Stenotrophomonas maltophilia: The Landscape in Critically Ill Patients and Optimising Management Approaches
Abstract
:1. Introduction
2. Relevant Sections
2.1. Commensal vs. Pathogenic Status of SM: Relevant Aspects
2.1.1. Why Should We Consider Highlighting the Importance of Colonisation by SM?
2.1.2. Why and When Should We Consider SM as a Real-Life Pathogen in the ICU? The Importance of VAP Cases in the Critically Ill
2.2. Antibiotic Resistance Traits and Microbiological Diagnostic Challenges: Clinical Impact on the ICU Population
2.2.1. Basis of SM Antibiotic Resistance
2.2.2. Considerations for Empirical Antimicrobial Decision-Making
2.2.3. Related Microbiological Diagnostic Challenges
2.3. Best Evidence-Based Approach to SM Severe Infections. Antimicrobial Stewardship in the Critically Ill
2.4. Preventive Measures: Theoretical Basis for Clinical Formulation of Prevention and Control Strategies to Reduce the Morbidity and Mortality of SM Infection in the ICU
3. Discussion and Future Directions
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Ryan, R.; Monchy, S.; Cardinale, M.; Taghavi, S.; Crossman, L.; Avison, M.; Berg, G.; van der Lelie, D.; Dow, J.M. The versatility and adaptation of bacteria from the genus Stenotrophomonas. Nat. Rev. Microbiol. 2009, 7, 514–525. [Google Scholar] [CrossRef] [PubMed]
- Brooke, J.S. Stenotrophomonas maltophilia: An emerging global opportunistic pathogen. Clin. Microbiol. Rev. 2012, 25, 2–41. [Google Scholar] [CrossRef] [PubMed]
- Looney, W.J.; Narita, M.; Mühlemann, K. Stenotrophomonas maltophilia: An emerging opportunist human pathogen. Lancet Infect. Dis. 2009, 9, 312–323. [Google Scholar] [CrossRef] [PubMed]
- Fihman, V.; Le Monnier, A.; Corvec, S.; Jaureguy, F.; Tankovic, J.; Jacquier, H.; Carbonnelle, E.; Bille, E.; Illiaquer, M.; Cattoir, V.; et al. Stenotrophomonas maltophilia—The most worrisome threat among unusual non-fermentative gram-negative bacilli from hospitalized patients: A prospective multicenter study. J. Infect. 2012, 64, 391–398. [Google Scholar] [CrossRef] [PubMed]
- Fupin, H.; Yan, G.; Demei, Z.; Fu, W.; Xiaofei, J. CHINET surveillance of bacterial resistance: Results of 2020. Chin J Infect Chemother. 2021, 21, 377–387. [Google Scholar] [CrossRef]
- Nseir, S.; Pompeo, C.; Brisson, H.; Dewavrin, F.; Tissier, S.; Diarra, M.; Boulo, M.; Durocher, A. Intensive care unit-acquired Stenotrophomonas maltophilia: Incidence, risk factors, and outcome. Crit. Care. 2006, 10, R143. [Google Scholar] [CrossRef] [PubMed]
- Koulenti, D.; Vandana, K.E.; Rello, J. Current viewpoint on the epidemiology of nonfermenting Gram-negative bacterial strains. Curr. Opin. Infect. Dis. 2023, 36, 545–554. [Google Scholar] [CrossRef] [PubMed]
- Horan, T.C.; Andrus, M.; Dudeck, M.A. CDC/NHSN surveillance definition of health care-associated infection and criteria for specific types of infections in the acute care setting. Am. J. Infect. Control 2008, 36, 309e32. [Google Scholar] [CrossRef] [PubMed]
- Del Toro, M.D.; Rodríguez-Bano, J.; Herrero, M.; Rivero, A.; García-Ordoñez, M.A.; Corzo, J.; Pérez-Cano, R.; Grupo Andaluz para el Estudio de las Enfermedades Infecciosas. Clinical epidemiology of Stenotrophomonas maltophilia colonization and infection: A multicenter study. Medicine 2002, 81, 228–239. [Google Scholar] [CrossRef] [PubMed]
- Falagas, M.; Kastoris, A.; Vouloumanou, E.; Rafailidis, P.; Kapaskelis, A.; Dimopoulos, G. Attributable mortality of Stenotrophomonas maltophilia infections: A systematic review of the literature. Future Microbiol. 2009, 4, 1103–1109. [Google Scholar] [CrossRef] [PubMed]
