Fluopsin C Promotes Biofilm Removal of XDR Acinetobacter baumannii and Presents an Additive Effect with Polymyxin B on Planktonic Cells
Abstract
:1. Introduction
2. Results
2.1. Characterization of Purified Fluopsin C
2.2. Fluopsin C Susceptibility Profiles of A. baumannii Clinical Isolates
2.3. Combinatory Effects of Fluopsin C with Polymyxin B
2.4. Growth Kinetics of Planktonic Cells Treated with Fluopsin C and Polymixin B, Alone or Combined
2.5. Characterization of Biofilm Formation Capacities by A. baumannii Strains
2.6. 24 h Established Biofilms on Polystyrene Removal Assay
2.7. Microscopic Analyses of 24 h Biofilm Removal at MIC on a Glass Surface
2.8. Live/Dead Stain of Fluopsin C-Treated Biofilm
3. Discussion
4. Materials and Methods
4.1. Microorganisms
4.2. Antimicrobial Susceptibility Testing of Clinical Isolates
4.3. Fluopsin C Production and Extraction from the Supernatant
4.4. Fluopsin C Purification by Flash Chromatography
4.5. Fluopsin C Characterization by HPLC
4.6. Determination of Acinetobacter baumannii Fluopsin C Susceptibility by Agar Diffusion Method
4.7. Determination of the Minimum Inhibitory Concentrations (MICs)
4.8. Interaction Assay by the Microdilution Checkerboard Method
4.9. Time–Kill Kinetics
4.10. Biofilm Formation and Quantification Assay by the Crystal Violet Method
4.11. Removal of Established Biofilm
4.12. Temporal Dynamics of Fluopsin C Removal Activity Using Confocal Laser Scanning Microscopy (CLSM) on 24 h Biofilms Formed on a Glass Surface
4.13. Live/Dead Stain of CI 230 24 h Biofilm Treated with Fluopsin C
4.14. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- World Health Organization. WHO Bacterial Priority Pathogens List 2024 Bacterial Pathogens of Public Health Importance, to Guide Research, Development, and Strategies to Prevent and Control Antimicrobial Resistance; World Health Organization: Geneva, Switzerland, 2024; ISBN 978-92-4-009346-1. [Google Scholar]
- Centers for Disease Control and Prevention (U.S.). Antibiotic Resistance Threats in the United States, 2019; Centers for Disease Control and Prevention (U.S.): Atlanta, GA, USA, 2019. [Google Scholar]
- Howard, A.; O’Donoghue, M.; Feeney, A.; Sleator, R.D. Acinetobacter baumannii: An Emerging Opportunistic Pathogen. Virulence 2012, 3, 243–250. [Google Scholar] [CrossRef]
- Lin, M.-F.; Lan, C.-Y. Antimicrobial Resistance in Acinetobacter baumannii: From Bench to Bedside. World J. Clin. Cases 2014, 2, 787. [Google Scholar] [CrossRef]
- Wong, D.; Nielsen, T.B.; Bonomo, R.A.; Pantapalangkoor, P.; Luna, B.; Spellberg, B. Clinical and Pathophysiological Overview of Acinetobacter Infections: A Century of Challenges. Clin. Microbiol. Rev. 2017, 30, 409–447. [Google Scholar] [CrossRef]
- Sultan, A.M.; Seliem, W.A. Identifying Risk Factors for Healthcare-Associated Infections Caused by Carbapenem-Resistant Acinetobacter baumannii in a Neonatal Intensive Care Unit. Sultan Qaboos Univ. Med. J. 2018, 18, 75. [Google Scholar] [CrossRef]
