Antibacterial Activities of Phenolic Compounds in Miang Extract: Growth Inhibition and Change in Protein Expression of Extensively Drug-Resistant Klebsiella pneumoniae
Abstract
:1. Introduction
2. Results
2.1. Polyphenol and Flavonoid Compounds in Miang Extracts
2.2. Antibiotic Resistance Profile of Clinical Isolate Bacteria
2.3. Antibacterial Activity of Catechin, Catechin Derivatives, and Related Compounds, and Tested Extracts against XDR and MDR Bacteria
2.4. The Effect of Miang Extract on Bacterial Morphology
2.5. The Proteomic Changes in K. pneumoniae NH54 Responding to Miang Treatment
2.5.1. The Effect on Peptidoglycan Synthesis
2.5.2. The Effect on Outer Membrane Metabolism
2.5.3. The Effect on Carbohydrate Metabolism
2.5.4. The Effect on Amino Acid Metabolism
3. Discussion
4. Materials and Methods
4.1. Chemicals and Reagents
4.2. Bacterial Strains
4.3. Sample Extraction
4.4. Chromatographic Analysis of Catechin, Catechin Derivatives, and Related Compounds
4.5. Antibiotic Susceptibility Testing
4.6. Minimum Inhibitory Concentration (MIC) and Minimum Bactericidal Concentration (MBC) of Tested Extracts and Phenolic and Flavonoid Compounds
4.7. Determination of Bacterial Cell Damage by Scanning Electron Microscopy (SEM)
4.8. Sample Preparation for Shotgun Proteomics
4.9. Liquid Chromatography–Tandem Mass Spectrometry (LC/MS-MS)
4.10. Bioinformatics and Data Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- World Health Organization. Prioritization of Pathogens to Guide Discovery, Research and Development of New Antibiotics for Drug-Resistant Bacterial Infections, Including Tuberculosis. World Health Organization. 2017. Available online: https://iris.who.int/handle/10665/311820 (accessed on 23 October 2022).
- Kawakami, M.; Chairote, G.; Kobayashi, A. Flavor Constituents of Pickled Tea, Miang, in Thailand. Agric. Biol. Chem. 1987, 51, 1683–1687. [Google Scholar] [CrossRef]
- Khanongnuch, C.; Unban, K.; Kanpiengjai, A.; Saenjum, C. Recent research advances and ethno-botanical history of miang, a traditional fermented tea (Camellia sinensis var. assamica) of northern Thailand. J. Ethn. Foods 2017, 4, 135–144. [Google Scholar] [CrossRef]
- Youyi, H.; Cong, L.; Xiudan, X. Quality Characteristics of a Pickled Tea Processed by Submerged Fermentation. Int. J. Food Prop. 2016, 19, 1194–1206. [Google Scholar] [CrossRef]
- Abdullahi, A.D.; Kodchasee, P.; Unban, K.; Pattananandecha, T.; Saenjum, C.; Kanpiengjai, A.; Shetty, K.; Khanongnuch, C. Comparison of Phenolic Contents and Scavenging Activities of Miang Extracts Derived from Filamentous and Non-Filamentous Fungi-Based Fermentation Processes. Antioxidants 2021, 10, 1144. [Google Scholar] [CrossRef]
- Egan, A.J.F.; Errington, J.; Vollmer, W. Regulation of peptidoglycan synthesis and remodelling. Nat. Rev. Microbiol. 2020, 18, 446–460. [Google Scholar] [CrossRef]
- Whitfield, C.; Williams, D.M.; Kelly, S.D. Lipopolysaccharide O-antigens-bacterial glycans made to measure. J. Biol. Chem. 2020, 295, 10593–10609. [Google Scholar] [CrossRef]
- Rai, A.K.; Mitchell, A.M. Enterobacterial Common Antigen: Synthesis and Function of an Enigmatic Molecule. mBio 2020, 11, e01914-20. [Google Scholar] [CrossRef]
