivity. Gut Microbes 2023, 16, 2292224. [Google Scholar] [CrossRef] [PubMed]
- Aziz, M.; Prince, J.M.; Wang, P. Gut microbiome and necrotizing enterocolitis: Understanding the connection to find a cure. Cell Host Microbe 2022, 30, 612–616. [Google Scholar] [CrossRef] [PubMed]
- Lee, C.C.; Feng, Y.; Yeh, Y.M.; Lien, R.; Chen, C.L.; Zhou, Y.L.; Chiu, C.H. Gut Dysbiosis, Bacterial Colonization and Translocation, and Neonatal Sepsis in Very-Low-Birth-Weight Preterm Infants. Front. Microbiol. 2021, 12, 746111. [Google Scholar] [CrossRef] [PubMed]
- Clinical Trials. 2024. Available online: https://clinicaltrials.gov/search?cond=NCT03298334 (accessed on 13 August 2024).
- Liu, S.; Luo, X.; Zhou, L.; Xie, R.; He, Y. Microbiota transplantation in restoring cesarean-related infant dysbiosis: A new frontier. Gut Microbes 2024, 16, 2351503. [Google Scholar] [CrossRef] [PubMed]
- Zhang, R.; Zhuang, Y.; Xiao, Z.H.; Li, C.Y.; Zhang, F.; Huang, W.Q.; Zhang, M.; Peng, X.M.; Liu, C. Diagnosis and Surveillance of Neonatal Infections by Metagenomic Next-Generation Sequencing. Front. Microbiol. 2022, 13, 855988. [Google Scholar] [CrossRef]
- Gopal, N.; Chauhan, N.; Jain, U.; Dass, S.K.; Sharma, H.S.; Chandra, R. Advancement in biomarker based effective diagnosis of neonatal sepsis. Artif. Cells Nanomed. Biotechnol. 2023, 51, 476–490. [Google Scholar] [CrossRef]
- Ramakrishna, J.M.; Libertin, C.R.; Yang, J.N.; Diaz, M.A.; Nengue, A.L.; Patel, R. 16S rRNA Gene PCR/Sequencing of Cerebrospinal Fluid in the Diagnosis of Post-operative Meningitis. Access Microbiol. 2020, 2, acmi000100. [Google Scholar] [CrossRef]
- Póvoa, P.; Coelho, L.; Dal-Pizzol, F. How to use biomarkers of infection or sepsis at the bedside: Guide to clinicians. Intensive Care Med. 2023, 49, 142–153. [Google Scholar] [CrossRef] [PubMed]
- Gude, S.; Peddi, N.; Vuppalapati, S. Biomarkers of Neonatal Sepsis: From Being Mere Numbers to Becoming Guiding Diagnostics. Cureus 2022, 14, e23215. [Google Scholar] [CrossRef] [PubMed]
- Tran, L.U.; Giang, T.P.L.; Nguyen, T.T. Validity of Umbilical Cord Blood Procalcitonin in the Diagnosis of Early-Onset Neonatal Infection. Cureus 2024, 16, e59887. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Pospisilova, I.; Brodska, H.L.; Bloomfield, M.; Borecka, K.; Janota, J. Evaluation of presepsin as a diagnostic tool in newborns with risk of early-onset neonatal sepsis. Front. Pediatr. 2023, 10, 1019825. [Google Scholar] [CrossRef] [PubMed]
- Banerjee, I.; Salih, T.; Ramachandraiah, H.; Erlandsson, J.; Pettersson, T.; Araújo, A.C.; Karlsson, M.; Russom, A. Slipdisc: A versatile sample preparation platform for point of care diagnostics. RSC Adv. 2017, 7, 35048–35054. [Google Scholar] [CrossRef]