- Valencia-Martín, R.; Gonzalez-Galan, V.; Alvarez-Marín, R.; Cazalla-Foncueva, A.M.; Aldabó, T.; Gil-Navarro, M.V.; Alonso-Araujo, I.; Martin, C.; Gordon, R.; García-Nuñez, E.J.; et al. A Multimodal Intervention Program to Control a Long-Term Acinetobacter baumannii Endemic in a Tertiary Care Hospital. Antimicrob. Resist. Infect. Control 2019, 8, 199. [Google Scholar] [CrossRef]
- Greene, C.; Wu, J.; Rickard, A.H.; Xi, C. Evaluation of the Ability of Acinetobacter baumannii to Form Biofilms on Six Different Biomedical Relevant Surfaces. Lett. Appl. Microbiol. 2016, 63, 233–239. [Google Scholar] [CrossRef]
- Bardbari, A.M.; Arabestani, M.R.; Karami, M.; Keramat, F.; Aghazadeh, H.; Alikhani, M.Y.; Bagheri, K.P. Highly Synergistic Activity of Melittin with Imipenem and Colistin in Biofilm Inhibition against Multidrug-Resistant Strong Biofilm Producer Strains of Acinetobacter baumannii. Eur. J. Clin. Microbiol. Infect. Dis. 2018, 37, 443–454. [Google Scholar] [CrossRef]
- Rangel, K.; Curty Lechuga, G.; Almeida Souza, A.L.; Rangel Da Silva Carvalho, J.P.; Simões Villas Bôas, M.H.; De Simone, S.G. Pan-Drug Resistant Acinetobacter baumannii, but not Other Strains, Are Resistant to the Bee Venom Peptide Melittin. Antibiotics 2020, 9, 178. [Google Scholar] [CrossRef]
- McConnell, M.J.; Actis, L.; Pachón, J. Acinetobacter baumannii: Human Infections, Factors Contributing to Pathogenesis and Animal Models. FEMS Microbiol. Rev. 2013, 37, 130–155. [Google Scholar] [CrossRef]
- Gedefie, A.; Demsiss, W.; Belete, M.A.; Kassa, Y.; Tesfaye, M.; Tilahun, M.; Bisetegn, H.; Sahle, Z. Acinetobacter baumannii Biofilm Formation and its Role in Disease Pathogenesis: A Review. Infect. Drug Resist. 2021, 14, 3711–3719. [Google Scholar] [CrossRef]
- Mohamed, E.A.; Raafat, M.M.; Samir Mohamed, R.; Ali, A.E.E. Acinetobacter baumannii Biofilm and Its Potential Therapeutic Targets. Future J. Pharm. Sci. 2023, 9, 82. [Google Scholar] [CrossRef]
- World Health Organization. Prioritization of Pathogens to Guide Discovery, Research and Development of New Antibiotics for Drug-Resistant Bacterial Infections, Including Tuberculosis; World Health Organization: Geneva, Switzerland, 2017. [Google Scholar]
- Kim, U.J.; Kim, H.K.; An, J.H.; Cho, S.K.; Park, K.-H.; Jang, H.-C. Update on the Epidemiology, Treatment, and Outcomes of Carbapenem-Resistant Acinetobacter Infections. Chonnam Med. J. 2014, 50, 37. [Google Scholar] [CrossRef] [PubMed]
- Garnacho-Montero, J.; Timsit, J.-F. Managing Acinetobacter baumannii Infections. Curr. Opin. Infect. Dis. 2019, 32, 69–76. [Google Scholar] [CrossRef]
- Gales, A.C.; Seifert, H.; Gur, D.; Castanheira, M.; Jones, R.N.; Sader, H.S. Antimicrobial Susceptibility of Acinetobacter calcoaceticus–Acinetobacter baumannii Complex and Stenotrophomonas maltophilia Clinical Isolates: Results From the SENTRY Antimicrobial Surveillance Program (1997–2016). Open Forum Infect. Dis. 2019, 6, S34–S46. [Google Scholar] [CrossRef] [PubMed]
