Microbiological Quality and Safety of Fresh Rabbit Meat with Special Reference to Methicillin-Resistant S. aureus (MRSA) and ESBL-Producing E. coli
Abstract
:1. Introduction
2. Results
2.1. Microbiological Quality and Safety of Rabbit Meat
2.2. Antimicrobial Resistance
3. Discussion
4. Materials and Methods
4.1. Rabbit Samples and Microbiological Analysis
4.2. Isolation and Identification
4.3. Confirmation of Methicillin Resistance of Mammaliicoccus spp. and Staphylococcus spp.
4.4. Phenotypic Antimicrobial Resistance of Methicillin Resistance Mammaliicoccus spp. and Staphylococcus spp.
4.5. Phenotypic Confirmation of ESBL-Producing E. coli
4.6. Phenotypic Antimicrobial Resistance of E. coli Isolates
4.7. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Ministerio de Agricultura, Pesca y Alimentación. El Sector Cunícola en Cifras. Principales Indicadores Económicos 2022; Ministerio de Agricultura, Pesca y Alimentación: Madrid, Spain, 2023.
- Abdullatif, A.F.; Mahmoud, A.F.A.; Hafez, A.E.E.; Abdelkhalek, A.; Ras, R. Rabbit meat consumption: A mini review on the health benefits, potential hazards and mitigation. J. Adv. Vet. Res. 2023, 13, 681–684. [Google Scholar]
- Morshdy, E.M.A.; Alsayeqh, A.F.; Aljasir, M.F.; Mohieldeen HSGEl-Abody, S.G.; Mohamed, M.E.; Darwish, W.S. Rabbit meat as a potential source of Staphylococcus aureus and Salmonella spp. Slov. Vet. Res. 2023, 60, 439–445. [Google Scholar] [CrossRef]
- Pereira, M.; Malfeito-Ferreira, M. A simple method to evaluate the shelf life of refrigerated rabbit meat. Food Control 2015, 49, 70–74. [Google Scholar] [CrossRef]
- Rodríguez-Calleja, J.M.; Santos, J.A.; Otero, A.; García-López, M.L. Microbiological quality of rabbit meat. J. Food Protect. 2004, 67, 966–971. [Google Scholar] [CrossRef] [PubMed]
- Rodríguez-Calleja, J.M.; García-López, M.L.; Santos, J.A.; Otero, A. Development of the aerobic spoilage flora of chilled rabbit meat. Meat Sci. 2005, 70, 389–394. [Google Scholar] [CrossRef] [PubMed]
- Circella, E.; Casalino, G.; Camarda, A.; Schiavone, A.; D’amico, F.; Dimuccio, M.M.; Pugliese, N.; Ceci, E.; Romito, D.; Bozzo, G. Pseudomonas fluorescens group bacteria as responsible for chromatic alteration on rabbit carcasses. Possible hygienic implications. Ital. J. Food Saf. 2022, 11, 91–95. [Google Scholar] [CrossRef] [PubMed]
- Rodríguez-Calleja, J.M.; García-López, I.; García-López, M.L.; Santos, J.A.; Otero, A. Rabbit meat as a source of bacterial foodborne pathogens. J. Food Prot. 2006, 69, 1106–1112. [Google Scholar] [CrossRef] [PubMed]
- Mahmoud, A.F.A.; Hafez, A.E.S.E.; Abdullatif, A.F.; Ras, R.; Abdallah, H.M.; Shata, R.H.M.; El Bayomi, R.M. Microbiological Evaluation of Fresh Retail Rabbit Meat Cuts from Zagazig City, Egypt. J. Adv. Vet. Res. 2022, 12, 466–470. [Google Scholar]
- Składanowska-Baryza, J.; Ludwiczak, A.; Stanisz, M. Influence of different packaging methods on the physicochemical and microbial quality of rabbit meat. Anim. Sci. J. 2022, 93, 1–9. [Google Scholar] [CrossRef]
- Borch, E.; Arinder, P. Bacteriological safety issues in red meat and ready-to-eat meat products, as well as control measures. Meat Sci. 2002, 62, 381–390. [Google Scholar] [CrossRef]
- EFSA. The European Union One Health 2022 Zoonoses Report. EFSA J. 2023, 21, e8442. [Google Scholar]
- O’Neill, J. Antimicrobial Resistance: Tackling a Crisis for the Health and Wealth of Nations. London: Review on Antimicrobial Resistance. 2014. Available online: https://amr-review.org/sites/default/files/AMR%20Review%20Paper%20-%20Tackling%20a%20crisis%20for%20the%20health%20and%20wealth%20of%20nations_1.pdf (accessed on 1 March 2024).
