Emergence of blaNDM-5 and blaOXA-232 Positive Colistin- and Carbapenem-Resistant Klebsiella pneumoniae in a Bulgarian Hospital
Abstract
:1. Introduction
2. Materials and Methods
2.1. Bacterial Isolates and Patients’ Susceptibility Testing
2.2. Molecular Identification of Beta-Lactamases and 16S rRNA Methylases
2.3. Molecular Typing
2.4. Replicon Typing
2.5. mgrB Sequencing and Plasmid Colistin Resistance
3. Results
3.1. Bacterial Isolates and Patients’ Susceptibility Testing
3.2. Molecular Identification of Beta-Lactamases and 16S rRNA Methylases
3.3. Molecular Typing
3.4. Replicon Typing
3.5. mgrB and Plasmid Colistin Resistance
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Podschun, R.; Ullmann, U. Klebsiella spp. as nosocomial pathogens: Epidemiology, taxonomy, typing methods, and pathogenicity factors. Clin. Microbiol. Rev. 1998, 11, 589–603. [Google Scholar] [CrossRef]
- Nordmann, P.; Poirel, L. Epidemiology and diagnostics of carbapenem resistance in Gram-negative bacteria. Clin. Infect. Dis. 2019, 69 (Suppl. S7), S521–S528. [Google Scholar] [CrossRef]
- Jean, S.S.; Harnod, D.; Hsueh, P.R. Global Threat of Carbapenem-Resistant Gram-Negative Bacteria. Front. Cell. Infect. Microbiol. 2022, 12, 823684. [Google Scholar] [CrossRef] [PubMed]
- Aslan, A.T.; Paterson, D.L. Epidemiology and clinical significance of carbapenemases in Australia: A narrative review. Intern. Med. J. 2024, 54, 535–544. [Google Scholar] [CrossRef]
- Bonomo, R.A.; Burd, E.M.; Conly, J.; Limbago, B.M.; Poirel, L.; Segre, J.A.; Westblade, L.F. Carbapenemase-Producing Organisms: A Global Scourge. Clin. Infect. Dis. 2018, 66, 1290–1297. [Google Scholar] [CrossRef]
- Chen, T.; Xu, H.; Chen, Y.; Ji, J.; Ying, C.; Liu, Z.; Xu, H.; Zhou, K.; Xiao, Y.; Shen, P. Identification and Characterization of OXA-232-Producing Sequence Type 231 Multidrug Resistant Klebsiella pneumoniae Strains Causing Bloodstream Infections in China. Microbiol. Spectr. 2023, 11, e02607-22. [Google Scholar] [CrossRef]
- Poirel, L.; Jayol, A.; Nordmann, P. Polymyxins: Antibacterial Activity, Susceptibility Testing, and Resistance Mechanisms Encoded by Plasmids or Chromosomes. Clin. Microbiol. Rev. 2017, 30, 557–596. [Google Scholar] [CrossRef] [PubMed]
- Cannatelli, A.; Giani, T.; D’Andrea, M.M.; Di Pilato, V.; Arena, F.; Conte, V.; Tryfinopoulou, K.; Vatopoulos, A.; Rossolini, G.M.; COLGRIT Study Group. MgrB inactivation is a common mechanism of colistin resistance in KPC-producing Klebsiella pneumoniae of clinical origin. Antimicrob. Agents Chemother. 2014, 58, 5696–5703. [Google Scholar] [CrossRef]
- Liu, Y.Y.; Wang, Y.; Walsh, T.R.; Yi, L.X.; Zhang, R.; Spencer, J.; Doi, Y.; Tian, G.; Dong, B.; Huang, X.; et al. Emergence of plasmid-mediated colistin resistance mechanism MCR-1 in animals and human beings in China: A microbiological and molecular biological study. Lancet Infect. Dis. 2016, 16, 161–168. [Google Scholar] [CrossRef]
- Sellera, F.P.; Fuentes-Castillo, D.; Furlan, J.P.R. One Health Spread of 16S Ribosomal RNA Methyltransferase-Harboring Gram-Negative Bacterial Genomes: An Overview of the Americas. Pathogens 2023, 12, 1164. [Google Scholar] [CrossRef]
- Fournier, C.; Poirel, L.; Despont, S.; Kessler, J.; Nordmann, P. Increasing Trends of Association of 16S rRNA Methylases and Carbapenemases in Enterobacterales Clinical Isolates from Switzerland, 2017–2020. Microorganisms 2022, 10, 615. [Google Scholar] [CrossRef] [PubMed]