- Egawa, Y.; Umino, K.; Awataguchi, S.; Kawano, Y.; Okuda, T. Antibiotic YC 73 of Pseudomonas origin. I. J. Antibiot. 1970, 23, 267–270. [Google Scholar] [CrossRef] [PubMed]
- Miyamura, S.; Ogasawara, N.; Otsuka, H.; Niwayama, S.; Tanaka, H.; Take, T.; Uchiyama, T.; Nakazawa, H.; Abe, K.; Koizumi, K. An Antitumor Antibiotic, No. 4601 from Streptomyces, Identical with YC 73 of Pseudomonas Origin. J. Antibiot. 1972, 25, 369–370. [Google Scholar] [CrossRef]
- Kakkar, R.; Dua, A.; Gahlot, P. Metal Ion Complexes of Thioformin: A Density Functional Study. Polyhedron 2007, 26, 5301–5308. [Google Scholar] [CrossRef]
- Pistori, J.F.; Simionato, A.S.; Navarro, M.O.P.; Andreata, M.F.L.; Santos, I.M.O.; Meneguim, L.; Leite Junior, R.P.; Oliveira, A.G.; Andrade, G. Low-Molecular-Weight Metabolites Produced by Pseudomonas aeruginosa as an Alternative to Control Huanglongbing in Citrus sinensis cv. Valencia. Trop. Plant Pathol. 2018, 43, 289–296. [Google Scholar] [CrossRef]
- Gionco, B.; Tavares, E.R.; De Oliveira, A.G.; Yamada-Ogatta, S.F.; Do Carmo, A.O.; Pereira, U.D.P.; Chideroli, R.T.; Simionato, A.S.; Navarro, M.O.P.; Chryssafidis, A.L.; et al. New Insights about Antibiotic Production by Pseudomonas aeruginosa: A Gene Expression Analysis. Front. Chem. 2017, 5, 66. [Google Scholar] [CrossRef]
- Leong, J.; Bell, S.J. Coordination Isomers of Antibiotic Thiohydroxamate-Metal Complexes. Geometrical Isomers of Tris(N-Methylthioformohydroxamato)Rhodium(III) and Bis(N-Methylthioformohydroxamato)Platinum(II). Inorg. Chem. 1978, 17, 1886–1892. [Google Scholar] [CrossRef]
- Ma, L.; Jiang, C.; Cui, M.; Lu, R.; Liu, S.; Zheng, B.; Li, L.; Li, X. Fluopsin C Induces Oncosis of Human Breast Adenocarcinoma Cells. Acta Pharmacol. Sin. 2013, 34, 1093–1100. [Google Scholar] [CrossRef] [PubMed]
- Navarro, M.O.P.; Simionato, A.S.; Pérez, J.C.B.; Barazetti, A.R.; Emiliano, J.; Niekawa, E.T.G.; Andreata, M.F.D.L.; Modolon, F.; Dealis, M.L.; Araújo, E.J.D.A.; et al. Fluopsin C for Treating Multidrug-Resistant Infections: In Vitro Activity Against Clinically Important Strains and in Vivo Efficacy Against Carbapenemase-Producing Klebsiella pneumoniae. Front. Microbiol. 2019, 10, 2431. [Google Scholar] [CrossRef] [PubMed]
- Spoladori, L.F.D.A.; Andriani, G.M.; Castro, I.M.D.; Suzukawa, H.T.; Gimenes, A.C.R.; Bartolomeu-Gonçalves, G.; Ishida, K.; Nakazato, G.; Pinge-Filho, P.; Machado, R.R.B.; et al. Synergistic Antifungal Interaction between Pseudomonas aeruginosa LV Strain Metabolites and Biogenic Silver Nanoparticles against Candida auris. Antibiotics 2023, 12, 861. [Google Scholar] [CrossRef] [PubMed]
- Shirahata, K.; Deguchi, T.; Hayashi, T.; Matsubara, I.; Suzuki, T. The Structures of Fluopsins C and F. J. Antibiot. 1970, 23, 546–550. [Google Scholar] [CrossRef]
- Rampazo, L.G.L.R. Evaluation of the Effect of Biological Agents and Their Products into the Incidence of Citrus Canker Lesions. Master’s Thesis, State University of Londrina, Londrina, Brazil, 2004. [Google Scholar]