- Amusi, J.; Tamara, L.; Horton, R.; Winkler, A.S. Reconnecting for our future: The Lancet One Health commission. Lancet 2020, 395, 1469–1471. [Google Scholar] [CrossRef]
- Colligon, P.J.; McEwen, S.A. One Health. Its importance in helping to better control antimicrobial resistance. Trop. Med. Infect. Dis. 2019, 4, 1–21. [Google Scholar]
- Fournier, C.; Nordmann, P.; Pittet, O.; Poirel, L. Does an antibiotic stewardship applied in a pig farm lead to low ESBL prevalence? Antibiotics 2021, 10, 574. [Google Scholar] [CrossRef] [PubMed]
- Martinez-Laorden, A.; Arraiz-Fernandez, C.; Gonzalez-Fandos, E. Microbiological quality and safety of fresh turkey meat at retail level including the presence of ESBL-producing Enterobacteriaceae and methicillin-resistant S. aureus. Foods 2023, 12, 1274. [Google Scholar] [CrossRef] [PubMed]
- David, M.Z.; Daum, R.S. Community-associated methicillin-resistant Staphylococcus aureus: Epidemiology and clinical consequences of an emerging epidemic. Clin. Microbiol. Rev. 2010, 23, 616–687. [Google Scholar] [CrossRef]
- Stewardson, A.J.; Renzi, G.; Maury, N.; Vaudaux, C.; Brassier, C.; Fritsch, E.; Pittet, D.; Heck, M.; van der Zwaluw, K.; Reuland, E.A.; et al. Extended-Spectrum β-Lactamase–Producing Enterobacteriaceae in Hospital Food: A Risk Assessment. Inf. Control Hosp. Epidemiol. 2014, 35, 375–383. [Google Scholar] [CrossRef]
- Kylie, J.; McEwen, S.A.; Boerlint, P.; Smith, R.J.; Weese, J.C.; Turner, P.V. Prevalence of antimicrobial resistance in fecal Escherichia coli and Salmonella enterica in Canadian commercial meat, companion, laboratory, and shelter rabbits (Oryctolagus cuniculus) and its association with routine antimicrobial use in commercial meat rabbits. Prev. Vet. Med. 2017, 147, 53–57. [Google Scholar]
- Tegegne, H.A.; Koláčková, I.; Florianová, M.; Gelbíčová, T.; Madec, J.Y.; Marisa Haenni, M.; Karpíšková, R. Detection and molecular characterisation of methicillin-resistant Staphylococcus aureus isolated from raw meat in the retail market. J. Glob. Antimicrob. Resist. 2021, 26, 233–238. [Google Scholar] [CrossRef]
- Pipová, M.; Jevinová, P.; Kmeť, V.; Regecová, I.; Marušková, K. Antimicrobial resistance and species identification of staphylococci isolated from the meat of wild rabbits (Oryctolagus cuniculus) in Slovakia. Eur. J. Wildl. Res. 2012, 58, 157–165. [Google Scholar] [CrossRef]
- Martinez-Laorden, A.; Arraiz-Fernandez, C.; Gonzalez-Fandos, E. Microbiological quality and safety of fresh quail meat at the retail level. Microorganisms 2023, 11, 2213. [Google Scholar] [CrossRef] [PubMed]