- Yang, W.; Hu, F. Research Updates of Plasmid-Mediated Aminoglycoside Resistance 16S rRNA Methyltransferase. Antibiotics 2022, 11, 906. [Google Scholar] [CrossRef] [PubMed]
- Markovska, R.; Stoeva, T.; Boyanova, L.; Stankova, P.; Schneider, I.; Keuleyan, E.; Mihova, K.; Murdjeva, M.; Sredkova, M.; Lesseva, M.; et al. Multicentre investigation of carbapenemase-producing Klebsiella pneumoniae and Escherichia coli in Bulgarian hospitals—Interregional spread of ST11 NDM-1-producing K. pneumoniae. Infect. Genet. Evol. 2019, 69, 61–67. [Google Scholar] [CrossRef] [PubMed]
- Markovska, R.; Stoeva, T.; Schneider, I.; Boyanova, L.; Popova, V.; Dacheva, D.; Kaneva, R.; Bauernfeind, A.; Mitev, V.; Mitov, I. Clonal dissemination of multilocus sequence type ST15 KPC-2-producing Klebsiella pneumoniae in Bulgaria. Apmis 2015, 123, 887–894. [Google Scholar] [CrossRef] [PubMed]
- Poirel, L.; Savov, E.; Nazli, A.; Trifonova, A.; Todorova, I.; Gergova, I.; Nordmann, P. Outbreak caused by NDM-1- and RmtB-producing Escherichia coli in Bulgaria. Antimicrob. Agents Chemother. 2014, 58, 2472–2474. [Google Scholar] [CrossRef] [PubMed]
- Markovska, R.; Schneider, I.; Keuleyan, E.; Ivanova, D.; Lesseva, M.; Stoeva, T.; Sredkova, M.; Bauernfeind, A.; Mitov, I. Dissemination of a Multidrug-Resistant VIM-1- and CMY-99-Producing Proteus mirabilis Clone in Bulgaria. Microb. Drug Resist. 2017, 23, 345–350. [Google Scholar] [CrossRef] [PubMed]
- Todorova, B.; Sabtcheva, S.; Ivanov, I.N.; Lesseva, M.; Chalashkanov, T.; Ioneva, M.; Bachvarova, A.; Dobreva, E.; Kantardjiev, T. First clinical cases of NDM-1-producing Klebsiella pneumoniae from two hospitals in Bulgaria. J. Infect. Chemother. 2016, 22, 837–840. [Google Scholar] [CrossRef] [PubMed]
- Savov, E.; Todorova, I.; Politi, L.; Trifonova, A.; Borisova, M.; Kioseva, E.; Tsakris, A. Colistin Resistance in KPC-2- and SHV-5-Producing Klebsiella pneumoniae Clinical Isolates in Bulgaria. Chemotherapy 2017, 62, 339–342. [Google Scholar] [CrossRef]
- Markovska, R.; Marteva-Proevska, Y.; Velinov, T.; Pavlov, I.; Kaneva, R.; Boyanova, L. Detection of different colistin resistance mechanisms among multidrug-resistant Klebsiella pneumoniae isolates in Bulgaria. Acta Microbiol. Immunol. Hung. 2022, 69, 220–227. [Google Scholar] [CrossRef]
- Popivanov, G.; Markovska, R.; Gergova, I.; Konaktchieva, M.; Cirocchi, R.; Kjossev, K.; Mutafchiyski, V. An Intra-Hospital Spread of Colistin-Resistant K. pneumoniae Isolates-Epidemiological, Clinical, and Genetic Analysis. Medicina 2024, 60, 511. [Google Scholar] [CrossRef]
- The European Committee on Antimicrobial Susceptibility (EUCAST). 2024v14. Available online: https://www.eucast.org/fileadmin/src/media/PDFs/EUCAST_files/Breakpoint_tables/v_14.0_Breakpoint_Tables.pdf (accessed on 20 June 2024).
- US Food and Drug Administration (FDA) Breakpoints; Eravacycline. Available online: https://www.fda.gov/drugs/development-resources/eravacycline-injection-products (accessed on 20 June 2024).
- US Food and Drug Administration (FDA) Breakpoints; Plazomicin. Available online: https://www.accessdata.fda.gov/drugsatfda_docs/label/2018/210303orig1s000lbl.pdf (accessed on 20 June 2024).