- Dadashi, M.; Hajikhani, B.; Nazarinejad, N.; Noorisepehr, N.; Yazdani, S.; Hashemi, A.; Hashemizadeh, Z.; Goudarzi, M.; Fatemeh, S. Global prevalence and distribution of antibiotic resistance among clinical isolates of Stenotrophomonas maltophilia: A systematic review and meta-analysis. J. Glob. Antimicrob. Resist. 2023, 34, 253–267. [Google Scholar] [CrossRef] [PubMed]
- Laing, F.P.Y.; Ramotar, K.; Read, R.R.; Alfieri, N.; Kureishi, A.; Henderson, E.A.; Louie, T.J. Molecular epidemiology of Xanthomonas maltophilia colonization and infection in the hospital environment. J. Clin. Microbiol. 1995, 33, 513–518. [Google Scholar] [CrossRef] [PubMed]
- Dimopoulos, G.; Garnacho-Montero, J.; Paramythiotou, E.; Gutierrez-Pizarraya, A.; Gogos, C.; Adriansen-Pérez, M.; Diakaki, C.; Matthaiou, D.K.; Poulakou, G.; Akinosoglou, K. Upraising Stenotrophomonas maltophilia in Critically Ill Patients: A New Enemy? Diagnostics 2023, 13, 1106. [Google Scholar] [CrossRef] [PubMed]
- Aitken, S.L.; Sahasrabhojane, P.V.; Kontoyiannis, D.P.; Savidge, T.C.; Arias, C.A.; Ajami, N.J.; Shelburne, S.A.; Galloway-Peña, J.R. Alterations of the Oral Microbiome and Cumulative Carbapenem Exposure Are Associated With Stenotrophomonas maltophilia Infection in Patients With Acute Myeloid Leukemia Receiving Chemotherapy. Clin. Infect. Dis. 2021, 72, 1507–1513. [Google Scholar] [CrossRef] [PubMed]
- Wang, N.; Tang, C.; Wang, L. Risk Factors for Acquired Stenotrophomonas maltophilia Pneumonia in Intensive Care Unit: A Systematic Review and Meta-Analysis. Front Med. 2022, 8, 808391. [Google Scholar] [CrossRef] [PubMed]
- Hotta, G.; Matsumura, Y.; Kato, K.; Nakano, S.; Yunoki, T.; Yamamoto, M.; Nagao, M.; Ito, Y.; Takakura, S.; Ichiyama, S. Risk factors and outcomes of Stenotrophomonas maltophilia bacteraemia: A comparison with bacteraemia caused by Pseudomonas aeruginosa and Acinetobacter species. PLoS ONE. 2014, 9, e112208. [Google Scholar] [CrossRef] [PubMed]
- Álvarez-Lerma, F.; Catalán-González, M.; Álvarez, J.; Sánchez-García, M.; Palomar-Martínez, M.; Fernández-Moreno, I.; Garnacho-Montero, J.; Barcenilla-Gaite, F.; García, R.; Aranaz-Andrés, J.; et al. Impact of the "Zero Resistance" program on acquisition of multidrug-resistant bacteria in patients admitted to Intensive Care Units in Spain. A prospective, intervention, multimodal, multicenter study. Med. Intensiv. 2023, 47, 193–202. [Google Scholar] [CrossRef] [PubMed]
- Detsis, M.; Karanika, S.; Mylonakis, E. ICU Acquisition Rate, Risk Factors, and Clinical Significance of Digestive Tract Colonization With Extended-Spectrum Beta-Lactamase-Producing Enterobacteriaceae: A Systematic Review and Meta-Analysis. Crit. Care Med. 2017, 45, 705–714. [Google Scholar] [CrossRef] [PubMed]
- Torres, I.; Huntley, D.; Tormo, M.; Calabuig, M.; Hernández-Boluda, J.C.; Terol, M.J.; Carretero, C.; de Michelena, P.; Pérez, A.; Piñana, J.L.; et al. Multi-body-site colonization screening cultures for predicting multi-drug resistant Gram-negative and Gram-positive bacteremia in hematological patients. BMC Infect. Dis. 2022, 22, 172. [Google Scholar] [CrossRef] [PubMed]
- Scheich, S.; Koenig, R.; Wilke, A.C.; Lindner, S.; Reinheimer, C.; Wichelhaus, T.A.; Hogardt, M.; Kempf, V.A.J.; Kessel, J.; Weber, S.; et al. Stenotrophomonas maltophilia colonization during allogeneic hematopoietic stem cell transplantation is associated with impaired survival. PLoS ONE. 2018, 13, e0201169. [Google Scholar] [CrossRef] [PubMed]
- Ishikawa, K.; Nakamura, T.; Kawai, F.; Uehara, Y.; Mori, N. Stenotrophomonas maltophilia Infection Associated with COVID-19: A Case Series and Literature Review. Am. J. Case Rep. 2022, 23, e936889. [Google Scholar] [CrossRef] [PubMed]
- European Centre for Disease Prevention and Control. Point Prevalence Survey of Healthcare-Associated Infections and Antimicrobial Use in European Acute Care Hospitals; ECDC: Stockholm, Sweden, 2024.