- Madhaiyan, M.; Wirth, J.S.; Saravanan, V.S. Phylogenomic analyses of the Staphylococcaceae family suggest the reclassification of five species within the genus Staphylococcus as heterotypic synonyms, the promotion of five subspecies to novel species, the taxonomic reassignment of five Staphylococcus species to Mammaliicoccus gen. nov., and the formal assignment of Nosocomiicoccus to the family Staphylococcaceae. Int. J. Syst. Evol. Microbiol. 2020, 70, 5926–5936. [Google Scholar] [PubMed]
- Cwiková, O.; Pytel, R. Evaluation of rabbit meat microbiota from the viewpoint of marketing method. Potravinarstvo Slovak J. Food Sci. 2017, 11, 391–397. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Tu, J.; Zhou, H.; Lu, A.; Xu, B. A comprehensive insight into the effects of microbial spoilage, myoglobin autoxidation, lipid oxidation, and protein oxidation on the discoloration of rabbit meat during retail display. Meat Sci. 2021, 172, 108359. [Google Scholar] [CrossRef]
- Cullere, M.; Dalle Zotte, A.; Tasoniero, G.; Giaccone, V.; Szendrő, Z.; Szín, M.; Odermatt, M.; Gerencsér, Z.; Dal Bosco, A.; Matics, Z. Effect of diet and packaging system on the microbial status, pH, color and sensory traits of rabbit meat evaluated during chilled storage. Meat Sci. 2018, 141, 36–43. [Google Scholar] [CrossRef]
- Kamath, U.; Singer, C.; Isenberg, H.D. Clinical significance of Staphylococcus warneri bacteremia. J. Clin. Microbiol. 1992, 30, 261–264. [Google Scholar] [CrossRef]
- Casanova, C.; Iselin, L.; von Steiger, N.; Droz, S.; Sendi, P. Staphylococcus hyicus bacteremia in a farmer. J. Clin. Microbiol. 2011, 49, 4377–4378. [Google Scholar] [CrossRef]
- Soldera, J.; Nedel, W.L.; Cardoso, P.R.; d’Azevedo, P.A. Bacteremia due to Staphylococcus cohnii ssp. urealyticus caused by infected pressure ulcer: Case report and review of the literature. Sao Paulo Med. J. 2013, 131, 59–61. [Google Scholar] [CrossRef]
- Meservey, A.; Sullivan, A.; Wu, C.; Lantos, P.M. Staphylococcus sciuri peritonitis in a patient on peritoneal dialysis. Zoonoses Public Health 2020, 67, 93–95. [Google Scholar] [CrossRef]
- Koné, A.P.; Desjardins, Y.; Gosselin, A.; Cinq-Mars, D.; Guay, F.; Saucier, L. Plant extracts and essential oil product as feed additives to control rabbit meat microbial quality. Meat Sci. 2019, 150, 111–121. [Google Scholar] [CrossRef]
- Barco, L.; Belluco, S.; Roccato, A.; Ricci, A. A systematic review of studies on Escherichia coli and Enterobacteriaceae on beef carcasses at the slaughterhouse. Int. J. Food Microbiol. 2015, 207, 30–39. [Google Scholar] [CrossRef]
- Nakyinsige, K.; Sazili, A.Q.; Aghwan, Z.A.; Zulkifli, I.; Goh, Y.M.; Abu Bakar, F.; Sarah, S.A. Development of microbial spoilage and lipid and protein oxidation in rabbit meat. Meat Sci. 2015, 108, 125–131. [Google Scholar] [CrossRef]