- Kerbauy, G.; Vivan, A.C.; Simões, G.C.; Simionato, A.S.; Pelisson, M.; Vespero, E.C.; Costa, S.F.; Andrade, C.G.d.J.; Barbieri, D.M.; Mello, J.C.; et al. Effect of a Metalloantibiotic Produced by Pseudomonas aeruginosa on Klebsiella pneumoniae Carbapenemase (KPC)-Producing K. pneumoniae. Curr. Pharm. Biotechnol. 2016, 17, 389–397. [Google Scholar] [CrossRef]
- Cardozo, V.F.; Oliveira, A.G.; Nishio, E.K.; Perugini, M.R.; Andrade, C.G.; Silveira, W.D.; Durán, N.; Andrade, G.; Kobayashi, R.K.; Nakazato, G. Antibacterial Activity of Extracellular Compounds Produced by a Pseudomonas Strain against Methicillin-Resistant Staphylococcus aureus (MRSA) Strains. Ann. Clin. Microbiol. Antimicrob. 2013, 12, 12. [Google Scholar] [CrossRef]
- Navarro, M.O.P.; Dilarri, G.; Simionato, A.S.; Grzegorczyk, K.; Dealis, M.L.; Cano, B.G.; Barazetti, A.R.; Afonso, L.; Chryssafidis, A.L.; Ferreira, H.; et al. Determining the Targets of Fluopsin C Action on Gram-Negative and Gram-Positive Bacteria. Front. Microbiol. 2020, 11, 1076. [Google Scholar] [CrossRef]
- Magiorakos, A.-P.; Srinivasan, A.; Carey, R.B.; Carmeli, Y.; Falagas, M.E.; Giske, C.G.; Harbarth, S.; Hindler, J.F.; Kahlmeter, G.; Olsson-Liljequist, B.; et al. Multidrug-Resistant, Extensively Drug-Resistant and Pandrug-Resistant Bacteria: An International Expert Proposal for Interim Standard Definitions for Acquired Resistance. Clin. Microbiol. Infect. 2012, 18, 268–281. [Google Scholar] [CrossRef]
- Weinstein, M.P. Performance Standards for Antimicrobial Susceptibility Testing: Supplement M100, 30th ed.; Clinical and Laboratory Standards Institute: Wayne, PA, USA, 2020; ISBN 978-1-68440-066-9. [Google Scholar]
- Stepanović, S.; Vuković, D.; Hola, V.; Bonaventura, G.D.; Djukić, S.; Ćirković, I.; Ruzicka, F. Quantification of Biofilm in Microtiter Plates: Overview of Testing Conditions and Practical Recommendations for Assessment of Biofilm Production by Staphylococci. APMIS 2007, 115, 891–899. [Google Scholar] [CrossRef]
- Patteson, J.B.; Putz, A.T.; Tao, L.; Simke, W.C.; Bryant, L.H.; Britt, R.D.; Li, B. Biosynthesis of Fluopsin C, a Copper-Containing Antibiotic from Pseudomonas aeruginosa. Science 2021, 374, 1005–1009. [Google Scholar] [CrossRef]
- Afonso, L.; Andreata, M.F.D.L.; Chryssafidis, A.L.; Alarcon, S.F.; Das Neves, A.P.; Da Silva, J.V.F.R.; Gonçalves, G.D.S.; Abussafi, L.D.D.S.; Simionato, A.S.; Cely, M.V.T.; et al. Fluopsin C: A Review of the Antimicrobial Activity against Phytopathogens. Agronomy 2022, 12, 2997. [Google Scholar] [CrossRef]
- Tamma, P.D.; Aitken, S.L.; Bonomo, R.A.; Mathers, A.J.; Van Duin, D.; Clancy, C.J. Infectious Diseases Society of America 2023 Guidance on the Treatment of Antimicrobial Resistant Gram-Negative Infections. Clin. Infect. Dis. 2023, ciad428. [Google Scholar] [CrossRef] [PubMed]
- Clinical and Laboratory Standards Institute (CLSI). M100: Performance Standards for Antimicrobial Susceptibility Testing, 34th ed.; Clinical and Laboratory Standards Institute (CLSI): Malvern, PA, USA, 2024. [Google Scholar]
