Broad-Spectrum In Vitro Activity of Nα-Aroyl-N-Aryl-Phenylalanine Amides against Non-Tuberculous Mycobacteria and Comparative Analysis of RNA Polymerases
Abstract
:1. Introduction
2. Results and Discussion
2.1. Selection of Nα-Aroyl-N-Aryl-Phenylalanine Amide Compounds
2.2. Inhibition of M. abscessus Complex
2.3. Inhibition of M. avium Complex
2.4. Inhibition of Other NTM
2.5. Comparative Analysis of RNAP β and β’ Subunits
3. Materials and Methods
3.1. Bacterial Cultures and Strains
3.2. Growth Inhibition Assay
3.3. Determination of MIC Values
3.4. Protein–Protein Primary Structure Alignment
3.5. Visualization of Protein Models
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- World Health Organization. Global Tuberculosis Report 2023. Available online: https://www.who.int/teams/global-tuberculosis-programme/tb-reports/global-tuberculosis-report-2023 (accessed on 18 December 2023).
- Dartois, V.; Sizemore, C.; Dick, T. Editorial: NTM—The new uber-bugs. Front. Microbiol. 2019, 10, 1299. [Google Scholar] [CrossRef]
- Wassilew, N.; Hoffmann, H.; Andrejak, C.; Lange, C. Pulmonary Disease Caused by Non-Tuberculous Mycobacteria. Respiration 2016, 91, 386–402. [Google Scholar] [CrossRef] [PubMed]
- Ahmed, I.; Tiberi, S.; Farooqi, J.; Jabeen, K.; Yeboah-Manu, D.; Migliori, G.B.; Hasan, R. Non-tuberculous mycobacterial infections—A neglected and emerging problem. Int. J. Infect. Dis. 2020, 92, S46–S50. [Google Scholar] [CrossRef] [PubMed]
- Johansen, M.D.; Herrmann, J.L.; Kremer, L. Non-tuberculous mycobacteria and the rise of Mycobacterium abscessus. Nat. Rev. Microbiol. 2020, 18, 392–407. [Google Scholar] [CrossRef] [PubMed]
- Dahl, V.N.; Mølhave, M.; Fløe, A.; van Ingen, J.; Schön, T.; Lillebaek, T.; Andersen, A.B.; Wejse, C. Global trends of pulmonary infections with nontuberculous mycobacteria: A systematic review. Int. J. Infect. Dis. 2022, 125, 120–131. [Google Scholar] [CrossRef] [PubMed]
- Baird, T.; Bell, S. Cystic Fibrosis-Related Nontuberculous Mycobacterial Pulmonary Disease. Clin. Chest Med. 2023, 44, 847–860. [Google Scholar] [CrossRef] [PubMed]
- Brugha, R.; Spencer, H. Mycobacterium abscessus in cystic fibrosis: Environmental Mycobacteria share genes and evolve to become pathogens. Science 2021, 372, 465–466. [Google Scholar] [CrossRef] [PubMed]
- Richards, C.J.; Olivier, K.N. Nontuberculous Mycobacteria in Cystic Fibrosis. Semin. Respir. Crit. Care Med. 2019, 40, 737–750. [Google Scholar] [CrossRef]
- Azar, M.; Zimbric, M.; Shedden, K.; Caverly, L.J. Distribution and outcomes of infection of Mycobacterium avium complex species in cystic fibrosis. J. Cyst. Fibros. 2020, 19, 232–235. [Google Scholar] [CrossRef]
- Park, I.K.; Olivier, K.N. Nontuberculous mycobacteria in cystic fibrosis and non-cystic fibrosis bronchiectasis. Semin. Respir. Crit. Care Med. 2020, 36, 217–224. [Google Scholar] [CrossRef]
- Wi, Y.M. Treatment of extrapulmonary nontuberculous mycobacterial diseases. Infect. Chemother. 2019, 51, 245–255. [Google Scholar] [CrossRef] [PubMed]