- De Cesare, A.; Parisi, A.; Mioni, R.; Comin, D.; Lucchi, A.; Manfreda, G. Listeria monocytogenes circulating in rabbit meat products and slaughterhouses in Italy: Prevalence data and comparison among typing results. Foodborne Pathog. Dis. 2017, 14, 167–176. [Google Scholar] [CrossRef]
- Gelbíčová, T.; Florianová, M.; Tomáštíková, Z.; Pospíšilová, L.; Koláčková, I.; Karpíšková, R. Prediction of persistence of Listeria monocytogenes ST451 in a rabbit meat processing plant in the Czech Republic. J. Food Protect. 2019, 82, 1350–1356. [Google Scholar] [CrossRef]
- Piccirillo, A.; Giacomelli, M.; Lonardi, C.; Menandro, M.L.; Martini, M. Absence of thermophilic Campylobacter species in commercially reared rabbit does (Oryctolagus cuniculi) in Italy. Vet. Microbiol. 2011, 150, 411–413. [Google Scholar] [CrossRef]
- Marin, C.; Soto, V.; Marco-Jimenez, F. Absence of Campylobacter spp. in intensive rabbit farming in eastern Spain, preliminary results. World Rabbit Sci. 2016, 24, 327–331. [Google Scholar] [CrossRef]
- Traversa, A.; Gariano, G.R.; Gallina, S.; Bianchi, D.M.; Orusa, R.; Domenis, L.; Cavallerio, P.; Fossati, L.; Serra, R.; Decastelli, L. Methicillin resistance in Staphylococcus aureus strains isolated from food and wild animal carcasses in Italy. Food Microbiol. 2015, 52, 154–158. [Google Scholar] [CrossRef]
- Lozano, C.; López, M.; Gómez-Sanz, E.; Ruiz-Larrea, F.; Torres, C.; Zarazaga, M. Detection of methicillin-resistant Staphylococcus aureus ST398 in food samples of animal origin in Spain. J. Antimicrob. Chemother. 2009, 64, 1325–1346. [Google Scholar] [CrossRef]
- EMA (European Medicine Agency). Categorisation of Antibiotics for Use in Animals for Prudent and Responsible Use. 2020. Available online: https://www.ema.europa.eu/en/documents/report/infographic-categorisation-antibiotics-use-animals-prudent-and-responsible-use_en.pdf (accessed on 1 February 2024).
- Ministerio de Agricultura, Pesca y Alimentación. Informe del Consumo de Alimentación en España; Ministerio de Agricultura, Pesca y Alimentación: Madrid, Spain, 2019.
- Da Silva-Guedes, J.; Martinez-Laorden, A.; Gonzalez-Fandos, E. Effect of the presence of antibiotic residues on the microbiological quality and antimicrobial resistance in fresh goat meat. Foods 2022, 11, 3030. [Google Scholar] [CrossRef]
- Clinical and Laboratory Standards Institute. Performance Standards for Antimicrobial Susceptibility Testing, 30th ed.; CLSI Document M 100; Clinical and Laboratory Standards Institute: Wayne, PA, USA, 2020. [Google Scholar]
Microbial Group | N 1 Counts < 1 | N 1 Counts > 1 | Minimum Counts | Maximum Counts | Mean | Standard Deviation |
---|---|---|---|---|---|---|
Mesophiles | 0 | 49 | 1.90 | 7.59 | 4.94 | 1.08 |