- Huang, Q.Y.; Li, P.C.; Yue, J.R. Diagnostic performance of serum galactomannan and β-D-glucan for invasive aspergillosis in suspected patients: A meta-analysis. Medicine 2024, 103, e37067. [Google Scholar] [CrossRef]
- Lass-Florl, C.; Alastruey-Izquierdo, A.; Gupta, R. Arunloke Chakroborti. Interpretation, pitfalls of biomarkers in diagnosis of invasive fungal diseases. Indian J. Med. Microbiol. 2022, 40, 480–484. [Google Scholar] [CrossRef]
- Çaglar, I.; Özkerim, D.; Tahta, N.; Düzgöl, M.; Bayram, N.; Demirag, B.; Karapinar, T.H.; Sorguç, Y.; Gözmen, S.; Dursun, V.; et al. Assessment of Serum Galactomannan Test Results of Pediatric Patients With Hematologic Malignancies According to Consecutive Positivity and Threshold Level in Terms of Invasive Aspergillosis Diagnosis. J. Pediatr. Hematol. Oncol. 2019, 45, e271–e276. [Google Scholar]
- Fisher, B.T.; Boge, C.L.K.; Xiao, R.; Shuster, S.; Chin-Quee, D.; Allen, J.; Shaheen, S.; Hayden, R.; Suganda, S.; Zaoutis, T.E.; et al. Multicenter Prospective Study of Biomarkers for Diagnosis of Invasive Candidiasis in Children and Adolescents. Clin. Infect. Dis. 2022, 75, 248–259. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Hamula, C.L.; Hughes, K.; Fisher, B.T.; Zaoutis, T.E.; Singh, I.R.; Velegraki, A. T2Candida Provides Rapid and Accurate Species Identification in Pediatric Cases of Candidemia. Am. J. Clin. Pathol. 2016, 145, 858–861. [Google Scholar] [CrossRef]
- Richter, F.; Bindschedler, S.; Calonne-Salmon, M.; Declerck, S.; Junier, P.; Stanley, C.E. Fungi-on-a-Chip: Microfluidic platforms for single-cell studies on fungi. FEMS Microbiol. Rev. 2022, 46, fuac039. [Google Scholar] [CrossRef] [PubMed]
- Chen, F.; Hu, Q.; Li, H.; Xie, Y.; Xiu, L.; Zhang, Y.; Guo, X.; Yin, K. Multiplex Detection of Infectious Diseases on Microfluidic Platforms. Biosensors 2023, 13, 410. [Google Scholar] [CrossRef] [PubMed]
- O’Sullivan, C.; Tsai, D.H.T.; Wu, I.C.Y. Machine learning applications on neonatal sepsis treatment: A scoping review. BMC Infect. Dis. 2023, 23, 441. [Google Scholar] [CrossRef] [PubMed]
- Shimabukuro, D.W.; Barton, C.W.; Feldman, M.D.; Mataraso, S.J.; Das, R. Effect of a machine learning-based severe sepsis prediction algorithm on patient survival and hospital length of stay: A randomised clinical trial. BMJ Open Respir. Res. 2017, 4, e000234. [Google Scholar] [CrossRef] [PubMed]
- Robi, Y.G.; Sitote, T.M. Neonatal Disease Prediction Using Machine Learning Techniques. J. Healthc. Eng. 2023, 2023, 3567194. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Santangelo, O.E.; Gentile, V.; Pizzo, S.; Giordano, D.; Cedrone, F. Machine Learning and Prediction of Infectious Diseases: A Systematic Review. Mach. Learn. Knowl. Extr. 2023, 5, 175–198. [Google Scholar] [CrossRef]
- Available online: https://cordis.europa.eu/project/id/258759/reporting/pl (accessed on 30 April 2024).