- Piersimoni, C.; Scarparo, C. Extrapulmonary infections associated with nontuberculous mycobacteria in immunocompetent persons. Emerg. Infect. Dis. 2009, 15, 1351–1358. [Google Scholar] [CrossRef] [PubMed]
- Prevots, D.R.; Marras, T.K. Epidemiology of Human Pulmonary Infection with Nontuberculous Mycobacteria: A Review. Clin. Chest Med. 2015, 36, 13–34. [Google Scholar] [CrossRef]
- Daniel-Wayman, S.; Adjemian, J.; Prevots, D.R. Epidemiology of Nontuberculous Mycobacterial Pulmonary Disease (NTM PD) in the USA. In Nontuberculous Mycobacterial Disease; Springer Nature Switzerland AG: Cham, Switzerland, 2019; pp. 145–161. [Google Scholar] [CrossRef]
- Prevots, D.R.; Marshall, J.E.; Wagner, D.; Morimoto, K. Global Epidemiology of Nontuberculous Mycobacterial Pulmonary Disease: A Review. Clin. Chest Med. 2023, 44, 675–721. [Google Scholar] [CrossRef] [PubMed]
- Diel, R.; Nienhaus, A.; Ringshausen, F.C.; Richter, E.; Welte, T.; Rabe, K.F.; Loddenkemper, R. Microbiologic Outcome of Interventions against Mycobacterium avium Complex Pulmonary Disease: A Systematic Review. Chest 2018, 153, 888–921. [Google Scholar] [CrossRef] [PubMed]
- Koh, W.J.; Jeong, B.H.; Jeon, K.; Lee, N.Y.; Lee, K.S.; Woo, S.Y.; Shin, S.J.; Kwon, O.J. Clinical Significance of the Differentiation between Mycobacterium avium and Mycobacterium intracellulare in M avium Complex Lung Disease. Chest 2012, 142, 1482–1488. [Google Scholar] [CrossRef] [PubMed]
- Boudehen, Y.M.; Kremer, L. Mycobacterium abscessus. Trends Microbiol. 2021, 29, 951–952. [Google Scholar] [CrossRef] [PubMed]
- Victoria, L.; Gupta, A.; Gómez, J.L.; Robledo, J. Mycobacterium abscessus complex: A Review of Recent Developments in an Emerging Pathogen. Front. Cell. Infect. Microbiol. 2021, 11, 659997. [Google Scholar] [CrossRef]
- Spaulding, A.B.; Lai, Y.L.; Zelazny, A.M.; Olivier, K.N.; Kadri, S.S.; Prevots, D.R.; Adjemian, J. Geographic distribution of nontuberculous mycobacterial species identified among clinical isolates in the United States, 2009–2013. Ann. Am. Thorac. Soc. 2017, 14, 1655–1661. [Google Scholar] [CrossRef]
- Low, J.L.; Wu, M.L.; Aziz, D.B.; Laleu, B.; Dick, T. Screening of TB actives for activity against nontuberculous mycobacteria delivers high hit rates. Front. Microbiol. 2017, 8, 1539. [Google Scholar] [CrossRef]
- Richter, A.; Strauch, A.; Chao, J.; Ko, M.; Av-Gay, Y. Screening of preselected libraries targeting mycobacterium abscessus for drug discovery. Antimicrob. Agents Chemother. 2018, 62, 10–1128. [Google Scholar] [CrossRef] [PubMed]
- Ballell, L.; Bates, R.H.; Young, R.J.; Alvarez-Gomez, D.; Alvarez-Ruiz, E.; Barroso, V.; Blanco, D.; Crespo, B.; Escribano, J.; González, R.; et al. Fueling Open-Source Drug Discovery: 177 Small-Molecule Leads against Tuberculosis. ChemMedChem 2013, 8, 313–321. [Google Scholar] [CrossRef] [PubMed]
- Lang, M.; Ganapathy, U.S.; Mann, L.; Abdelaziz, R.; Seidel, R.W.; Goddard, R.; Sequenzia, I.; Hoenke, S.; Schulze, P.; Aragaw, W.W.; et al. Synthesis and Characterization of Phenylalanine Amides Active against Mycobacterium abscessus and Other Mycobacteria. J. Med. Chem. 2023, 66, 5079–5098. [Google Scholar] [CrossRef] [PubMed]