Staphylococci | 11 | 38 | 1.30 | 4.13 | 2.59 | 0.70 |
Enterobacterales | 17 | 32 | 1.30 | 4.74 | 2.82 | 0.67 |
Pseudomonas | 14 | 35 | 1.30 | 6.11 | 3.23 | 0.76 |
Type of Retailer | Retailer | N 1 | Mesophiles | Staphylococci | Enterobacterales | Pseudomonas |
---|---|---|---|---|---|---|
Hypermarket | HA | 7 | 5.39 ± 0.96 2aa | 2.88 ± 0.59 aa | 2.82 ± 0.78 aa | 4.06 ± 0.73 aa |
Hypermarket | HB | 4 | 4.90 ± 0.87 aa | 1.88 ± 0.39 aa | 3.15 ± 0.12 aa | 2.46 ± 0.31 aa |
Supermarket | SC | 6 | 3.79 ± 0.96 aa | 2.23 ± 0.61 aa | 2.73 ± 0.00 aa | <1 aa |
Supermarket | SD | 6 | 5.52 ± 0.36 aa | 2.99 ± 0.91 aa | 3.05 ± 0.23 aa | 3.28 ± 0.55 ab |
Supermarket | SE | 6 | 4.06 ± 0.38 aa | 1.66 ± 0.08 aa | 1.94 ± 0.57 aa | 2.33 ± 0.45 ab |
Supermarket | SF | 5 | 4.02 ± 0.79 aa | 2.15 ± 0.90 aa | 2.17 ± 0.82 aa | 2.56 ± 0.85 ab |
Supermarket | SG | 5 | 6.06 ± 1.02 aa | 3.00 ± 0.82 aa | 3.09 ± 1.06 ac | 3.75 ± 1.05 ab |
Supermarket | SH | 6 | 5.33 ± 0.52 aa | 2.23 ± 0.39 aa | 2.85 ± 0.29 aa | 3.48 ± 0.57 ab |
Traditional Shop | TI | 2 | 4.31 ± 2.41 aa | 2.34 ± 1.04 aa | 4.00 ± 0.00 aa | 3.00 ± 0.40 aa |
Traditional Shop | TJ | 2 | 5.13 ± 1.44 aa | 3.01 ± 0.23 aa | 2.68 ± 0.77 aa | 3.54 ± 0.00 aa |
Type of Retailer | Microbial Group | Percentage (%) | Species | Percentage (%) |
---|---|---|---|---|
Hypermarket (HA, HB) | Brochothrix spp. | 13.95 | Brochothrix thermosphacta | 13.95 |
Lactic acid Bacteria | 30.24 | Carnobacterium divergens | 23.26 | |
Lactobacillus spp. | 4.65 | |||
Carnobacterium maltaromaticum | 2.33 | |||
Pseudomonas spp. | 11.63 | P. fragi | 6.98 | |
P. libanensis | 4.65 | |||
Enterobacterales | Serratia proteamaculans | 4.65 | ||
9.31 | Serratia liquefaciens | 2.33 | ||
Rahnella inusitata | 2.33 | |||
Micrococcaceae | 18.62 | Staphylococcus equorum | 4.65 | |
Mammaliicoccus fleurettii | 4.65 | |||
Staphylococcus epidermidis | 2.33 | |||
Staphylococcus haemolyticus | 2.33 | |||
Staphylococcus warneri | 2.33 | |||
Kocuria rhizophila | 2.33 | |||
Other Gram-positive bacteria | 2.33 | Rothia endophytica | 2.33 | |
Other Gram-negative bacteria | 13.98 | Acinetobacter albensis | 2.33 | |
Acinetobacter harbinensis | 2.33 | |||
Chryseobacterium piscium | 2.33 | |||
Chryseobacterium vrystaatense | 2.33 | |||
Sphingobacterium faecium | 2.33 | |||
Stenotrophomonas maltophilia | 2.33 | |||
Supermarket (SC, SD, SE, SF, SG, SH) | Brochothrix spp. | 9.93 | Brochothrix thermosphacta | 9.93 |
Lactic acid bacteria | Carnobacterium divergens | 12.06 | ||
26.24 | Carnobacterium maltaromaticum | 8.51 | ||
Lactobacillus spp. | 5.67 | |||
Pseudomonas spp. | 35.48 | P. fragi | 11.35 | |
P. libanensis | 5.67 | |||
P. extremorientalis | 4.26 | |||
P. fluorescens | 3.55 | |||