- Gogry, F.A.; Siddiqui, M.T.; Sultan, I.; Haq, Q.M.R. Current Update on Intrinsic and Acquired Colistin Resistance Mechanisms in Bacteria. Front. Med. 2021, 8, 677720. [Google Scholar] [CrossRef]
- Breazeale, S.D.; Ribeiro, A.A.; McClerren, A.L.; Raetz, C.R. A formyltransferase required for polymyxin resistance in Escherichia coli and the modification of lipid A with 4-Amino-4-deoxy-L-arabinose. Identification and function oF UDP-4-deoxy-4-formamido-L-arabinose. J. Biol. Chem. 2005, 280, 14154–14167. [Google Scholar] [CrossRef]
- Titgemeyer, F.; Jahreis, K.; Ebner, R.; Lengeler, J.W. Molecular analysis of the scrA and scrB genes from Klebsiella pneumoniae and plasmid pUR400, which encode the sucrose transport protein Enzyme II Scr of the phosphotransferase system and a sucrose-6-phosphate invertase. Mol. Gen. Genet. MGG 1996, 250, 197–206. [Google Scholar] [CrossRef]
- Chambre, D.; Guérard-Hélaine, C.; Darii, E.; Mariage, A.; Petit, J.L.; Salanoubat, M.; de Berardinis, V.; Lemaire, M.; Hélaine, V. 2-Deoxyribose-5-phosphate aldolase, a remarkably tolerant aldolase towards nucleophile substrates. Chem. Commun. 2019, 55, 7498–7501. [Google Scholar] [CrossRef]
- Rodionov, D.A.; Vitreschak, A.G.; Mironov, A.A.; Gelfand, M.S. Regulation of lysine biosynthesis and transport genes in bacteria: Yet another RNA riboswitch? Nucleic Acids Res. 2003, 31, 6748–6757. [Google Scholar] [CrossRef]
- Huo, X.; Viola, R.E. Substrate specificity and identification of functional groups of homoserine kinase from Escherichia coli. Biochemistry 1996, 35, 16180–16185. [Google Scholar] [CrossRef]
- North, J.A.; Wildenthal, J.A.; Erb, T.J.; Evans, B.S.; Byerly, K.M.; Gerlt, J.A.; Tabita, F.R. A bifunctional salvage pathway for two distinct S-adenosylmethionine by-products that is widespread in bacteria, including pathogenic Escherichia coli. Mol. Microbiol. 2020, 113, 923–937. [Google Scholar] [CrossRef]
- Duncan, K.; Coggins, J.R. The serC-aro A operon of Escherichia coli. A mixed function operon encoding enzymes from two different amino acid biosynthetic pathways. Biochem. J. 1986, 234, 49–57. [Google Scholar] [CrossRef]
- Shakya, S.; Danshiitsoodol, N.; Sugimoto, S.; Noda, M.; Sugiyama, M. Anti-Oxidant and Anti-Inflammatory Substance Generated Newly in Paeoniae Radix Alba Extract Fermented with Plant-Derived Lactobacillus brevis 174A. Antioxidants 2021, 10, 1071. [Google Scholar] [CrossRef]
- Kongpichitchoke, T.; Chiu, M.T.; Huang, T.C.; Hsu, J.L. Gallic Acid Content in Taiwanese Teas at Different Degrees of Fermentation and Its Antioxidant Activity by Inhibiting PKCδ Activation: In Vitro and in Silico Studies. Molecules 2016, 21, 1346. [Google Scholar] [CrossRef]
- Yildiz, E.; Guldas, M.; Gurbuz, O. Determination of in-vitro phenolics, antioxidant capacity and bio-accessibility of Kombucha tea produced from black carrot varieties grown in Turkey. Food Sci. Technol. 2021, 41, 180–187. [Google Scholar] [CrossRef]
- Lim, J.Y.; Kim, C.M.; Rhee, J.H.; Kim, Y.R. Effects of Pyrogallol on Growth and Cytotoxicity of Wild-Type and katG Mutant Strains of Vibrio vulnificus. PLoS ONE 2016, 11, e0167699. [Google Scholar] [CrossRef]