- Mann, L.; Lang, M.; Schulze, P.; Halz, J.H.; Csuk, R.; Hoenke, S.; Seidel, R.W.; Richter, A. Racemization-free synthesis of Nα-2-thiophenoyl-phenylalanine-2-morpholinoanilide enantiomers and their antimycobacterial activity. Amino Acids 2021, 53, 1187–1196. [Google Scholar] [CrossRef] [PubMed]
- Ebright, R.H.; Ebright, Y.W.; Mandal, S.; Wilde, R.; Li, S. Preparation of N-Alpha-Aroyl-N-aryl-Phenylalaninamides as Inhibitors of Bacterial RNA Polymerase and as Antibacterials. U.S. Patent WO2015120320 A1, 13 August 2015. [Google Scholar]
- Mann, L.; Ganapathy, U.S.; Abdelaziz, R.; Lang, M.; Zimmerman, M.D.; Dartois, V.; Dick, T.; Richter, A. In Vitro Profiling of the Synthetic RNA Polymerase Inhibitor MMV688845 against Mycobacterium abscessus. Microbiol. Spectr. 2022, 10, e02760-22. [Google Scholar] [CrossRef] [PubMed]
- Lin, W.; Mandal, S.; Degen, D.; Liu, Y.; Ebright, Y.W.; Li, S.; Feng, Y.; Zhang, Y.; Mandal, S.; Jiang, Y.; et al. Structural Basis of Mycobacterium tuberculosis Transcription and Transcription Inhibition. Mol. Cell 2017, 66, 169–179.e8. [Google Scholar] [CrossRef] [PubMed]
- Hashish, E.; Merwad, A.; Elgaml, S.; Amer, A.; Kamal, H.; Elsadek, A.; Marei, A.; Sitohy, M. Mycobacterium marinum infection in fish and man: Epidemiology, pathophysiology and management; a review. Vet. Q. 2018, 38, 35. [Google Scholar] [CrossRef]
- Yotsu, R.R.; Suzuki, K.; Simmonds, R.E.; Bedimo, R.; Ablordey, A.; Yeboah-Manu, D.; Phillips, R.; Asiedu, K. Buruli Ulcer: A Review of the Current Knowledge. Curr. Trop. Med. Rep. 2018, 5, 247–256. [Google Scholar] [CrossRef] [PubMed]
- Lang, M.; Ganapathy, U.S.; Mann, L.; Seidel, R.W.; Goddard, R.; Erdmann, F.; Dick, T.; Richter, A. Synthesis and in vitro Metabolic Stability of Sterically Shielded Antimycobacterial Phenylalanine Amides. ChemMedChem 2024, 19, e202300593. [Google Scholar] [CrossRef]
- Van, N.; Degefu, Y.N.; Aldridge, B.B. Efficient Measurement of Drug Interactions with DiaMOND (Diagonal Measurement of N-Way Drug Interactions); Humana: New York, NY, USA, 2021; pp. 703–713. [Google Scholar] [CrossRef]
- Bastian, S.; Veziris, N.; Roux, A.L.; Brossier, F.; Gaillard, J.L.; Jarlier, V.; Cambau, E. Assessment of Clarithromycin Susceptibility in Strains Belonging to the Mycobacterium abscessus Group by erm(41) and rrl Sequencing. Antimicrob. Agents Chemother. 2011, 55, 775. [Google Scholar] [CrossRef]
- Schildkraut, J.A.; Raaijmakers, J.; Aarnoutse, R.; Hoefsloot, W.; Wertheim, H.F.L.; van Ingen, J. The role of rifampicin within the treatment of Mycobacterium avium pulmonary disease. Antimicrob. Agents Chemother. 2023, 67, e00874-23. [Google Scholar] [CrossRef] [PubMed]
- Van Ingen, J.; Boeree, M.J.; Dekhuijzen, P.N.R.; Van Soolingen, D. Clinical relevance of Mycobacterium simiae in pulmonary samples. Eur. Respir. J. 2008, 31, 106–109. [Google Scholar] [CrossRef] [PubMed]
- Nasiri, M.J.; Amini, S.; Nikpor, Z.; Arefzadeh, S.; Mousavi, S.M.J.; Goudarzi, H. Drug Susceptibility Testing of Mycobacterium simiae: An Emerging Pathogen in Iran. Infect. Disord. Drug Targets 2020, 21, 619–622. [Google Scholar] [CrossRef] [PubMed]