P. brenneri | 2.13 | |||
P. lundensis | 2.13 | |||
P. proteolítica | 2.13 | |||
P. chlororaphis | 1.42 | |||
P. koreensis | 1.42 | |||
P. azotoformans | 0.71 | |||
P. tolaasii | 0.71 | |||
Enterobacterales | Serratia liquefaciens | 2.13 | ||
Serratia proteamaculans | 2.13 | |||
5.68 | Escherichia coli | 0.71 | ||
Serratia fonticola | 0.71 | |||
Micrococcaceae | Staphylococcus saprophyticus | 2.13 | ||
Mammaliicoccus vitulinus | 2.13 | |||
7.81 | Mammaliicoccus fleurettii | 1.42 | ||
Kocuria rhizophila | 0.71 | |||
Staphylococcus aureus | 0.71 | |||
Mammaliicoccus sciuri | 0.71 | |||
Other Gram-positive bacteria | 0.71 | Arthrobacter stackebrandtii | 0.71 | |
Other Gram-negative bacteria | 14.20 | Chryseobacterium scophthalmum | 4.26 | |
Acinetobacter harbinensis | 2.84 | |||
Stenotrophomonas maltophilia | 1.42 | |||
Acinetobacter guillouiae | 0.71 | |||
Bordetella hinzii | 0.71 | |||
Chryseobacterium indoltheticum | 0.71 | |||
Microbacterium aurum | 0.71 | |||
Microbacterium paraoxydans | 0.71 | |||
Pantoea agglomerans | 0.71 | |||
Psychrobacter maritimus | 0.71 | |||
Stenotrophomonas spp. | 0.71 | |||
Traditional shop (TI, TJ) | Pseudomonas spp. | 37.50 | P. fluorescens | 12.50 |
P. fragi | 12.50 | |||
P. lundensis | 12.50 | |||
Micrococcaceae | 37.50 | Staphylococcus saprophyticus | 37.50 | |
Other Gram-positive bacteria | 25.00 | Rothia endophytica | 25.00 |
Type of Retailer | Species | Percentage (%) |
---|---|---|
Hypermarket (HA, HB) | Mammaliicoccus vitulinus | 51.52 |
Mammaliicoccus fleurettii | 21.21 | |
Staphylococcus pasteuri | 9.09 | |
Staphylococcus warneri | 6.06 | |
Staphylococcus aureus | 3.03 | |
Staphylococcus capitis | 3.03 | |
Staphylococcus epidermidis | 3.03 | |
Staphylococcus equorum | 3.03 | |
Supermarket (SC, SD, SE, SF, SG, SH) | Staphylococcus equorum | 17.89 |
Staphylococcus saprophyticus | 15.90 | |
Mammaliicoccus vitulinus | 15.79 | |
Staphylococcus aureus | 11.58 | |
Mammaliicoccus fleurettii | 11.58 | |
Macrococcus caseolyticus | 6.32 | |
Staphylococcus epidermidis | 6.32 | |
Staphylococcus pasteuri | 4.21 | |
Staphylococcus warneri | 4.21 | |
Mammaliicoccus sciuri | 3.16 | |
Staphylococcus chromogenes | 1.05 | |
Staphylococcus haemolyticus | 1.5 | |
Mammaliicoccus lentus | 1.05 | |
Traditional shop (TI, TJ) | Staphylococcus saprophyticus | 31.25 |
Mammaliicoccus fleurettii | 18.75 | |
Staphylococcus equorum | 12.50 | |
Mammaliicoccus lentus | 12.50 | |
Mammaliicoccus sciuri | 6.25 | |
Staphylococcus simulans | 6.25 | |
Mammaliicoccus vitulinus | 6.25 | |
Staphylococcus warneri | 6.25 |
Type of Retailer | Species | Percentage (%) |
---|---|---|
Hypermarket (HA, HB) | Ewingella americana | 30.77 |
Serratia proteamaculans | 23.08 | |
