A Cyclic Peptide Based on Pheasant Cathelicidin Inhibits Influenza A H1N1 Virus Infection
Abstract
:1. Introduction
2. Results
2.1. Design of Cathelicidin Pc-1 and Its Derivative Peptides
2.2. The Cathelicidin Pc-Derived Peptides 4 and 5 Exhibited the Strongest Inhibitory Effects on H1N1 Virus Infection In Vitro
2.3. The Cyclic Peptide Pc-5 Induces Type I Interferon and Downstream Gene Expression
2.4. The Cyclic Peptide Pc-5 Inhibits Viral Infections and Reduces Inflammatory Responses in Mice
3. Discussion
4. Materials and Methods
4.1. Cell Lines and Virus
4.2. Peptide Design and Synthesis
4.3. CCK-8 Analysis
4.4. Plaque-Forming Assay
4.5. RNA Isolation and Real-Time PCR (qPCR)
4.6. Animal Experiment
4.7. Statistical Analysis
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Petrova, V.N.; Russell, C.A. The evolution of seasonal influenza viruses. Nat. Rev. Microbiol. 2018, 16, 47–60. [Google Scholar] [CrossRef] [PubMed]
- Long, J.S.; Mistry, B.; Haslam, S.M.; Barclay, W.S. Host and viral determinants of influenza A virus species specificity. Nat. Rev. Microbiol. 2019, 17, 67–81. [Google Scholar] [CrossRef] [PubMed]
- Paules, C.I.; Fauci, A.S. Influenza Vaccines: Good, but We Can Do Better. J. Infect. Dis. 2019, 219 (Suppl. S1), S1–S4. [Google Scholar] [CrossRef] [PubMed]
- Shirley, M. Baloxavir Marboxil: A Review in Acute Uncomplicated Influenza. Drugs 2020, 80, 1109–1118. [Google Scholar] [CrossRef] [PubMed]
- Kosik, I.; Yewdell, J.W. Influenza Hemagglutinin and Neuraminidase: Yin–Yang Proteins Coevolving to Thwart Immunity. Viruses 2019, 11, 346. [Google Scholar] [CrossRef] [PubMed]
- Locke, S.C.; Splawn, L.M.; Cho, J.C. Baloxavir marboxil: A novel cap-dependent endonuclease (CEN) inhibitor for the treatment of acute uncomplicated influenza. Drugs Today 2019, 55, 359–366. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Huo, S.; Yin, Z.; Tian, Z.; Huang, F.; Liu, P.; Liu, Y.; Yu, F. Retracted and republished from: “The current state of research on influenza antiviral drug development: Drugs in clinical trial and licensed drugs”. mBio 2024, 15, e0017524. [Google Scholar] [CrossRef] [PubMed]
- Uyeki, T.M.; Hui, D.S.; Zambon, M.; Wentworth, D.E.; Monto, A.S. Influenza. Lancet 2022, 400, 693–706. [Google Scholar] [CrossRef] [PubMed]
- Dufrasne, F. Baloxavir Marboxil: An Original New Drug against Influenza. Pharmaceuticals 2021, 15, 28. [Google Scholar] [CrossRef]
- Ageitos, J.M.; Sánchez-Pérez, A.; Calo-Mata, P.; Villa, T.G. Antimicrobial peptides (AMPs): Ancient compounds that represent novel weapons in the fight against bacteria. Biochem. Pharmacol. 2017, 133, 117–138. [Google Scholar] [CrossRef]
- Vilas Boas, L.C.P.; Campos, M.L.; Berlanda, R.L.A.; de Carvalho Neves, N.; Franco, O.L. Antiviral peptides as promising therapeutic drugs. Cell. Mol. Life Sci. 2019, 76, 3525–3542. [Google Scholar] [CrossRef] [PubMed]
- Urmi, U.L.; Vijay, A.K.; Kuppusamy, R.; Islam, S.; Willcox, M.D. A review of the antiviral activity of cationic antimicrobial peptides. Peptides 2023, 166, 171024. [Google Scholar] [CrossRef] [PubMed]
- Zakaryan, H.; Chilingaryan, G.; Arabyan, E.; Serobian, A.; Wang, G. Natural antimicrobial peptides as a source of new antiviral agents. J. Gen. Virol. 2021, 102, 001661. [Google Scholar] [CrossRef] [PubMed]
- Stallknecht, D.E.; Shane, S.M. Host range of avian influenza virus in free-living birds. Vet. Res. Commun. 1988, 12, 125–141. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Li, Y.; Jin, S.; Wang, T.; Sun, W.; Zhang, Y.; Li, F.; Zhao, M.; Sun, L.; Hu, X.; et al. H9N2 influenza virus spillover into wild birds from poultry in China bind to human-type receptors and transmit in mammals via respiratory droplets. Transbound. Emerg. Dis. 2022, 69, 669–684. [Google Scholar] [CrossRef] [PubMed]