- Van Ingen, J.; Totten, S.E.; Heifets, L.B.; Boeree, M.J.; Daley, C.L. Drug susceptibility testing and pharmacokinetics question current treatment regimens in Mycobacterium simiae complex disease. Int. J. Antimicrob. Agents 2012, 39, 173–176. [Google Scholar] [CrossRef] [PubMed]
- Grantham, R. Amino Acid Difference Formula to Help Explain Protein Evolution. Science 1974, 185, 862–864. [Google Scholar] [CrossRef] [PubMed]
- Aziz, D.B.; Low, J.L.; Wu, M.L.; Gengenbacher, M.; Teo, J.W.; Dartois, V.; Dick, T. Rifabutin Is active against Mycobacterium abscessus complex. Antimicrob. Agents Chemother. 2017, 61, 10–1128. [Google Scholar] [CrossRef] [PubMed]
- Matern, W.M.; Bader, J.S.; Karakousis, P.C. Genome analysis of Mycobacterium avium subspecies hominissuis strain 109. Sci. Data 2018, 5, 180277. [Google Scholar] [CrossRef]
- Yee, M.; Klinzing, D.; Wei, J.R.; Gengenbacher, M.; Rubin, E.J.; Chien, J.Y.; Hsueh, P.R.; Dick, T. Draft Genome Sequence of Mycobacterium avium 11. Genome Announc. 2017, 5, 10–1128. [Google Scholar] [CrossRef]
- Pettersen, E.F.; Goddard, T.D.; Huang, C.C.; Meng, E.C.; Couch, G.S.; Croll, T.I.; Morris, J.H.; Ferrin, T.E. UCSF ChimeraX: Structure visualization for researchers, educators, and developers. Protein Sci. 2021, 30, 70–82. [Google Scholar] [CrossRef]
M. abscessus subsp. abscessus ATCC 19977 | M. tuberculosis H37Rv | M. intracellulare subsp. intracellulare ATCC 35761 | Ref. | |
---|---|---|---|---|
ID | MIC90 [µM] | MIC90 [µM] | MIC90 [µM] | |
MMV | 6.3 | 0.78 | 0.78 | [25] |
1 | 3.13 | 0.40 | 0.10 | |
2 | 6.25 | 0.78 | 0.10 | |
3 | 3.13 | 0.20 | 0.10 | |
4 | 3.13 | 0.40 | 0.05 | |
5 | 6.25 | 0.78 | 0.20 | |
6 | 6.25 | 0.78 | 0.05 | |
7 | 0.78 | 0.20 | 0.05 | [25,32] |
8 | 0.78 | 0.15 | 0.025 | [32] |
9 | 3.13 | 0.66 | 0.10 | |
10 | 1.56 | 0.40 | 0.40 |
M. abscessus subsp. abscessus ATCC 19977 | M. abscessus subsp. massiliense CCUG 48898-T | M. abscessus subsp. bolletii CCUG 50184-T | |
---|---|---|---|
ID | MIC50 [µM] | MIC50 [µM] | MIC50 [µM] |
CLR | 0.1 | 0.1 | 0.3 |
MMV | 1.5 | 1.9 | 2.1 |
1 | 0.7 | 0.7 | 1.5 |
2 | 0.4 | 0.5 | 1.3 |
3 | 0.2 | 0.3 | 0.6 |
4 | 0.4 | 0.4 | 0.8 |
5 | 0.4 | 0.3 | 0.7 |
6 | 0.8 | 0.4 | 1.3 |
7 | 0.2 | 0.2 | 0.7 |
8 | 0.2 | 0.1 | 0.3 |
9 | 0.5 | 0.3 | 1.1 |
10 | 0.3 | 0.3 | 0.6 |
M. abscessus subsp. abscessus Bamboo | M. abscessus subsp. abscessus M9 | M. abscessus subsp. abscessus M199 | M. abscessus subsp. abscessus M337 | M. abscessus subsp. abscessus M404 | |
---|---|---|---|---|---|
ID | MIC50 [µM] | MIC50 [µM] | MIC50 [µM] | MIC50 [µM] | MIC50 [µM] |
CLR | 0.1 | 0.2 | 0.4 | 0.2 | 0.1 |
MMV | 1.7 | 1.8 | 1.8 | 1.4 | 1.7 |
7 | 0.4 | 0.4 | 0.4 | 0.3 | 0.4 |
8 | 0.2 | 0.3 | 0.3 | 0.3 | 0.3 |
M. abscessus subsp. abscessus M422 | M. abscessus subsp. bolletii M232 | M. abscessus subsp. bolletii M506 | M. abscessus subsp. massiliense M111 | ||
ID | MIC50 [µM] | MIC50 [µM] | MIC50 [µM] | MIC50 [µM] | |
CLR | 0.2 | 0.3 | 0.1 | 0.05 | |