- Ozturk Sarikaya, S.B. Acethylcholinesterase inhibitory potential and antioxidant properties of pyrogallol. J. Enzym. Inhib. Med. Chem. 2015, 30, 761–766. [Google Scholar] [CrossRef]
- Lima, V.N.; Oliveira-Tintino, C.D.; Santos, E.S.; Morais, L.P.; Tintino, S.R.; Freitas, T.S.; Geraldo, Y.S.; Pereira, R.L.; Cruz, R.P.; Menezes, I.R.; et al. Antimicrobial and enhancement of the antibiotic activity by phenolic compounds: Gallic acid, caffeic acid and pyrogallol. Microb. Pathog. 2016, 99, 56–61. [Google Scholar] [CrossRef]
- Taguri, T.; Tanaka, T.; Kouno, I. Antibacterial spectrum of plant polyphenols and extracts depending upon hydroxyphenyl structure. Biol. Pharm. Bull. 2006, 29, 2226–2235. [Google Scholar] [CrossRef]
- Chew, Y.L.; Arasi, C.; Goh, J.K. Pyrogallol induces antimicrobial effect and cell membrane disruption on methicillin-resistant Staphylococcus aureus (MRSA). Curr. Bioact. Compd. 2022, 18, e260821193606. [Google Scholar] [CrossRef]
- Zhao, T.; Li, C.; Wang, S.; Song, X. Green Tea (Camellia sinensis): A Review of Its Phytochemistry, Pharmacology, and Toxicology. Molecules 2022, 27, 3909. [Google Scholar] [CrossRef]
- Cho, Y.S.; Schiller, N.L.; Kahng, H.Y.; Oh, K.H. Cellular responses and proteomic analysis of Escherichia coli exposed to green tea polyphenols. Curr. Microbiol. 2007, 55, 501–506. [Google Scholar] [CrossRef]
- Olaitan, A.O.; Morand, S.; Rolain, J.M. Mechanisms of polymyxin resistance: Acquired and intrinsic resistance in bacteria. Front. Microbiol. 2014, 5, 643. [Google Scholar] [CrossRef]
- Yan, A.; Guan, Z.; Raetz, C.R. An undecaprenyl phosphate-aminoarabinose flippase required for polymyxin resistance in Escherichia coli. J. Biol. Chem. 2007, 282, 36077–36089. [Google Scholar] [CrossRef]
- Lane, D.J. 16S/23S rRNA sequencing. In Nucleic Acid Techniques in Bacterial Systematics; Stackebrandt, E., Goodfellow, M., Eds.; John Wiley and Sons: Chichester, UK, 1991; pp. 115–175. [Google Scholar]
- Wangkarn, S.; Grudpan, K.; Khanongnuch, C.; Pattananandecha, T.; Apichai, S.; Saenjum, C. Development of HPLC Method for Catechins and Related Compounds Determination and Standardization in Miang (Traditional Lanna Fermented Tea Leaf in Northern Thailand). Molecules 2021, 26, 6052. [Google Scholar] [CrossRef]
- CLSI. Performance Standards for Antimicrobial Susceptibility Testing, M100, 31st ed.; Clinical and Laboratory Standards Institute: Wayne, PA, USA, 2021. [Google Scholar]
- Lowry, O.H.; Rosebrough, N.J.; Farr, A.L.; Randall, R.J. Protein measurement with the Folin phenol reagent. J. Biol. Chem. 1951, 193, 265–275. [Google Scholar] [CrossRef]
- Tyanova, S.; Temu, T.; Cox, J. The MaxQuant computational platform for mass spectrometry-based shotgun proteomics. Nat. Protoc. 2016, 11, 2301–2319. [Google Scholar] [CrossRef]
- Tyanova, S.; Temu, T.; Sinitcyn, P.; Carlson, A.; Hein, M.Y.; Geiger, T.; Mann, M.; Cox, J. The Perseus computational platform for comprehensive analysis of (prote)omics data. Nat. Methods 2016, 13, 731–740. [Google Scholar] [CrossRef]
- Pang, Z.; Zhou, G.; Ewald, J.; Chang, L.; Hacariz, O.; Basu, N.; Xia, J. Using MetaboAnalyst 5.0 for LC-HRMS spectra processing, multi-omics integration and covariate adjustment of global metabolomics data. Nat. Protoc. 2022, 17, 1735–1761. [Google Scholar] [CrossRef]