- ENVIN-HELICS. Available online: http://hws.vhebron.net/envin-helics/ (accessed on 19 May 2024).
- Guo, L.; Li, H.; Li, Q.; Juan, J. Antimicrobial drug-sensitivity and clinical risk factors of stenotro-phomnas maltophilia in the neurological intensive care unit. J. Xiangnan Univ. (Med. Sci.) 2014, 16, 21–24. [Google Scholar]
- Huang, C.; Kuo, S.; Lin, L. Hemorrhagic Pneumonia Caused by Stenotrophomonas maltophilia in Patients with Hematologic Malignancies-A Systematic Review and Meta-Analysis. Medicina 2024, 15, 162. [Google Scholar] [CrossRef] [PubMed]
- Gutierrez, C.; Pravinkumar, E.; Balachandran, D.; Schneider, V. Fatal hemorrhagic pneumonia: Don’t forget Stenotrophomonas maltophilia. Respir. Med. Case Rep. 2016, 19, 12–14. [Google Scholar] [CrossRef] [PubMed]
- Imoto, W.; Yamada, K.; Yamairi, K.; Shibata, W.; Namikawa, H.; Yukawa, S.; Yoshii, N.; Nakaie, K.; Hirose, A.; Koh, H.; et al. Clinical Characteristics of Rapidly Progressive Fatal Hemorrhagic Pneumonia Caused by Stenotrophomonas maltophilia. Intern. Med. 2020, 59, 193–198. [Google Scholar] [CrossRef] [PubMed]
- Windhorst, S.; Frank, E.; Georgieva, D.N.; Genov, N.; Buck, F.; Borowski, P.; Weber, W. The major extracellular protease of the nosocomial pathogen Stenotrophomonas maltophilia: Characterization of the protein and molecular cloning of the gene. J. Biol. Chem. 2022, 277, 11042–11049. [Google Scholar] [CrossRef] [PubMed]
- Mojica, M.F.; Humphries, R.; Lipuma, J.J.; Mathers, A.J.; Rao, G.G.; Shelburne, S.A.; Fouts, D.E.; Van Duin, D.; Bonomo, R.A. Clinical challenges treating Stenotrophomonas maltophilia infections: An update. JAC Antimicrob. Resist. 2022, 4, dlac040. [Google Scholar] [CrossRef] [PubMed]
- Tamma, P.D.; Aitken, S.L.; Bonomo, R.A.; Mathers, A.J.; van Duin, D.; Clancy, C.J. Infectious Diseases Society of America Guidance on the Treatment of AmpC beta-Lactamase-Producing Enterobacterales, Carbapenem-Resistant Acinetobacter baumannii, and Stenotrophomonas maltophilia Infections. Clin. Infect. Dis. 2022, 74, 2089–2114. [Google Scholar] [CrossRef] [PubMed]
- Zaragoza, R.; Vidal-Cortés, P.; Aguilar, G.; Borges, M.; Diaz, E.; Ferrer, R.; Maseda, E.; Nieto, M.; Nuvials, F.X.; Ramirez, P.; et al. Update of the treatment of nosocomial pneumonia in the ICU. Crit. Care. 2020, 24, 383. [Google Scholar] [CrossRef] [PubMed]
- Mensa, J.; Barberán, J.; Ferrer, R.; Borges, M.; Rascado, P.; Maseda, E.; Oliver, A.; Marco, F.; Adalia, R.; Aguilar, G.; et al. Recommendations for antibiotic selection for severe nosocomial infections. Rev. Esp. Quimioter. 2021, 34, 511–524. [Google Scholar] [CrossRef] [PubMed]
- Zilberberg, M.D.; Shorr, A.F.; Micek, S.T.; Vazquez-Guillamet, C.; Kollef, M.H. Multi-drug resistance, inappropriate initial antibiotic therapy and mortality in Gram-negative severe sepsis and septic shock: A retrospective cohort study. Crit. Care. 2014, 18, 596. [Google Scholar] [CrossRef] [PubMed]
- Xu, N.L.; Shi, S.J.; Lai, Z.S.; Li, H.R.; Lian, S.Q.; Chen, Y.S. A case-control study on the risk factors for lower respiratory tract infection by Stenotrophomonas maltophilia in a medical intensive care unit. Chin. J. Tuberc. Respir. Dis. 2011, 34, 735–738. [Google Scholar] [PubMed]