- Barin, J.; Martins, A.F.; Heineck, B.L.; Barth, A.L.; Zavascki, A.P. Hetero- and Adaptive Resistance to Polymyxin B in OXA-23-Producing Carbapenem-Resistant Acinetobacter baumannii Isolates. Ann. Clin. Microbiol. Antimicrob. 2013, 12, 15. [Google Scholar] [CrossRef] [PubMed]
- Mohapatra, S.S.; Dwibedy, S.K.; Padhy, I. Polymyxins, the Last-Resort Antibiotics: Mode of Action, Resistance Emergence, and Potential Solutions. J. Biosci. 2021, 46, 85. [Google Scholar] [CrossRef] [PubMed]
- Olaitan, A.O.; Morand, S.; Rolain, J.-M. Mechanisms of Polymyxin Resistance: Acquired and Intrinsic Resistance in Bacteria. Front. Microbiol. 2014, 5, 643. [Google Scholar] [CrossRef] [PubMed]
- Havenga, B.; Reyneke, B.; Waso-Reyneke, M.; Ndlovu, T.; Khan, S.; Khan, W. Biological Control of Acinetobacter baumannii: In Vitro and In Vivo Activity, Limitations, and Combination Therapies. Microorganisms 2022, 10, 1052. [Google Scholar] [CrossRef]
- Raorane, C.J.; Lee, J.-H.; Kim, Y.-G.; Rajasekharan, S.K.; García-Contreras, R.; Lee, J. Antibiofilm and Antivirulence Efficacies of Flavonoids and Curcumin Against Acinetobacter baumannii. Front. Microbiol. 2019, 10, 990. [Google Scholar] [CrossRef]
- Selvaraj, A.; Valliammai, A.; Sivasankar, C.; Suba, M.; Sakthivel, G.; Pandian, S.K. Antibiofilm and Antivirulence Efficacy of Myrtenol Enhances the Antibiotic Susceptibility of Acinetobacter baumannii. Sci. Rep. 2020, 10, 21975. [Google Scholar] [CrossRef]
- Tiwari, V.; Tiwari, D.; Patel, V.; Tiwari, M. Effect of Secondary Metabolite of Actinidia deliciosa on the Biofilm and Extra-Cellular Matrix Components of Acinetobacter baumannii. Microb. Pathog. 2017, 110, 345–351. [Google Scholar] [CrossRef]
- Tutar, U.; Çelik, C.; Karaman, İ.; Ataş, M.; Hepokur, C. Anti-Biofilm and Antimicrobial Activity of Mentha Pulegium L Essential Oil against Multidrug-Resistant Acinetobacter baumannii. Trop. J. Pharm. Res. 2016, 15, 1039. [Google Scholar] [CrossRef]
- Mohamed, S.H. Antibacterial and Antibiofilm Activity of Cinnamaldehyde against Carbapenem-Resistant Acinetobacter baumannii in Egypt: In Vitro Study. J. Appl. Pharm. Sci. 2018, 8, 151–156. [Google Scholar] [CrossRef]
- De Oliveira, A.G.; Murate, L.S.; Spago, F.R.; Lopes, L.D.P.; Beranger, J.P.D.O.; Martin, J.A.B.S.; Nogueira, M.A.; Mello, J.C.P.D.; Andrade, C.G.T.D.J.; Andrade, G. Evaluation of the Antibiotic Activity of Extracellular Compounds Produced by the Pseudomonas Strain against the Xanthomonas citri pv. citri 306 Strain. Biol. Control 2011, 56, 125–131. [Google Scholar] [CrossRef]
- Lopes, L.P.; Oliveira Jr, A.G.; Beranger, J.P.O.; Góis, C.G.; Vasconcellos, F.C.S.; Martin, J.A.B.S.; Andrade, C.G.T.J.; Mello, J.C.P.; Andrade, G. Activity of Extracellular Compounds of Pseudomonas sp. against Xanthomonas axonopodis In Vitro and Bacterial Leaf Blight in Eucalyptus. Trop. Plant Pathol. 2012, 37, 233–238. [Google Scholar] [CrossRef]