- Magiorakos, A.P.; Srinivasan, A.; Carey, R.B.; Carmeli, Y.; Falagas, M.E.; Giske, C.G.; Harbarth, S.; Hindler, J.F.; Kahlmeter, G.; Olsson-Liljequist, B.; et al. Multidrug-resistant, extensively drug-resistant and pandrug-resistant bacteria: An international expert proposal for interim standard definitions for acquired resistance. Clin. Microbiol. Infect. 2012, 18, 268–281. [Google Scholar] [CrossRef]
- Poirel, L.; Walsh, T.R.; Cuvillier, V.; Nordmann, P. Multiplex PCR for detection of acquired carbapenemase genes. Diagn. Microbiol. Infect. Dis. 2011, 70, 119–123. [Google Scholar] [CrossRef]
- Pérez-Pérez, F.J.; Hanson, N.D. Detection of plasmid-mediated AmpC beta-lactamase genes in clinical isolates by using multiplex PCR. J. Clin. Microbiol. 2002, 40, 2153–2162. [Google Scholar] [CrossRef] [PubMed]
- Rasheed, J.K.; Kitchel, B.; Zhu, W.; Anderson, K.F.; Clark, N.C.; Ferraro, M.J.; Savard, P.; Humphries, R.M.; Kallen, A.J.; Limbago, B.M. New Delhi metallo-β-lactamase-producing Enterobacteriaceae, United States. Emerg. Infect. Dis. 2013, 19, 870–878. [Google Scholar] [CrossRef]
- Queenan, A.M.; Bush, K. Carbapenemases: The versatile beta-lactamases. Clin. Microbiol. Rev. 2007, 20, 440–458. [Google Scholar] [CrossRef] [PubMed]
- Poirel, L.; Heritier, C.; Tolun, V.; Nordmann, P. Emergence of oxacillinase-mediated resistance to imipenem in Klebsiella pneumoniae. Antimicrob. Agent Chemother. 2004, 48, 15–22. [Google Scholar] [CrossRef]
- Doi, Y.; Arakawa, Y. 16S ribosomal RNA methylation: Emerging resistance mechanism against aminoglycosides. Clin. Infect. Dis. 2007, 45, 88–94. [Google Scholar] [CrossRef]
- Carattoli, A.; Bertini, A.; Villa, L.; Falbo, V.; Hopkins, K.; Threlfall, E. Identification of plasmids by PCR-based replicon typing. J. Microbiol. Methods 2005, 63, 219–228. [Google Scholar] [CrossRef] [PubMed]
- Lescat, M.; Poirel, L.; Nordmann, P. Rapid multiplex polymerase chain reaction for detection of mcr-1 to mcr-5 genes. Diagn. Microbiol. Infect. Dis. 2018, 92, 267–269. [Google Scholar] [CrossRef]
- Antimicrobial Resistance in the EU/EEA (EARS-Net)—Annual Epidemiological Report for 2022. Available online: https://www.ecdc.europa.eu/en/publications-data/surveillance-antimicrobial-resistance-europe-2022 (accessed on 22 June 2024).
- European Centre for Disease Prevention and Control. Surveillance Antimicrobial-Consumption in the EU/EEA (EARS-Net)—Annual Epidemiological Report for 2022. Available online: https://www.ecdc.europa.eu/en/publications-data/surveillance-antimicrobial-consumption-europe-2022 (accessed on 22 June 2024).