MMV | 1.2 | 1.9 | 1.4 | 0.6 | |
7 | 0.2 | 0.4 | 0.3 | 0.2 | |
8 | 0.2 | 0.4 | 0.2 | 0.2 |
M. avium subsp. hominissuis MAC109 | M. avium subsp. hominissuis M. avium 11 | M. intracellulare subsp. intracellulare ATCC 13950 | M. intracellulare subsp. chimaera CCUG 50989 | |
---|---|---|---|---|
ID | MIC50 [µM] | MIC50 [µM] | MIC50 [µM] | MIC50 [µM] |
CLR | 0.4 | 0.4 | 0.2 | 0.3 |
MMV | 3.2 | 1.0 | 1.0 | 1.1 |
1 | 1.3 | 0.5 | 1.6 | 0.6 |
2 | 1.1 | 0.5 | 1.0 | 0.6 |
3 | 0.8 | 0.4 | 0.6 | 0.4 |
4 | 0.7 | 0.3 | 0.6 | 0.3 |
5 | 0.6 | 0.3 | 0.5 | 0.4 |
6 | 0.4 | 0.2 | 0.7 | 0.3 |
7 | 0.8 | 0.3 | 0.4 | 0.3 |
8 | 0.4 | 0.1 | 0.2 | 0.2 |
9 | 1.4 | 0.6 | 0.7 | 0.6 |
10 | 0.6 | 0.3 | 0.4 | 0.3 |
M. chelonae ATCC 35752 | M. fortuitum ATCC 6841 | M. szulgai ATCC 35799 | M. xenopi ATCC 19250 | M. ulcerans S4018 | M. marinum ATCC 927 | M. simiae ATCC 25275 | M. malmoense ATCC 29571 | M. kansasii ATCC 12478 | |
---|---|---|---|---|---|---|---|---|---|
ID | MIC50 [µM] | MIC50 [µM] | MIC50 [µM] | MIC50 [µM] | MIC50 [µM] | MIC50 [µM] | MIC50 [µM] | MIC50 [µM] | MIC50 [µM] |
CLR | 0.1 | 0.6 | 0.2 | 0.03 | 0.05 | 1.6 | 10.7 | 0.2 | 0.2 |
MMV | 0.7 | 1.3 | 0.4 | 16.2 | 0.24 | 0.5 | 12.4 | 1.1 | 0.3 |
1 | 0.3 | 1.2 | 0.7 | 5.9 | 0.08 | 1.4 | 23.0 | 0.9 | 0.8 |
2 | 0.2 | 0.7 | 0.4 | 4.3 | 0.05 | 0.6 | 9.8 | 0.7 | 0.3 |
3 | 0.2 | 0.8 | 0.4 | 2.1 | 0.04 | 0.4 | 9.3 | 0.8 | 0.3 |
4 | 0.2 | 0.5 | 0.5 | 2.1 | 0.03 | 0.9 | 9.1 | 0.9 | 0.3 |
5 | 0.3 | 0.4 | 0.3 | 1.1 | 0.03 | 0.5 | 4.3 | 0.8 | 0.1 |
6 | 0.2 | 0.6 | 0.7 | 0.6 | 0.01 | 2.0 | 7.3 | 1.9 | 0.6 |
7 | 0.1 | 0.4 | 0.2 | 2.0 | 0.03 | 0.2 | 3.9 | 0.4 | 0.1 |
8 | 0.1 | 0.2 | 0.1 | 0.8 | 0.01 | 0.2 | 2.9 | 0.2 | 0.1 |
9 | 0.3 | 1.0 | 0.4 | 2.7 | 0.05 | 0.7 | 12.5 | 0.7 | 0.3 |
10 | 0.2 | 0.5 | 0.2 | 1.5 | 0.03 | 0.4 | 5.5 | 0.5 | 0.2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lang, M.; Ganapathy, U.S.; Abdelaziz, R.; Dick, T.; Richter, A. Broad-Spectrum In Vitro Activity of Nα-Aroyl-N-Aryl-Phenylalanine Amides against Non-Tuberculous Mycobacteria and Comparative Analysis of RNA Polymerases. Antibiotics 2024, 13, 404. https://doi.org/10.3390/antibiotics13050404
Lang M, Ganapathy US, Abdelaziz R, Dick T, Richter A. Broad-Spectrum In Vitro Activity of Nα-Aroyl-N-Aryl-Phenylalanine Amides against Non-Tuberculous Mycobacteria and Comparative Analysis of RNA Polymerases. Antibiotics. 2024; 13(5):404. https://doi.org/10.3390/antibiotics13050404
Chicago/Turabian StyleLang, Markus, Uday S. Ganapathy, Rana Abdelaziz, Thomas Dick, and Adrian Richter. 2024. "Broad-Spectrum In Vitro Activity of Nα-Aroyl-N-Aryl-Phenylalanine Amides against Non-Tuberculous Mycobacteria and Comparative Analysis of RNA Polymerases" Antibiotics 13, no. 5: 404. https://doi.org/10.3390/antibiotics13050404
APA StyleLang, M., Ganapathy, U. S., Abdelaziz, R., Dick, T., & Richter, A. (2024). Broad-Spectrum In Vitro Activity of Nα-Aroyl-N-Aryl-Phenylalanine Amides against Non-Tuberculous Mycobacteria and Comparative Analysis of RNA Polymerases. Antibiotics, 13(5), 404. https://doi.org/10.3390/antibiotics13050404