- De Oliveira, A.G.; Spago, F.R.; Simionato, A.S.; Navarro, M.O.P.; Da Silva, C.S.; Barazetti, A.R.; Cely, M.V.T.; Tischer, C.A.; San Martin, J.A.B.; De Jesus Andrade, C.G.T.; et al. Bioactive Organocopper Compound from Pseudomonas aeruginosa Inhibits the Growth of Xanthomonas citri subsp. citri. Front. Microbiol. 2016, 7, 113. [Google Scholar] [CrossRef]
- Bartolomeu-Gonçalves, G.; Moreira, C.L.; Andriani, G.M.; Simionato, A.S.; Nakamura, C.V.; Andrade, G.; Tavares, E.R.; Yamauchi, L.M.; Yamada-Ogatta, S.F. Secondary Metabolite from Pseudomonas aeruginosa LV Strain Exhibits Antibacterial Activity Against Staphylococcus aureus. Braz. J. Dev. 2022, 8, 67414–67435. [Google Scholar] [CrossRef]
- Reffuveille, F.; De La Fuente-Núñez, C.; Mansour, S.; Hancock, R.E.W. A Broad-Spectrum Antibiofilm Peptide Enhances Antibiotic Action against Bacterial Biofilms. Antimicrob. Agents Chemother. 2014, 58, 5363–5371. [Google Scholar] [CrossRef]
- Penesyan, A.; Nagy, S.S.; Kjelleberg, S.; Gillings, M.R.; Paulsen, I.T. Rapid Microevolution of Biofilm Cells in Response to Antibiotics. Npj Biofilms Microbiomes 2019, 5, 34. [Google Scholar] [CrossRef]
- Andrade, G. Processo de Produção, Purificação e Obtenção de Substâncias Com Atividades Antibióticas Para o Controle de Doenças Causadas Por Bactérias Em Plantas. BR PI 0803350-1, 10 September 2008. [Google Scholar]
- Bedoya, J.C.; Dealis, M.L.; Silva, C.S.; Niekawa, E.T.G.; Navarro, M.O.P.; Simionato, A.S.; Modolon, F.; Chryssafidis, A.L.; Andrade, G. Enhanced Production of Target Bioactive Metabolites Produced by Pseudomonas aeruginosa LV Strain. Biocatal. Agric. Biotechnol. 2019, 17, 545–556. [Google Scholar] [CrossRef]
- Weinstein, M.P. Performance Standards for Antimicrobial Disk Susceptibility Tests, 13th ed.; Clinical and Laboratory Standards Institute: Wayne, PA, USA, 2018; ISBN 978-1-56238-834-8. [Google Scholar]
- Clinical and Laboratory Standards Institute. Methods for Dilution Antimicrobial Susceptibility Tests for Bacteria That Grow Aerobically: Approved Standard, 9th ed.; Clinical and Laboratory Standards Institute, Ed.; Clinical and Laboratory Standards Institute: Wayne, PA, USA, 2012; ISBN 978-1-56238-783-9. [Google Scholar]
- Sopirala, M.M.; Mangino, J.E.; Gebreyes, W.A.; Biller, B.; Bannerman, T.; Balada-Llasat, J.-M.; Pancholi, P. Synergy Testing by Etest, Microdilution Checkerboard, and Time-Kill Methods for Pan-Drug-Resistant Acinetobacter baumannii. Antimicrob. Agents Chemother. 2010, 54, 4678–4683. [Google Scholar] [CrossRef]
- Wenderska, I.B.; Chong, M.; McNulty, J.; Wright, G.D.; Burrows, L.L. Palmitoyl-dl-Carnitine Is a Multitarget Inhibitor of Pseudomonas aeruginosa Biofilm Development. ChemBioChem 2011, 12, 2759–2766. [Google Scholar] [CrossRef]
- Pitts, B.; Hamilton, M.A.; Zelver, N.; Stewart, P.S. A Microtiter-Plate Screening Method for Biofilm Disinfection and Removal. J. Microbiol. Methods 2003, 54, 269–276. [Google Scholar] [CrossRef] [PubMed]