- Reid, S.M.; Byrne, A.M.P.; Lean, F.Z.X.; Ross, C.S.; Pascu, A.; Hepple, R.; Dominguez, M.; Frost, S.; Coward, V.J.; Núñez, A.; et al. A multi-species, multi-pathogen avian viral disease outbreak event: Investigating potential for virus transmission at the wild bird–poultry interface. Emerg. Microbes Infect. 2024, 13, 2348521. [Google Scholar] [CrossRef] [PubMed]
- Zanetti, M. The role of cathelicidins in the innate host defenses of mammals. Curr. Issues Mol. Biol. 2005, 7, 179–196. [Google Scholar] [CrossRef] [PubMed]
- Scheenstra, M.R.; van Harten, R.M.; Veldhuizen, E.J.A.; Haagsman, H.P.; Coorens, M. Cathelicidins Modulate TLR-Activation and Inflammation. Front. Immunol. 2020, 11, 1137. [Google Scholar] [CrossRef]
- Amagai, R.; Takahashi, T.; Terui, H.; Fujimura, T.; Yamasaki, K.; Aiba, S.; Asano, Y. The Antimicrobial Peptide Cathelicidin Exerts Immunomodulatory Effects via Scavenger Receptors. Int. J. Mol. Sci. 2023, 24, 875. [Google Scholar] [CrossRef]
- Yoon, G.; Puentes, R.; Tran, J.; Multani, A.; Cobo, E.R. The role of cathelicidins in neutrophil biology. J. Leukoc. Biol. 2024, 112. [Google Scholar] [CrossRef]
- Narh, J.K.; Casillas-Vega, N.G.; Zarate, X. LL-37_Renalexin hybrid peptide exhibits antimicrobial activity at lower MICs than its counterpart single peptides. Appl. Microbiol. Biotechnol. 2024, 108, 126. [Google Scholar] [CrossRef] [PubMed]
- Sousa, F.H.; Casanova, V.; Findlay, F.; Stevens, C.; Svoboda, P.; Pohl, J.; Proudfoot, L.; Barlow, P.G. Cathelicidins display conserved direct antiviral activity towards rhinovirus. Peptides 2017, 95, 76–83. [Google Scholar] [CrossRef] [PubMed]
- Guo, X.; An, Y.; Tan, W.; Ma, L.; Wang, M.; Li, J.; Li, B.; Hou, W.; Wu, L. Cathelicidin-derived antiviral peptide inhibits herpes simplex virus 1 infection. Front. Microbiol. 2023, 14, 1201505. [Google Scholar] [CrossRef] [PubMed]
- Damour, A.; Garcia, M.; Cho, H.-S.; Larivière, A.; Lévêque, N.; Park, C.; Bodet, C. Characterisation of Antiviral Activity of Cathelicidins from Naked Mole Rat and Python bivittatus on Human Herpes Simplex Virus 1. Pharmaceuticals 2021, 14, 715. [Google Scholar] [CrossRef] [PubMed]
- Peng, L.; Du, W.; Balhuizen, M.D.; Haagsman, H.P.; de Haan, C.A.M.; Veldhuizen, E.J.A. Antiviral Activity of Chicken Cathelicidin B1 Against Influenza A Virus. Front. Microbiol. 2020, 11, 426. [Google Scholar] [CrossRef]
- Verheije, M.H.; Coorens, M.; Weerts, E.A.; Berends, A.J.; van Harten, R.M.; Angel, M.; Kooij, J.; Ordonez, S.R.; van Beurden, S.J.; van Dijk, A.; et al. Antiviral activity of selected cathelicidins against infectious bronchitis virus. Pept. Sci. 2022, 114, e24234. [Google Scholar] [CrossRef]
- Wang, Y.; Lu, Z.; Feng, F.; Zhu, W.; Guang, H.; Liu, J.; He, W.; Chi, L.; Li, Z.; Yu, H. Molecular cloning and characterization of novel cathelicidin-derived myeloid antimicrobial peptide from Phasianus colchicus. Dev. Comp. Immunol. 2011, 35, 314–322. [Google Scholar] [CrossRef] [PubMed]
- Fosgerau, K.; Hoffmann, T. Peptide therapeutics: Current status and future directions. Drug Discov. Today 2015, 20, 122–128. [Google Scholar] [CrossRef] [PubMed]
- Kuiken, T.; Holmes, E.C.; McCauley, J.; Rimmelzwaan, G.F.; Williams, C.S.; Grenfell, B.T. Host species barriers to influenza virus infections. Science 2006, 312, 394–397. [Google Scholar] [CrossRef]
- Chianese, A.; Zannella, C.; Monti, A.; Doti, N.; Sanna, G.; Manzin, A.; De Filippis, A.; Galdiero, M. Hylin-a1: A Pan-Inhibitor against Emerging and Re-Emerging Respiratory Viruses. Int. J. Mol. Sci. 2023, 24, 13888. [Google Scholar] [CrossRef]