- Zilberberg, M.D.; Nathanson, B.H.; Sulham, K.; Fan, W.; Shorr, A.F. A novel algorithm to analyze epidemiology and outcomes of carbapenem resistance among patients with hospital-acquired and ventilator-associated pneumonia: A retrospective cohort study. Chest 2019, 155, 1119–1130. [Google Scholar] [CrossRef] [PubMed]
- Sherrard, L.J.; Tunney, M.M.; Elborn, J.S. Antimicrobial resistance in the respiratory microbiota of people with cystic fibrosis. Lancet 2014, 384, 703–713. [Google Scholar] [CrossRef] [PubMed]
- Quinn, A.M.; Bottery, M.J.; Thompson, H.; Friman, V.P. Resistance evolution can disrupt antibiotic exposure protection through competitive exclusion of the protective species. ISME J. 2022, 16, 2433–2447. [Google Scholar] [CrossRef] [PubMed]
- Yin, C.; Yang, W.; Meng, J.; Lv, Y.; Wang, J.; Huang, B. Co-infection of Pseudomonas aeruginosa and Stenotrophomonas maltophilia in hospitalised pneumonia patients has a synergic and significant impact on clinical outcomes. Eur. J. Clin. Microbiol. Infect. Dis. 2017, 36, 2231–2235. [Google Scholar] [CrossRef] [PubMed]
- Bostanghadiri, N.; Sholeh, M.; Navidifar, T.; Dadgar-Zankbar, L.; Elahi, Z.; van Belkum, A.; Darban-Sarokhalil, D. Global mapping of antibiotic resistance rates among clinical isolates of Stenotrophomonas maltophilia: A systematic review and meta-analysis. Ann. Clin. Microbiol. Antimicrob. 2024, 23, 26. [Google Scholar] [CrossRef] [PubMed]
- Poole, S.; Tanner, A.R.; Naidu, V.V.; Borca, F.; Phan, H.; Saeed, K.; Grocott, M.P.W.; Dushianthan, A.; Moyses, H.; Clark, T.W. Molecular point-of-care testing for lower respiratory tract pathogens improves safe antibiotic de-escalation in patients with pneumonia in the ICU: Results of a randomised controlled trial. J. Infect. 2022, 85, 625–633. [Google Scholar] [CrossRef] [PubMed]
- Clari, M.A.; Carbonell, N.; Albert, E.; Navarro, D. Proposal for antimicrobial therapy stewardship of lower respiratory tract infection in mechanically-ventilated patients based upon the Biofire® Filmarray® Pneumonia Plus panel results. Enfermedades Infecc. Microbiol. Clin. 2023, 41, 521–523. [Google Scholar] [CrossRef] [PubMed]
- Lv, M.; Zhu, C.; Zhu, C.; Yao, J.; Xie, L.; Zhang, C.; Huang, J.; Du, X.; Feng, G. Clinical values of metagenomic next-generation sequencing in patients with severe pneumonia: A systematic review and meta-analysis. Front. Cell Infect. Microbiol. 2023, 13, 1106859. [Google Scholar] [CrossRef] [PubMed]
- Sun, L.; Li, L.; Du, S.; Liu, Y.; Cao, B. An evaluation of the Unyvero pneumonia system for rapid detection of microorganisms and resistance markers of lower respiratory infections-a multicenter prospective study on ICU patients. Eur. J. Clin. Microb. Infect. Dis. 2021, 40, 2113–2121. [Google Scholar] [CrossRef] [PubMed]
- Burrack-Lange, S.C.; Personne, Y.; Huber, M.; Winkler, E.; Weile, J.; Knabbe, C.; Görig, J.; Rohde, H. Multicenter assessment of the rapid Unyvero Blood Culture molecular assay. J. Med. Microbiol. 2018, 67, 1294–1301. [Google Scholar] [CrossRef] [PubMed]
- Peri, A.M.; Ling, W.; Furuya-Kanamori, L.; Harris, P.N.A.; Paterson, D.L. Performance of BioFire Blood Culture Identification 2 Panel (BCID2) for the detection of bloodstream pathogens and their associated resistance markers: A systematic review and meta-analysis of diagnostic test accuracy studies. BMC Infect. Dis. 2022, 22, 794. [Google Scholar] [CrossRef] [PubMed]