- Schneider, I.; Markovska, R.; Marteva-Proevska, Y.; Mitov, I.; Markova, B.; Bauernfeind, A. Detection of CMY-99, a Novel Acquired AmpC-Type β-Lactamase, and VIM-1 in Proteus mirabilis Isolates in Bulgaria. Antimicrob. Agents Chemother. 2014, 58, 620–621. [Google Scholar] [CrossRef]
- Markovska, R.; Stankova, P.; Stoeva, T.; Keuleyan, E.; Mihova, K.; Boyanova, L. In Vitro Antimicrobial Activity of Five Newly Approved Antibiotics against Carbapenemase-Producing Enterobacteria—A Pilot Study in Bulgaria. Antibiotics 2024, 13, 81. [Google Scholar] [CrossRef] [PubMed]
- Markovska, R.; Stankova, P.; Stoeva, T.; Murdjeva, M.; Marteva-Proevska, Y.; Ivanova, D.; Sredkova, M.; Petrova, A.; Mihova, K.; Boyanova, L. Dissemination of High-Risk Clones Enterobacterales among Bulgarian Fecal Carriage Isolates. Microorganisms 2022, 10, 2144. [Google Scholar] [CrossRef]
- Hornsey, M.; Phee, L.; Wareham, D.W. A novel variant, NDM-5, of the New Delhi metallo-beta-lactamase in a multidrug-resistant Escherichia coli ST648 isolate recovered from a patient in the United Kingdom. Antimicrob. Agents Chemother. 2011, 55, 5952–5954. [Google Scholar] [CrossRef]
- Rojas, L.J.; Hujer, A.M.; Rudin, S.D.; Wright, M.S.; Domitrovic, T.N.; Marshall, S.H.; Hujer, K.M.; Richter, S.S.; Cober, E.; Perez, F.; et al. NDM-5 and OXA-181 Beta-Lactamases, a Significant Threat Continues To Spread in the Americas. Antimicrob. Agents Chemother. 2017, 61, e00454-17. [Google Scholar] [CrossRef] [PubMed]
- Potron, A.; Rondinaud, E.; Poirel, L.; Belmonte, O.; Boyer, S.; Camiade, S.; Nordmann, P. Genetic and biochemical characterisation of OXA-232, a carbapenem-hydrolysing class D β-lactamase from Enterobacteriaceae. Int. J. Antimicrob. Agents. 2013, 41, 325–329. [Google Scholar] [CrossRef] [PubMed]
- Emeraud, C.; Birer, A.; Girlich, D.; Jousset, A.B.; Creton, E.; Naas, T.; Bonnin, R.A.; Dortet, L. Polyclonal Dissemination of OXA-232 Carbapenemase-Producing Klebsiella pneumoniae, France, 2013–2021. Emerg. Infect. Dis. 2022, 28, 2304–2307. [Google Scholar] [CrossRef] [PubMed]
- Lee, C.R.; Lee, J.H.; Park, K.S.; Kim, Y.B.; Jeong, B.C.; Lee, S.H. Global Dissemination of Carbapenemase-Producing Klebsiella pneumoniae: Epidemiology, Genetic Context, Treatment Options, and Detection Methods. Front. Microbiol. 2016, 7, 895. [Google Scholar] [CrossRef] [PubMed]
- Isler, B.; Özer, B.; Çınar, G.; Aslan, A.T.; Vatansever, C.; Falconer, C.; Dolapçı, İ.; Şimşek, F.; Tülek, N.; Demirkaya, H.; et al. Characteristics and outcomes of carbapenemase harbouring carbapenem-resistant Klebsiella spp. bloodstream infections: A multicentre prospective cohort study in an OXA-48 endemic setting. Eur. J. Clin. Microbiol. Infect. Dis. 2022, 41, 841–847. [Google Scholar] [CrossRef] [PubMed]
- Naha, S.; Sands, K.; Mukherjee, S.; Saha, B.; Dutta, S.; Basu, S. OXA-181-Like Carbapenemases in Klebsiella pneumoniae ST14, ST15, ST23, ST48, and ST231 from Septicemic Neonates: Coexistence with NDM-5, Resistome, Transmissibility, and Genome Diversity. mSphere 2021, 6, e01156-20. [Google Scholar] [CrossRef]