- Yang, J.; Zhang, B.; Huang, Y.; Liu, T.; Zeng, B.; Chai, J.; Wu, J.; Xu, X. Antiviral activity and mechanism of ESC-1GN from skin secretion of Hylarana guentheri against influenza A virus. J. Biochem. 2021, 169, 757–765. [Google Scholar] [CrossRef] [PubMed]
- Elhamouly, M.; Terada, T.; Nii, T.; Isobe, N.; Yoshimura, Y. Innate antiviral immune response against infectious bronchitis virus and involvement of prostaglandin E2 in the uterine mucosa of laying hens. Theriogenology 2018, 110, 122–129. [Google Scholar] [CrossRef] [PubMed]
- Dalskov, L.; Gad, H.H.; Hartmann, R. Viral recognition and the antiviral interferon response. EMBO J. 2023, 42, e112907. [Google Scholar] [CrossRef] [PubMed]
- Nazeer, N.; Uribe-Diaz, S.; Rodriguez-Lecompte, J.C.; Ahmed, M. Antimicrobial peptides as an alternative to relieve antimicrobial growth promoters in poultry. Br. Poult. Sci. 2021, 62, 672–685. [Google Scholar] [CrossRef] [PubMed]
- Ahmed, A.; Siman-Tov, G.; Keck, F.; Kortchak, S.; Bakovic, A.; Risner, K.; Lu, T.K.; Bhalla, N.; de la Fuente-Nunez, C.; Narayanan, A. Human cathelicidin peptide LL-37 as a therapeutic antiviral targeting Venezuelan equine encephalitis virus infections. Antivir. Res. 2019, 164, 61–69. [Google Scholar] [CrossRef]
- Yu, J.; Dai, Y.; Fu, Y.; Wang, K.; Yang, Y.; Li, M.; Xu, W.; Wei, L. Cathelicidin antimicrobial peptides suppress EV71 infection via regulating antiviral response and inhibiting viral binding. Antivir. Res. 2021, 187, 105021. [Google Scholar] [CrossRef]
- Narasaraju, T.; Yang, E.; Samy, R.P.; Ng, H.H.; Poh, W.P.; Liew, A.-A.; Phoon, M.C.; van Rooijen, N.; Chow, V.T. Excessive neutrophils and neutrophil extracellular traps contribute to acute lung injury of influenza pneumonitis. Am. J. Pathol. 2011, 179, 199–210. [Google Scholar] [CrossRef] [PubMed]
- Chen, L.; Dou, J.; Su, Z.; Zhou, H.; Wang, H.; Zhou, W.; Guo, Q.; Zhou, C. Synergistic activity of baicalein with ribavirin against influenza A (H1N1) virus infections in cell culture and in mice. Antivir. Res. 2011, 91, 314–320. [Google Scholar] [CrossRef]
- Ling, L.J.; Lu, Y.; Zhang, Y.Y.; Zhu, H.Y.; Tu, P.; Li, H.; Chen, D.F. Flavonoids from Houttuynia cordata attenuate H1N1-induced acute lung injury in mice via inhibition of influenza virus and Toll-like receptor signalling. Phytomedicine 2020, 67, 153150. [Google Scholar] [CrossRef]
- Matute-Bello, G.; Downey, G.; Moore, B.B.; Groshong, S.D.; Matthay, M.A.; Slutsky, A.S.; Kuebler, W.M. An official American Thoracic Society workshop report: Features and measurements of experimental acute lung injury in animals. Am. J. Respir. Cell Mol. Biol. 2011, 44, 725–738. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pei, Y.; Chen, Z.; Zhao, R.; An, Y.; Yisihaer, H.; Wang, C.; Bai, Y.; Liang, L.; Jin, L.; Hu, Y. A Cyclic Peptide Based on Pheasant Cathelicidin Inhibits Influenza A H1N1 Virus Infection. Antibiotics 2024, 13, 606. https://doi.org/10.3390/antibiotics13070606
Pei Y, Chen Z, Zhao R, An Y, Yisihaer H, Wang C, Bai Y, Liang L, Jin L, Hu Y. A Cyclic Peptide Based on Pheasant Cathelicidin Inhibits Influenza A H1N1 Virus Infection. Antibiotics. 2024; 13(7):606. https://doi.org/10.3390/antibiotics13070606
Chicago/Turabian StylePei, Yaping, Zhihua Chen, Ruihan Zhao, Yanxing An, Haiche Yisihaer, Chaojie Wang, Yaning Bai, Libin Liang, Lin Jin, and Yongting Hu. 2024. "A Cyclic Peptide Based on Pheasant Cathelicidin Inhibits Influenza A H1N1 Virus Infection" Antibiotics 13, no. 7: 606. https://doi.org/10.3390/antibiotics13070606
APA StylePei, Y., Chen, Z., Zhao, R., An, Y., Yisihaer, H., Wang, C., Bai, Y., Liang, L., Jin, L., & Hu, Y. (2024). A Cyclic Peptide Based on Pheasant Cathelicidin Inhibits Influenza A H1N1 Virus Infection. Antibiotics, 13(7), 606. https://doi.org/10.3390/antibiotics13070606