- Galiana, A.; Coy, J.; Gimeno, A.; Guzman, N.M.; Rosales, F.; Merino, E.; Royo, G.; Rodríguez, J.C. Evaluation of the Sepsis Flow Chip assay for the diagnosis of blood infections. PLoS ONE. 2017, 12, e0177627. [Google Scholar] [CrossRef] [PubMed]
- Reitz, A.; Poppert, S.; Rieker, M.; Frickmann, H. Evaluation of FISH for Blood Cultures under Diagnostic Real-Life Conditions. Eur. J. Microbiol. Immunol. 2018, 8, 135–141. [Google Scholar] [CrossRef] [PubMed]
- Carrara, L.; Navarro, F.; Turbau, M.; Seres, M.; Morán, I.; Quintana, I.; Martino, R.; González, Y.; Brell, A.; Cordon, O.; et al. Molecular diagnosis of bloodstream infections with a new dual-priming oligonucleotide-based multiplex PCR assay. J. Med. Microbiol. 2013, 62 (Pt. 11), 1673–1679. [Google Scholar] [CrossRef] [PubMed]
- Gautam, V.; Sharma, M.; Singhal, L.; Kumar, S.; Kaur, P.; Tiwari, R.; Ray, P. MALDI-TOF mass spectrometry: An emerging tool for unequivocal identification of non-fermenting Gram-negative bacilli. Indian. J. Med. Res. 2017, 145, 665–672. [Google Scholar] [CrossRef] [PubMed]
- Pintado, V.; Ruiz-Garbajosa, P.; Aguilera-Alonso, D.; Baquero-Artigao, F.; Bou, G.; Cantón, R.; Grau, S.; Gutiérrez-Gutiérrez, B.; Larrosa, N.; Machuca, I.; et al. Executive summary of the consensus document of the Spanish Society of Infectious Diseases and Clinical Microbiology (SEIMC) on the diagnosis and antimicrobial treatment of infections due to carbapenem-resistant Gram-negative bacteria. Enfermedades Infecc. Microbiol. Clin. 2023, 41, 360–370. [Google Scholar] [CrossRef] [PubMed]
- Cantón, R.; Ruiz-Garbajosa, P. Treatment guidelines for multidrug-resistant Gram-negative microorganisms. Rev. Esp. Quimioter. 2023, 36 (Suppl. S1), 46–51. [Google Scholar] [CrossRef] [PubMed]
- Wei, C.; Ni, W.; Cai, X.; Zhao, J.; Cui, J. Evaluation of Trimethoprim/Sulfamethoxazole (SXT), Minocycline, Tigecycline, Moxifloxacin, and Ceftazidime Alone and in Combinations for SXT-Susceptible and SXT-Resistant Stenotrophomonas maltophilia by In Vitro Time-Kill Experiments. PLoS ONE. 2016, 11, e0152132. [Google Scholar] [CrossRef] [PubMed]
- Tamma, P.D.; Aitken, S.L.; Bonomo, R.A.; Mathers, A.J.; van Duin, D.; Clancy, C.J. Infectious Diseases Society of America 2023 Guidance on the Treatment of Antimicrobial Resistant Gram-Negative Infections. Clin. Infect. Dis. 2023, 18, ciad428. [Google Scholar] [CrossRef] [PubMed]
- Burastero, G.J.; Orlando, G.; Santoro, A.; Menozzi, M.; Franceschini, E.; Bedini, A.; Cervo, A.; Faltoni, M.; Bacca, E.; Biagioni, E.; et al. Ceftazidime/Avibactam in Ventilator-Associated Pneumonia Due to Difficult-to-Treat Non-Fermenter Gram-Negative Bacteria in COVID-19 Patients: A Case Series and Review of the Literature. Antibiotics 2022, 11, 1007. [Google Scholar] [CrossRef] [PubMed]
- Junco, S.J.; Bowman, M.C.; Turner, R.B. Clinical outcomes of Stenotrophomonas maltophilia infection treated with trimethoprim/sulfamethoxazole, minocycline, or fluoroquinolone monotherapy. Int. J. Antimicrob. Agents. 2021, 58, 106367. [Google Scholar] [CrossRef] [PubMed]