Yersinia intermedia | 23.08 | |
Escherichia coli | 15.38 | |
Serratia liquefaciens | 7.69 | |
Supermarket (SC, SD, SE, SF, SG, SH) | Serratia liquefaciens | 45.16 |
Hafnia alvei | 12.90 | |
Escherichia coli | 8.06 | |
Serratia fonticola | 8.06 | |
Ewingella americana | 6.45 | |
Yersinia intermedia | 6.45 | |
Buttiauxella noackiae | 3.23 | |
Lelliottia amnigena | 3.23 | |
Pantoea agglomerans | 3.23 | |
Buttiauxella gaviniae | 1.61 | |
Yersinia enterocolitica | 1.61 | |
Traditional shop (TI, TJ) | Serratia liquefaciens | 100 |
Type of Retailer | Species | Percentage (%) |
---|---|---|
Hypermarket (HA, HB) | Pseudomonas libanensis | 36.36 |
Pseudomonas extremorientalis | 31.82 | |
Pseudomonas fluorescens | 9.09 | |
Pseudomonas brenneri | 4.55 | |
Pseudomonas cedrina | 4.55 | |
Pseudomonas rhodesiae | 4.55 | |
Pseudomonas synxantha | 4.55 | |
Supermarket (SC, SD, SE, SF, SG, SH) | Pseudomonas libanensis | 33.33 |
Pseudomonas extremorientalis | 17.78 | |
Pseudomonas fluorescens | 16.67 | |
Pseudomonas antarctica | 6.67 | |
Pseudomonas fragi | 4.44 | |
Pseudomonas marginalis | 4.44 | |
Pseudomonas azotoformans | 3.33 | |
Pseudomonas koreensis | 2.22 | |
Pseudomonas rhodesiae | 2.22 | |
Pseudomonas synxantha | 2.22 | |
Pseudomonas tolaasii | 2.22 | |
Pseudomonas veronii | 2.22 | |
Pseudomonas chlororaphis | 1.11 | |
Pseudomonas lundensis | 1.11 | |
Traditional shop (TI, TJ) | Pseudomonas fluorescens | 40 |
Pseudomonas libanensis | 40 | |
Pseudomonas extremorientalis | 20 |
Species | Retailer | Antimicrobial Resistant Phenotype 1 |
---|---|---|
S. aureus | SC 2,3 | FOX-AK-CIP-ENR-GAT-K-LEV-PUM-NOR-P-S-SUZ-TE-TOB-PNG |
SG 3 | FOX-CIP-DO-ENR-CN-K-MY-NOR-P-S-TE-TOB-W-TY-ERY-CMN-QD-PNG | |
SG | CIP-DO-ENR-GAT-CN-K-LEV-MY-P-S-TE-TOB-ERY-PNG | |
SG | CIP-DO-ENR-GAT-CN-K-LEV-MY-NOR-TE-TOB-ERY-CMN | |
SC | CIP-ENR-GAT-CN-K-LEV-MY-NOR-S-TOB-ERY-CMN | |
SC | CIP-ENR-GAT-CN-K-LEV-MY-S-TOB-ERY-CMN | |
SC | CIP-ENR-MY-P-TY-ERY-CMN-PNG | |
S. epidermidis | SF | P-SUZ-TE-TOB-ERY |
HA 2,3 | FOX-CIP-ENR-FAD-LEV-PUM-ERY | |
HA | LEV-MY-P | |
S. equorum | SF | DO-K-MY-S-TE-ERY-CMN |
S. haemolyticus | SF 2,3 | FOX-CIP-ENR-LEV-MY-NOR-P-S-TE-ERY-CMN |
S. lugdunensis | HA | FOX-AK-CIP-ENR-FAD-K-PUM-F-P-S-SUZ-TE-PNG |
S. pasteuri | SD 3 | FOX-PUM-P-ERY |
S. pasteuri | SG 3 | FOX-PUM-P-ERY |
S. saprophyticus | SF | DO-FAD-TZD-CMN |
SF | DO-RD-TZD-CMN | |
S. simulans | TI | MY-P-ERY-CMN |
M. caseolyticus | SH 2,3 | FOX-AK-ENR-GAT-K-MY-MH-P-S-SUZ-TE-TOB-TY-ERY-CMN |
SG | ENR-S-TE-ERY | |
M. fleurettii | SC | FAD-MY-P-CMN |
HA | FAD-MY-P | |
M. sciuri | SD 2,3 | FOX-AK-K-MY-PUM-S-SUZ-TE-CMN |
SE | DO-FAD-MY-S-TE-TOB |
Retailer (Number of Isolates) | Antimicrobial Resistant Phenotype 1 |