- Sherchan, J.B.; Tada, T.; Shrestha, S.; Uchida, H.; Hishinuma, T.; Morioka, S.; Shahi, R.K.; Bhandari, S.; Twi, R.T.; Kirikae, T.; et al. Emergence of clinical isolates of highly carbapenem-resistant Klebsiella pneumoniae co-harboring blaNDM-5 and blaOXA-181 or -232 in Nepal. Int. J. Infect. Dis. 2020, 92, 247–252. [Google Scholar] [CrossRef]
- Pathak, A.; Tejan, N.; Dubey, A.; Chauhan, R.; Fatima, N.; Jyoti; Singh, S.; Bhayana, S.; Sahu, C. Outbreak of colistin resistant, carbapenemase (blaNDM, blaOXA-232) producing Klebsiella pneumoniae causing blood stream infection among neonates at a tertiary care hospital in India. Front. Cell. Infect. Microbiol. 2023, 13, 1051020. [Google Scholar] [CrossRef] [PubMed]
- Di Marcantonio, S.; Perilli, M.; Alloggia, G.; Segatore, B.; Miconi, G.; Bruno, G.; Frascaria, P.; Piccirilli, A. Coexistence of blaNDM-5, blaCTX-M-15, blaOXA-232, blaSHV-182 genes in multidrug-resistant K. pneumoniae ST437-carrying OmpK36 and OmpK37 porin mutations: First report in Italy. J. Glob. Antimicrob. Resist. 2024, 37, 24–27. [Google Scholar] [CrossRef] [PubMed]
- Hussain, A.; Mazumder, R.; Ahmed, A.; Saima, U.; Phelan, J.E.; Campino, S.; Ahmed, D.; Asadulghani, M.; Clark, T.G.; Mondal, D. Genome dynamics of high-risk resistant and hypervirulent Klebsiella pneumoniae clones in Dhaka, Bangladesh. Front. Microbiol. 2023, 14, 1184196. [Google Scholar] [CrossRef] [PubMed]
- Kopotsa, K.; Osei Sekyere, J.; Mbelle, N.M. Plasmid evolution in carbapenemase-producing Enterobacteriaceae: A review. Ann. N. Y. Acad. Sci. 2019, 1457, 61–91. [Google Scholar] [CrossRef] [PubMed]
- Yusof, N.Y.; Norazzman, N.I.I.; Hakim, S.N.W.A.; Azlan, M.M.; Anthony, A.A.; Mustafa, F.H.; Ahmed, N.; Rabaan, A.A.; Almuthree, S.A.; Alawfi, A.; et al. Prevalence of Mutated Colistin-Resistant Klebsiella pneumoniae: A Systematic Review and Meta-Analysis. Trop. Med. Infect. Dis. 2022, 7, 414. [Google Scholar] [CrossRef] [PubMed]
- Huang, Y.S.; Chen, P.Y.; Chou, P.C.; Wanh, J.T. In vitro activities and inoculum effects of Cefiderocol and Aztreonam-Avibactam against metallo-beta-lactamase-producing Enterobacteriaceae. Microbiol. Spectr. 2023, 11, e0056923. [Google Scholar] [CrossRef] [PubMed]
- Can, F.; Menekse, S.; Ispir, P.; Atac, N.; Albayrak, O.; Demir, T.; Karaaslan, D.C.; Karahan, S.N.; Kapmaz, M.; Kurt Azap, O.; et al. Impact of the ST101 clone on fatality among patients with colistin-resistant Klebsiella pneumoniae infection. J. Antimicrob. Chemother. 2018, 73, 1235–1241. [Google Scholar] [CrossRef] [PubMed]
- Pitout, J.D.D.; Peirano, G.; Kock, M.M.; Strydom, K.A.; Matsumura, Y. The Global Ascendency of OXA-48-Type Carbapenemases. Clin. Microbiol. Rev. 2019, 33, e00102-19. [Google Scholar] [CrossRef] [PubMed]
- Takei, S.; Tabe, Y.; Miida, T.; Hishinuma, T.; Khasawneh, A.; Kirikae, T.; Sherchand, J.B.; Tada, T. Multidrug-resistant Klebsiella pneumoniae clinical isolates producing NDM- and OXA-type carbapenemase in Nepal. J. Glob. Antimicrob. Resist. 2024, 37, 233–243. [Google Scholar] [CrossRef]
- Cerón, S.; Salem-Bango, Z.; Contreras, D.A.; Ranson, E.L.; Yang, S. Clinical and Genomic Characterization of Carbapenem-Resistant Klebsiella pneumoniae with Concurrent Production of NDM and OXA-48-like Carbapenemases in Southern California, 2016–2022. Microorganisms 2023, 11, 1717. [Google Scholar] [CrossRef]