- De Pascale, G.; Lisi, L.; Pia Ciotti, G.M.; Vallecoccia, M.S.; Cutuli, S.L.; Cascarano, L.; Gelormini, C.; Bello, G.; Montini, L.; Carelli, S.; et al. Pharmacokinetics of high-dose tigecycline in critically ill patients with severe infections. Ann. Intensive Care. 2020, 10, 94. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.L.; Scipione, M.R.; Dubrovskaya, Y.; Papadopoulos, J. Monotherapy with fluoroquinolone or trimethoprim-sulfamethoxazole for treatment of Stenotrophomonas maltophilia infections. Antimicrob. Agents Chemother. 2014, 58, 176–182. [Google Scholar] [CrossRef] [PubMed]
- Sarzynski, S.H.; Warner, S.; Sun, J.; Matsouaka, R.; Dekker, J.P.; Babiker, A.; Li, W.; Lai, Y.L.; Danner, R.L.; Fowler, V.G., Jr.; et al. Trimethoprim-Sulfamethoxazole Versus Levofloxacin for Stenotrophomonas maltophilia Infections: A Retrospective Comparative Effectiveness Study of Electronic Health Records from 154 US Hospitals. Open Forum Infect. Dis. 2022, 9, ofab644. [Google Scholar] [CrossRef] [PubMed]
- Sánchez, M.B.; Martínez, J.L. The efflux pump SmeDEF contributes to trimethoprim-sulfamethoxazole resistance in Stenotrophomonas maltophilia. Antimicrob. Agents Chemother. 2015, 59, 4347–4348. [Google Scholar] [CrossRef] [PubMed]
- Gijón, D.; García-Castillo, J.; Fernández-López, M.C.; Bou, G.; Siller, M.; Calvo-Montes, J.; Pitart, C.; Vila, J.; Torno, N.; Gimeno, C.; et al. In vitro activity of cefiderocol and other newly approved antimicrobials against multi-drug resistant Gram-negative pathogens recovered in intensive care units in Spain and Portugal. Rev. Esp. Quimioter. 2024, 37, 69–77. [Google Scholar] [CrossRef] [PubMed]
- Balandín, B.; Pintado, V.; Pérez-Pedrero, M.J.; Martínez-Sagasti, F.; Sancho-González, M.; Soriano-Cuesta, C.; Gesso, C.M.; Chicot, M.; de Luna, R.R.; Asensio-Martín, M.J.; et al. Multicentre study of cefiderocol for treatment of Gram-negative bacteria infections in critically ill patients. Int. J. Antimicrob. Agents. 2024, 63, 107121. [Google Scholar] [CrossRef] [PubMed]
- Wicky, P.H.; Poiraud, J.; Alves, M.; Patrier, J.; d’Humières, C.; Lê, M.; Kramer, L.; de Montmollin, É.; Massias, L.; Armand-Lefèvre, L.; et al. Cefiderocol Treatment for Severe Infections due to Difficult-to-Treat-Resistant Non-Fermentative Gram-Negative Bacilli in ICU Patients: A Case Series and Narrative Literature Review. Antibiotics 2023, 12, 991. [Google Scholar] [CrossRef] [PubMed]
- Guyot, A.; Turton, J.F.; Garner, D. Outbreak of Stenotrophomonas maltophilia on an Intensive Care Unit. J. Hosp. Infect. 2013, 85, 303–307. [Google Scholar] [CrossRef] [PubMed]
- Sukhum, K.V.; Newcomer, E.P.; Cass, C.; Wallace, M.A.; Johnson, C.; Fine, J.; Sax, S.; Barlet, M.H.; Burnham, C.D.; Dantas, G.; et al. Antibiotic-resistant organisms establish reservoirs in new hospital built environments and are related to patient blood infection isolates. Commun Med. 2022, 2, 62. [Google Scholar] [CrossRef] [PubMed]
- Gideskog, M.; Welander, J.; Melhus, Å. Cluster of S. maltophilia among patients with respiratory tract infections at an intensive care unit. Infect. Prev. Pract. 2020, 2, 100097. [Google Scholar] [CrossRef] [PubMed]
- Baidya, A.; Kodan, P.; Fazal, F.; Tsering, S.; Menon, P.R.; Jorwal, P.; Chowdhury, U.K. Stenotrophomonas maltophilia: More than just a colonizer! Indian. J. Crit. Care Med. 2019, 23, 434. [Google Scholar] [CrossRef] [PubMed]