A. baumannii | Phenotypic Resistance Profile 1 | Inhibition Zone FlpC (mm) | MIC FlpC (µg mL−1) |
---|---|---|---|
ATCC® 19606™ | - | 22.3 ± 0.58 | 1.75 |
CI 223 | AMK, GEN, IPM, MEM, CIP, LVX, CAZ, CRO, FEP, SXT, SAM, CST | 18.5 ± 0.71 | 3.5 |
CI 224 | AMK, GEN, IPM, MEM, CIP, LVX, CAZ, CRO, FEP, SXT, SAM, CST, PolB | 18.0 ± 1.41 | 3.5 |
CI 226 | AMK, IPM, MEM, CIP, TZP, CAZ, CRO, SXT, PolB | 16.5 ± 0.71 | 3.5 |
CI 227 | AMK, IPM, MEM, CIP, LVX, CAZ, CRO, FEP, SXT, SAM, CST, PolB | 18.5 ± 0.71 | 3.5 |
CI 230 | AMK, GEN, IPM, MEM, CIP, LVX, CAZ, CRO, FEP, SXT, SAM, PolB, TET | 17.3 ± 1.53 | 3.5 |
CI 232 | AMK, GEN, IPM, MEM, CIP, LVX, CAZ, CRO, FEP, SXT, SAM, PolB | 20.0 ± 1.41 | 3.5 |
Strain | MIC FlpC (µg mL−1) | MIC PolB (µg mL−1) | FICI | Interaction Type | ||
---|---|---|---|---|---|---|
Alone | Combined | Alone | Combined | |||
CI 223 | 3.5 | 1.75 | 2 (I) | 1 (I) | 1.00 | Additive |
CI 226 | 3.5 | 1.75 | 8 (R) | 1 (I) | 0.62 | Additive |
CI 227 | 3.5 | 1.75 | 32 (R) | 1 (I) | 0.53 | Additive |
CI 230 | 3.5 | 1.75 | 4 (R) | 1 (I) | 0.75 | Additive |
ID | OD570nm | Biofilm Production |
---|---|---|
Control | 0.160 ± 0.020 | - |
CI 223 | 0.579 ± 0.033 | Moderate |
CI 224 | 0.294 ± 0.083 | Weak |
CI 226 | 0.557 ± 0.079 | Moderate |
CI 227 | 0.690 ± 0.063 | Moderate |
CI 230 | 0.605 ± 0.074 | Moderate |
CI 232 | 0.231 ± 0.025 | Weak |
ATCC 19606 | 0.201 ± 0.016 | Weak |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Afonso, L.; Grzegorczyk, K.G.; Salomão, J.M.; Basso, K.R.; Alves, L.C.; Silva, M.C.D.; Chryssafidis, A.L.; Gionco-Cano, B.; Yamada-Ogatta, S.F.; Andrade, G. Fluopsin C Promotes Biofilm Removal of XDR Acinetobacter baumannii and Presents an Additive Effect with Polymyxin B on Planktonic Cells. Antibiotics 2024, 13, 875. https://doi.org/10.3390/antibiotics13090875
Afonso L, Grzegorczyk KG, Salomão JM, Basso KR, Alves LC, Silva MCD, Chryssafidis AL, Gionco-Cano B, Yamada-Ogatta SF, Andrade G. Fluopsin C Promotes Biofilm Removal of XDR Acinetobacter baumannii and Presents an Additive Effect with Polymyxin B on Planktonic Cells. Antibiotics. 2024; 13(9):875. https://doi.org/10.3390/antibiotics13090875
Chicago/Turabian StyleAfonso, Leandro, Kathlen Giovana Grzegorczyk, Julio Martins Salomão, Kawany Roque Basso, Leonardo Cruz Alves, Maria Clara Davis Silva, Andreas Lazaros Chryssafidis, Bárbara Gionco-Cano, Sueli Fumie Yamada-Ogatta, and Galdino Andrade. 2024. "Fluopsin C Promotes Biofilm Removal of XDR Acinetobacter baumannii and Presents an Additive Effect with Polymyxin B on Planktonic Cells" Antibiotics 13, no. 9: 875. https://doi.org/10.3390/antibiotics13090875
APA StyleAfonso, L., Grzegorczyk, K. G., Salomão, J. M., Basso, K. R., Alves, L. C., Silva, M. C. D., Chryssafidis, A. L., Gionco-Cano, B., Yamada-Ogatta, S. F., & Andrade, G. (2024). Fluopsin C Promotes Biofilm Removal of XDR Acinetobacter baumannii and Presents an Additive Effect with Polymyxin B on Planktonic Cells. Antibiotics, 13(9), 875. https://doi.org/10.3390/antibiotics13090875