- Mi, H.; Muruganujan, A.; Ebert, D.; Huang, X.; Thomas, P.D. PANTHER version 14: More genomes, a new PANTHER GO-slim and improvements in enrichment analysis tools. Nucleic Acids Res. 2019, 47, D419–D426. [Google Scholar] [CrossRef]
- Bardou, P.; Mariette, J.; Escudié, F.; Djemiel, C.; Klopp, C. jvenn: An interactive Venn diagram viewer. BMC Bioinform. 2014, 15, 293. [Google Scholar] [CrossRef]
Compounds | Bioactive Compounds (mg/g Extract) | ||
---|---|---|---|
Fresh Assam Tea Leaves | Streamed Assam Tea Leaves | Fermented Assam Tea Leaves | |
Gallic acid | 0.94 ± 0.05 | 1.42 ± 0.07 | 2.45 ± 0.08 |
Pyrogallol | ND | ND | 4.37 ± 0.06 |
Gallocatechin | 3.65 ± 0.09 | 3.47 ± 0.09 | 2.73 ± 0.12 |
Epigallocatechin | 8.84 ± 0.13 | 3.76 ± 0.13 | 4.52 ± 0.15 |
Catechin | 36.78 ± 0.18 | 22.26 ± 0.17 | 17.75 ± 0.13 |
Caffeine | 17.37 ± 0.11 | 23.62 ± 0.12 | 15.45 ± 0.09 |
Epicatechin | 5.32 ± 0.12 | 3.18 ± 0.07 | 6.12 ± 0.08 |
Epigallocatechin gallate | 3.71 ± 0.10 | 3.85 ± 0.08 | 2.96 ± 0.11 |
Gallocatechin gallate | 1.18 ± 0.07 | 0.92 ± 0.05 | 1.43 ± 0.08 |
Epicatechin gallate | 1.83 ± 0.09 | 2.26 ± 0.10 | 1.37 ± 0.08 |
Bacterial Isolates | Fresh Assam Tea Leaves (mg/mL) | Steamed Assam Tea Leaves (mg/mL) | Fermented Assam Tea Leaves (mg/mL) | |||
---|---|---|---|---|---|---|
MIC | MBC | MIC | MBC | MIC | MBC | |
E. coli CRE10 | 32 | 64 | 8 | 8 | 2 | 2 |
K. pneumoniae NH54 | 32 | 64 | 8 | 8 | 2 | 2 |
S. aureus MRSA08 | 8 | 8 | 1 | 1 | 0.5 | 1 |
S. aureus MSSA01 | 8 | 8 | 1 | 1 | 1 | 2 |
E. coli ATCC 25922 | 32 | 64 | 16 | 16 | 2 | 2 |
Bacterial Isolates | Epicatechin (mg/mL) | Catechin (mg/mL) | Epigallocatechin Gallate (mg/mL) | Pyrogallol (mg/mL) | Gallic Acid (mg/mL) | Ellagic Acid (mg/mL) | Caffeine (mg/mL) | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
MIC | MBC | MIC | MBC | MIC | MBC | MIC | MBC | MIC | MIC | MIC | MBC | MIC | MBC | |
E. coli CRE10 | >2 | >2 | >2 | >2 | >2 | >2 | 0.25 | 0.5 | >2 | >2 | >2 | >2 | >2 | >2 |
K. pneumoniae NH54 | >2 | >2 | >2 | >2 | >2 | >2 | 0.25 | 0.5 | >2 | >2 | >2 | >2 | >2 | >2 |
S. aureus MRSA08 | >2 | >2 | >2 | >2 | 0.5 | 2 | 0.25 | 0.5 | >2 | >2 | >2 | >2 | >2 | >2 |
S. aureus MSSA01 | >2 | >2 | >2 | >2 | 0.5 | 1 | 0.25 | 0.5 | >2 | >2 | >2 | >2 | >2 | >2 |
E. coli ATCC 25922 | >2 | >2 | >2 | >2 | >2 | >2 | 0.25 | 0.25 | >2 | >2 | >2 | >2 | >2 | >2 |
Protein ID | Gene | Description | Pathway | Expression Level (Fold Change) |
---|---|---|---|---|
Peptidoglycan biogenesis | ||||
B5Y1U7 | murG | UDP-N-acetylglucosamine-N-acetylmuramyl-(pentapeptide) pyrophosphoryl undecaprenol N-acetylglucosamine transferase | Peptidoglycan biosynthesis. | Down (5.0832) |
A6T4N0 | mraY | Phospho-N-acetylmuramoyl-pentapeptide-transferase | Peptidoglycan biosynthesis. | Down (5.4706) |
A6T4N4 | murC | UDP-N-acetylmuramate-L-alanine ligase | Peptidoglycan biosynthesis. | Down (5.5112) |
Outer membrane metabolism | ||||
A6TF98 | arnA | Bifunctional polymyxin resistance protein ArnA | LPS modification by the modification of lipid A with 4-amino-4-deoxy-L-arabinose (Ara4N) required for resistance to polymyxin and cationic antimicrobial peptides. | Down (2.6563) |