- Blot, K.; Hammami, N.; Blot, S.; Vogelaers, D.; Lambert, M.L. Seasonal variation of hospital-acquired bloodstream infections: A national cohort study. Infect. Control Hosp. Epidemiol. 2022, 43, 205–211. [Google Scholar] [CrossRef] [PubMed]
- Mokrani, D.; Chommeloux, J.; Pineton de Chambrun, M.; Hékimian, G.; Luyt, C.E. Antibiotic stewardship in the ICU: Time to shift into overdrive. Ann. Intensive Care. 2023, 13, 39. [Google Scholar] [CrossRef] [PubMed]
- Pérez-Torres, D.; Tamayo-Lomas, L.M.; Domínguez-Gil González, M.; Almendros-Muñoz, R.; Sacristán-Salgado, M.A.; González-González, E.; Berezo-García, J.A.; Díaz-Rodríguez, C.; Canas-Pérez, I.; Lorenzo-Vidal, B.; et al. Antimicrobial stewardship program in an Intensive Care Unit: A retrospective observational analysis of the results 15 months after its implementation. Rev. Esp. Quimioter. 2023, 36, 477–485. [Google Scholar] [CrossRef] [PubMed]
- Karaba, S.M.; Goodman, K.E.; Amoah, J.; Cosgrove, S.E.; Tamma, P.D. StenoSCORE: Predicting Stenotrophomonas maltophilia Bloodstream Infections in the Hematologic Malignancy Population. Antimicrob. Agents Chemother. 2021, 65, e0079321. [Google Scholar] [CrossRef] [PubMed]
- Gill, E.L.; Gill, C.M.; McEvoy, C. Validation of a Stenotrophomonas maltophilia bloodstream infection prediction score in the hematologic malignancy population. Ann. Hematol. 2024, 103, 1745–1752. [Google Scholar] [CrossRef] [PubMed]
- Torres, A.; Niederman, M.S.; Chastre, J.; Ewig, S.; Fernandez-Vandellos, P.; Hanberger, H.; Kollef, M.; Li Bassi, G.; Luna, C.M.; Martin-Loeches, I.; et al. International ERS/ESICM/ESCMID/ALAT guidelines for the management of hospital-acquired pneumonia and ventilator associated pneumonia: Guidelines for the management of hospital acquired pneumonia (HAP)/ventilator-associated pneumonia (VAP) of the European Respiratory Society (ERS), European Society of Intensive Care Medicine (ESICM), European Society of Clinical Microbiology and Infectious Diseases (ESCMID) and Asociacion Latinoamericana del Torax (ALAT). Eur. Respir. J. 2017, 50, 1700582. [Google Scholar] [CrossRef] [PubMed]
Diagnostic Test |
Pathogen/
Resistance | Sample Type |
Time
Required to Detection (Hours) |
Detection
Limit | Sensitivity (%) | Specificity (%) | Robustness | Reference |
---|---|---|---|---|---|---|---|---|
Unyvero A50 System HPN (Curetis, Holzgerlingen, Germany) | 21 Gram-negative and Gram-positive bacteria/17 antibiotic-resistant markers | Sputum, bronchoalveolar lavage, tracheal and bronchial secretions | <5 h | NR | 84 | 98 | NR | Sun et al., 2021 [43] |
Unyvero A50 System BCU (Curetis) | 34 Pathogens, 16 antibiotic resistance markers | Positive blood culture | <5 h | NR | 96.8 | 99.8 | NR | Burrack-Lange et al., 2018 [44] |
Biofire®Filmarray® BCID2 (bioMeriéux, Craponne, France) | 33 Gram-negative, Gram-positive bacteria, Candida spp., and 10 antibiotic-resistant markers | Positive blood culture | 1 h | NR | >80 for SM | 99.8 | NR | Peri et al., 2022 [45] |
Sepsis Flow Chip (VITRO Master Diagnóstica, Granada, Spain) | 17 Gram-negative and Gram-positive bacteria, 1 yeast, and 19 antibiotic-resistant markers | Positive blood culture | 3 h | NR | 100 for SM | 100 | NR | Galiana et al., 2017 [46] |
hemoFISH (Miacom Diagnostics, Düsseldorf, Germany) | 19 Gram-negative and Gram-positive bacteria | Positive blood culture | >5 h | NR | <80–90 for SM | >95 | NR | Reitz et al., 2018 [47] |