- Bonnin, R.A.; Emeraud, C.; Jousset, A.B.; Naas, T.; Dortet, L. Comparison of disk diffusion, MIC test strip and broth microdilution methods for cefiderocol susceptibility testing on carbapenem-resistant Enterobacterales. Clin. Microbiol. Infect. 2022, 28, 1156.e1–1156.e5. [Google Scholar] [CrossRef] [PubMed]
- Longshaw, C.; Manissero, D.; Tsuji, M.; Echols, R.; Yamano, Y. In vitro activity of the siderophore cephalosporin, cefiderocol, against molecularly characterized, carbapenem-non-susceptible Gram-negative bacteria from Europe. JAC-Antimicrob. Resist. 2020, 2, dlaa060. [Google Scholar] [CrossRef] [PubMed]
- Shields, R.K.; Iovleva, A.; Kline, E.G.; Kawai, A.; McElheny, C.L.; Doi, Y. Clinical Evolution of AmpC-Mediated Ceftazidime-Avibactam and Cefiderocol Resistance in Enterobacter cloacae Complex Following Exposure to Cefepime. Clin. Infect. Dis. 2020, 71, 2713–2716. [Google Scholar] [CrossRef]
No. | Source | Month/ Year | Sex | Age | Main Diagnosis | Treatment Prior Isolation | Ward | Outcome | Bla Genes | ERIC 1 | ST | Rep 2 | Met 3 | MgrB |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1K | blood | 09/2023 | f | 69 | Kidney insufficiency | amp/sul, cro, mer, col | icu | Ex | OXA-232, NDM-5, | A | 6260 | colE | rmtB | ΔmgrB |
2K | blood | 09/2023 | f | 63 | Bladder cancer | pip/taz, lnz, col | icu | Ex | OXA-232, NDM-5 | A | 6260 | colE | rmtB | ΔmgrB |
3K | blood | 09/2023 | m | 82 | Bladder cancer | amp/sulb, lev, doxy, col | icu | Ex | OXA-232, CTX-M-15 | B | 14 | colE | armA | WT |
4K | urine | 10/2023 | m | 62 | Duodenal ulcer | mer | icu | dis | OXA-232, NDM-5 | A | 6260 | colE | rmtB | ΔmgrB |
5K | abscess | 10/2023 | m | 46 | Pancreatic cancer | amp/sul, lev, dox, col | sur | dis | OXA-232 CTX-M-15 | B | 14 | colE | armA | WT |
6K | wound | 10/2023 | m | 71 | Pancreatic cancer | amp/sul, pip/taz, col | sur | Ex | OXA-232 CTX-M-15 | B | 14 | colE | armA | WT |
7K | pleural punctate | 12/2023 | m | 40 | Multiple injuries | cfp/sul, col van | icu | dis | OXA-232, NDM-5 | A’ | 6260 | colE | rmtB | a124t N42Y ** |
8K | tracheo- bronchial | 12/2023 | f | 92 | Intestinal cancer, Peritonitis | pip/taz, van, col | icu | Ex | OXA-232, NDM-5 | A | 6260 | colE | rmtB | ΔmgrB |
9K | blood | 12/2023 | m | 74 | Peritonitis | pip/taz, lnz | icu | Ex | OXA-232, NDM-5 | A | 6260 | colE | rmtB | Δ72/89 * |
10K | blood | 01/2024 | m | 73 | Lung cancer | cfp/sul, col | icu | dis | KPC-2 CTX-M-15 | D | 16 | FII | - | WT |
11K | drainage fluid | 01/2024 | m | 78 | Intestinal cancer | mer, col | icu | Ex | OXA-232, NDM-5 | A | 6260 | colE | rmtB | ΔmgrB |
12K | blood | 01/2024 | m | 62 | Pyelonephritis, Acute kidney injury | cro, col | icu | dis | OXA-232, NDM-5 | A’ | 6260 | colE | rmtB | a124t N42Y ** |
13 K | blood | 01/2024 | m | 81 | Pyelonephritis, Septic shock | mer, col | icu | Ex | OXA-232, NDM-5 | A’ | 6260 | colE | rmtB | a124t N42Y ** |
14K | blood | 01/2024 | m | 75 | Ca small int IP | mer | icu | Ex | OXA-232, NDM-5 | A | 6260 | colE | rmtB | ΔmgrB |
15K | blood | 01/2024 | f | 63 | Abdominal abscess | cro, col | sur | dis | KPC-2 CTX-M-15 | E | 258 | FII | - | WT |