B5XYX5 | wecG | UDP-N-acetyl-D-mannosaminuronic acid transferase | The biosynthesis of Und-PP-GlcNAc-ManNAcA (Lipid II), the second lipid-linked intermediate involved in enterobacterial common antigen (ECA) synthesis. | Down (5.5389) |
Q48485 | rfbD | UDP-galactopyranose mutase | LPS O-antigen biosynthesis. Involved in the biosynthesis of the galactose-containing O-side-chain polysaccharide backbone structure of D-galactan I, a key component of LPSs. | Down (5.6201) |
Carbohydrate metabolism | ||||
Q9AGA6 | aglB | 6-phospho-alpha-glucosidase | Catalyzes the hydrolysis of maltose-6P to Glu and Glu-6P. | Up (5.3427) |
B5Y1Y1 | araA | L-arabinose isomerase | Catalyzes the conversion of L-arabinose to L-ribulose. | Up (5.0525) |
B5Y2X3 | fbp | Fructose-1,6-bisphosphatase class 1 | Gluconeogenesis (F 1,6 BP converted to F6P to G6P in Gluconeogenesis). | Up (5.0497) |
P27217 | scrB | Sucrose-6-phosphate hydrolase | Glycosidic bond hydrolysis. | Down (5.1606) |
A6TGA6 | rhaD | Rhamnulose-1-phosphate aldolase | L-rhamnose degradation to DHAP and L-lactaldehyde. | Down (5.4894) |
B5Y277 | deoC | Deoxyribose-phosphate aldolase | 2-deoxy-D-ribose 1-phosphate formation from Gly-3P and acetaldehyde. | Down (5.8262) |
Amino-acid biosynthesis | ||||
B5Y1K5 | dapD | 2,3,4,5-tetrahydropyridine-2,6-dicarboxylate N-succinyltransferase | L-lysine biosynthesis via the DAP pathway. | Down (5.0427) |
A6T4E3 | thrB | Homoserine kinase | L-threonine biosynthesis; L-threonine from L-aspartate. | Down (5.0516) |
Q9F0P1 | mtnK | Methylthioribose kinase | L-methionine biosynthesis via the salvage pathway. | Down (5.1368) |
B5XY88 | serC | Phosphoserine aminotransferase | L-serine biosynthesis; L-serine from 3-phospho-D-glycerate. | Down (5.5224) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Anek, P.; Kumpangcum, S.; Roytrakul, S.; Khanongnuch, C.; Saenjum, C.; Phannachet, K. Antibacterial Activities of Phenolic Compounds in Miang Extract: Growth Inhibition and Change in Protein Expression of Extensively Drug-Resistant Klebsiella pneumoniae. Antibiotics 2024, 13, 536. https://doi.org/10.3390/antibiotics13060536
Anek P, Kumpangcum S, Roytrakul S, Khanongnuch C, Saenjum C, Phannachet K. Antibacterial Activities of Phenolic Compounds in Miang Extract: Growth Inhibition and Change in Protein Expression of Extensively Drug-Resistant Klebsiella pneumoniae. Antibiotics. 2024; 13(6):536. https://doi.org/10.3390/antibiotics13060536
Chicago/Turabian StyleAnek, Pannita, Sutita Kumpangcum, Sittiruk Roytrakul, Chartchai Khanongnuch, Chalermpong Saenjum, and Kulwadee Phannachet. 2024. "Antibacterial Activities of Phenolic Compounds in Miang Extract: Growth Inhibition and Change in Protein Expression of Extensively Drug-Resistant Klebsiella pneumoniae" Antibiotics 13, no. 6: 536. https://doi.org/10.3390/antibiotics13060536
APA StyleAnek, P., Kumpangcum, S., Roytrakul, S., Khanongnuch, C., Saenjum, C., & Phannachet, K. (2024). Antibacterial Activities of Phenolic Compounds in Miang Extract: Growth Inhibition and Change in Protein Expression of Extensively Drug-Resistant Klebsiella pneumoniae. Antibiotics, 13(6), 536. https://doi.org/10.3390/antibiotics13060536