Magicplex Sepsis Real-Time (Seegene, Seoul, Republic of Korea) | 73 Gram-positive, 12 Gram-negative, 6 fungal, and 3 antibiotic-resistant markers | Whole blood | 3–6 h | NR | 65 | 92 | NR | Carrara et al., 2013 [48] |
MALDI Biotyper System (Bruker, Billerica, MA, USA) | Bacterial and fungal species or species groups | A single colony from isolate positive culture or positive whole blood cultures | minutes | - | 73 for SM | 99 | NR | Gautam et al., 2017 [49] |
LiDia-SEQ NGS (DNA Electronics Ltd., Carlsbad, CA, USA) | Bacterial and fungal pathogens | Whole blood | >4 h | 1 CFU/mL | NR | NR | NR | Not found |
Scenario | Clinical Evidence |
---|---|
Epidemiology | Recent surveillance data indicate that SM accounts for less than 3% of all strains of healthcare-associated infections, a percentage that doubles in the case of VAP [5,22,23]. Crude 28-day mortality is 54.8% [13], increasing to 90% if hemorrhagic pneumonia is present [25], and it is further increased with co-infection by Pseudomonas aeruginosa [38] |
Risk factors | Importance of stratification strategy: pre-existing medical conditions (COPD, malignancy); length of ICU stay; invasive procedures and antimicrobial agents, especially CP [15]. StenoSCORE2 for SM bacteriemia prediction [71] |
Colonisation | Oral SM relative abundance of 36% predicts infection [14]. Previous SM colonisation was found in 80% of patients with pneumonia and 67% of patients with bacteremia caused by SM [6,16] |
Antibiotic resistance | SM is intrinsically resistant to a wide range of commonly used antibiotics [29]. The resistance surveillance data reflect an increase, especially for cotrimoxazole and tigecycline [11,23,39] |
Diagnostic challenges | There is no consensus among antimicrobial susceptibility testing guidelines [29,39]. An ICU-ASP for guiding an adjustment of empirical antimicrobial therapy based on rapid microbiological testing seems imperative [41,68] |
Empirical therapy | SM predicts initially inappropriate antibiotic therapy [33] |
Directed therapy | Combination therapy is recommended until clinical improvement [51,53] |
Prevention measures | SM establishes ambiental ICU reservoirs and is related to patient infection [64,65]. Optimisation of infection control policies deserves special attention [17] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Carbonell, N.; Oltra, M.R.; Clari, M.Á. Stenotrophomonas maltophilia: The Landscape in Critically Ill Patients and Optimising Management Approaches. Antibiotics 2024, 13, 577. https://doi.org/10.3390/antibiotics13070577
Carbonell N, Oltra MR, Clari MÁ. Stenotrophomonas maltophilia: The Landscape in Critically Ill Patients and Optimising Management Approaches. Antibiotics. 2024; 13(7):577. https://doi.org/10.3390/antibiotics13070577
Chicago/Turabian StyleCarbonell, Nieves, María Rosa Oltra, and María Ángeles Clari. 2024. "Stenotrophomonas maltophilia: The Landscape in Critically Ill Patients and Optimising Management Approaches" Antibiotics 13, no. 7: 577. https://doi.org/10.3390/antibiotics13070577
APA StyleCarbonell, N., Oltra, M. R., & Clari, M. Á. (2024). Stenotrophomonas maltophilia: The Landscape in Critically Ill Patients and Optimising Management Approaches. Antibiotics, 13(7), 577. https://doi.org/10.3390/antibiotics13070577