16K | tracheo- bronchial | 01/2024 | m | 91 | Pneumonia, Pyelonephritis, Septic shock | cro, col | icu | Ex | KPC-2 | C | 101 | FII | armA | WT |
17K | blood | 01/2024 | m | 46 | Cirrhosis, Pylonephri-tis, Septic shock, Pneumonia | cro, gen | icu | dis | OXA-232, NDM-5 | A’ | 6260 | colE | rmtB | WT |
18K | tracheo- bronchial | 01/2024 | m | 75 | Mesentery thrombosis, Peritonitis | mer | icu | Ex | KPC-2 | C | 101 | FII | armA | WT |
19K | drainage fluid | 01/2024 | m | 50 | Peritonitis | mer, col | sur | dis | OXA-232, NDM-5 | A | 6260 | colE | rmtB | WT |
20K | drainage fluid | 01/2024 | f | 60 | Liver abscess | pip/taz, van, col | sur | dis | OXA-232, NDM-5 | A | 6260 | colE | - | WT |
Antibiotic | S Number (Percent) | I Number (Percent) | R Number (Percent) | Number That Are Susceptible Out of the 14 Colistin-Resistant Isolates | Number That Are Susceptible Out of the 6 Colistin-Susceptible Isolates |
---|---|---|---|---|---|
Amoxicillin/ clavulanic acid | 0 (0%) | 0 (0%) | 20 (100%) | ||
Piperacillin/ tazobactam | 0 (0%) | 0 (0%) | 20 (100%) | ||
Cefuroxime | 0 (0%) | 0 (0%) | 20 (100%) | ||
Cefoxitin | 0 (0%) | 0 (0%) | 20 (100%) | ||
Ceftriaxone | 0 (0%) | 0 (0%) | 20 (100%) | ||
Ceftazidime | 0 (0%) | 0 (0%) | 20 (100%) | ||
Cefepime | 0 (0%) | 0 (0%) | 20 (100%) | ||
Imipenem | 0 (0%) | 3 (15%) | 17 (85%) | ||
Meropenem | 0 (0%) | 3 (15%) | 17 (85%) | ||
Gentamicin | 0 (0%) | 0 (0%) | 20 (100%) | ||
Amikacin | 1 (5%) | 0 (0%) | 19 (95%) | 1 | |
Ciprofloxacin | 0 (0%) | 0 (0%) | 20 (100%) | ||
Levofloxacin | 0 (0%) | 0 (0%) | 20 (100%) | ||
Fosfomycin | 0 (0%) | 0 (0%) | 20 (100%) | ||
Trimethoprim/ sulfamethoxazole | 4 (20%) | 0 (0%) | 16 (80%) | 1 | 3 |
Colistin | 6 (30%) | 0 (0%) | 14 (70%) | 6 | |
Ceftazidime/avibactam | 7 (35%) | 0 (0%) | 13 (65%) | 4 | 3 |
Cefiderocol | 20 (100%) | 0 (0%) | 0 | 14 | 6 |
Eravacycline | 3 (15%) | 0 (0%) | 17 (85%) | 1 | 2 |
Plazomicin | 2 (10%) | 0 (0%) | 18 (90%) | 1 | 1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Markovska, R.; Stankova, P.; Popivanov, G.; Gergova, I.; Mihova, K.; Mutafchiyski, V.; Boyanova, L. Emergence of blaNDM-5 and blaOXA-232 Positive Colistin- and Carbapenem-Resistant Klebsiella pneumoniae in a Bulgarian Hospital. Antibiotics 2024, 13, 677. https://doi.org/10.3390/antibiotics13070677
Markovska R, Stankova P, Popivanov G, Gergova I, Mihova K, Mutafchiyski V, Boyanova L. Emergence of blaNDM-5 and blaOXA-232 Positive Colistin- and Carbapenem-Resistant Klebsiella pneumoniae in a Bulgarian Hospital. Antibiotics. 2024; 13(7):677. https://doi.org/10.3390/antibiotics13070677
Chicago/Turabian StyleMarkovska, Rumyana, Petya Stankova, Georgi Popivanov, Ivanka Gergova, Kalina Mihova, Ventsislav Mutafchiyski, and Lyudmila Boyanova. 2024. "Emergence of blaNDM-5 and blaOXA-232 Positive Colistin- and Carbapenem-Resistant Klebsiella pneumoniae in a Bulgarian Hospital" Antibiotics 13, no. 7: 677. https://doi.org/10.3390/antibiotics13070677
APA StyleMarkovska, R., Stankova, P., Popivanov, G., Gergova, I., Mihova, K., Mutafchiyski, V., & Boyanova, L. (2024). Emergence of blaNDM-5 and blaOXA-232 Positive Colistin- and Carbapenem-Resistant Klebsiella pneumoniae in a Bulgarian Hospital. Antibiotics, 13(7), 677. https://doi.org/10.3390/antibiotics13070677