- Balk, R.; Esper, A.M.; Martin, G.S.; Miller, R.R., 3rd; Lopansri, B.K.; Burke, J.P.; Levy, M.; Opal, S.; Rothman, R.E.; D’Alessio, F.R.; et al. Validation of SeptiCyte RAPID to Discriminate Sepsis from Non-Infectious Systemic Inflammation. J. Clin. Med. 2024, 13, 1194. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Yan, B.; Ni, Y.; Cao, Y.; Qiu, J.; He, R.; Dong, Y.; Hao, M.; Wang, W.; Wang, C.; et al. A portable, integrated microfluidics for rapid and sensitive diagnosis of Streptococcus agalactiae in resource-limited environments. Biosens. Bioelectron. 2024, 247, 115917. [Google Scholar] [CrossRef] [PubMed]
- Paul, P.; Gonçalves, B.P.; Le Doare, K.; Lawn, J.E. 20 million pregnant women with group B streptococcus carriage: Consequences, challenges, and opportunities for prevention. Curr. Opin. Pediatr. 2023, 35, 223–230. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Kaya, H.O.; Cetin, A.E.; Azimzadeh, M. Pathogen detection with electrochemical biosensors: Advantages, challenges and future perspectives. J. Electroanal. Chem. 2021, 882, 114989. [Google Scholar] [CrossRef]
- Scott, G.Y.; Aborode, A.T.; Adesola, R.O.; Elebesunu, E.E.; Agyapong, J.; Ibrahim, A.M.; Andigema, A.S.; Kwarteng, S.; Onifade, I.A.; Adeoye, A.F.; et al. Transforming early microbial detection: Investigating innovative biosensors for emerging infectious diseases. Adv. Biomark. Sci. Technol. 2024, 6, 59–71. [Google Scholar] [CrossRef]
- WHO. ASSURED. 2024. Available online: https://www.who.int/home/search-results?indexCatalogue=genericsearchindex1&searchQuery=point%20of%20care%20test&wordsMode=AnyWord (accessed on 19 August 2024).
- Nichols, J.H. Utilizing Point-of-Care Testing to Optimize Patient Care. EJIFCC 2021, 32, 140–144. [Google Scholar] [PubMed] [PubMed Central]
Method | Example | Advantages | Limitations |
---|---|---|---|
Biomarkers | C-reactive protein (CRP), procalcitonin (PCT) | Standard test levels of PCT for preterm neonates available | Heterogenous nature of the host immune response. Lack of standardised analytical methods. Elevated in non-infectious inflammatory conditions. No standard concentrations identified especially in neonates. Absence of specific cutoff values. |
Cytokine interleukin 6 (IL-6) | Increases earlier than PCT and CRP in infection cases | ||
Toll-like receptor presepsin | Elevated in the early stages of sepsis and is specific for infectious disease, with levels increasing within 2 h | ||
The (1,3)-β-D glucan test (G test) and galactomannan test (GM test) for IFIs [74] | Application in haematology, respiratory, and IUC cases [74] | Sensitivity and specificity values range from 30% to 90%. | |
Machine Learning | Machine learning model, Sepsis WatchTM | Algorithms have successfully predicted sepsis, reduced hospital stay durations, and decreased mortality | ML requires sufficient data for analysis. Currently there are no regulatory frameworks designed for machine learning systems. Absence of high-quality clinical trials [21]. The outcomes are difficult to validate using external data. |
Microfluidics | LabDisk technology for pathophysiology of neonatal sepsis. Aspergillosis-on-chip SeptiCyte RAPID, an mRNA test for sepsis. | Analysis of biological systems at cellular, molecular, genetic, and proteomic levels [79]. Fast turnaround times, low reagent volumes required, high integration capability, and improved sensitivity and specificity [80]. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Garvey, M. Neonatal Infectious Disease: A Major Contributor to Infant Mortality Requiring Advances in Point-of-Care Diagnosis. Antibiotics 2024, 13, 877. https://doi.org/10.3390/antibiotics13090877
Garvey M. Neonatal Infectious Disease: A Major Contributor to Infant Mortality Requiring Advances in Point-of-Care Diagnosis. Antibiotics. 2024; 13(9):877. https://doi.org/10.3390/antibiotics13090877
Chicago/Turabian StyleGarvey, Mary. 2024. "Neonatal Infectious Disease: A Major Contributor to Infant Mortality Requiring Advances in Point-of-Care Diagnosis" Antibiotics 13, no. 9: 877. https://doi.org/10.3390/antibiotics13090877
APA StyleGarvey, M. (2024). Neonatal Infectious Disease: A Major Contributor to Infant Mortality Requiring Advances in Point-of-Care Diagnosis. Antibiotics, 13(9), 877. https://doi.org/10.3390/antibiotics13090877