---|---|
SF (1) | AK-ATM-FEP-CTX-FOX-CPD-CAZ-CRO-C-CIP-CT-DOR-DO-ENR-ETP-GAT-CN-LEV-MEM-NA-NOR-S-SUZ-SXT-TE-W 2 |
SF (1) | FOX-CPD-CAZ-CRO-C-CIP-DO-ENR-ETP-GAT-CN-IPM-MEM-MH-NA-NOR-PRL-S-SUZ-SXT-TE-TOB-W 2 |
SG (1) | AMP-CIP-CT-DO-ENR-GAT-CN-LEV-NA-NOR-PRL-S-SUZ-SXT-TE-TOB-W |
SH (1) | AMP-CIP-CT-DO-ENR-GAT-CN-LEV-MH-NA-NOR-S-SUZ-SXT-TE-W |
SE (1) | AMP-CIP-CT-ENR-CN-LEV.NA-PRL-S-SUZ-SXT-TE-TOB-W |
SC (1) | C-CIP-CT-DO-ENR-GAT-LEV-NA-NOR-S-SUZ-SXT-TE-W |
SG (1) | AMP-SAM-CPD-CAZ-CRO-CIP-CT-DO-PRL-S-SUZ-SXT-TE-W |
SC (1) | ATM-CPD-CT-DO-ENR-MH-NA-S-SUZ-SXT-TE-W |
HB (1) | CIP-DO-ENR-ETP-MH-NA-S-SUZ-TE-TGC |
SC (1) | ATM-DO-MR-S-SUZ-SXT-TE-TGC-W |
SE (1) | DO-S-SUZ-SXT-TE-W |
HB (1) | CT-DO-ENR-NA-S-TE |
Bacteria | Agar Media (Provider) | Conditions | |
---|---|---|---|
Mesophiles | Plate Count (Scharlau, Barcelona, Spain) | 30 °C | 48 h |
Staphylococci | Mannitol Salt (Oxoid, Basingstoke, Hampshire, UK) | 35 °C | 36 h |
Enterobacterales | MacConkey (Oxoid, Basingstoke, Hampshire, UK) | 37 °C | 24 h |
Pseudomonas | Chromogenic for Pseudomonas (Scharlau, Barcelona, Spain) | 30 °C | 72 h |
Campylobacter spp. | Brilliance Campy Count 1 (Oxoid, Basingstoke, Hampshire, UK) | 42 °C | 48 h |
Listeria monocytogenes | ALOA (BioMérieux, Lyon, France) | 30 °C | 24 h |
Methicillin-resistant S. aureus | ChromID MRSA (BioMérieux, Lyon, France) | 37 °C | 24 h |
ESBL-producing E. Coli | ChromID ESBL (BioMérieux, Lyon, France) | 37 °C | 24 h |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
da Silva Guedes, J.; Velilla-Rodriguez, D.; González-Fandos, E. Microbiological Quality and Safety of Fresh Rabbit Meat with Special Reference to Methicillin-Resistant S. aureus (MRSA) and ESBL-Producing E. coli. Antibiotics 2024, 13, 256. https://doi.org/10.3390/antibiotics13030256
da Silva Guedes J, Velilla-Rodriguez D, González-Fandos E. Microbiological Quality and Safety of Fresh Rabbit Meat with Special Reference to Methicillin-Resistant S. aureus (MRSA) and ESBL-Producing E. coli. Antibiotics. 2024; 13(3):256. https://doi.org/10.3390/antibiotics13030256
Chicago/Turabian Styleda Silva Guedes, Jessica, David Velilla-Rodriguez, and Elena González-Fandos. 2024. "Microbiological Quality and Safety of Fresh Rabbit Meat with Special Reference to Methicillin-Resistant S. aureus (MRSA) and ESBL-Producing E. coli" Antibiotics 13, no. 3: 256. https://doi.org/10.3390/antibiotics13030256
APA Styleda Silva Guedes, J., Velilla-Rodriguez, D., & González-Fandos, E. (2024). Microbiological Quality and Safety of Fresh Rabbit Meat with Special Reference to Methicillin-Resistant S. aureus (MRSA) and ESBL-Producing E. coli. Antibiotics, 13(3), 256. https://doi.org/10.3390/antibiotics13030256