Oral Antibiotics Alone versus Oral Antibiotics Combined with Mechanical Bowel Preparation for Elective Colorectal Surgery: A Propensity Score-Matching Re-Analysis of the iCral 2 and 3 Prospective Cohorts
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Patient Population and Data Collection
2.3. Outcomes
2.4. Statistical Analysis
3. Results
4. Discussion
Strengths and Limitations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
References
- Yeo, B.; Harley, V.; Goodbody, F.; Pope, F.M.; Herschell, G.; Wild, R.B.; Haig, A. A discussion on intestinal antiseptics. BMJ 1899, 2, 1250–1257. [Google Scholar]
- Willis, M.A.; Toews, I.; Soltau, S.L.V.; Kal, J.C.; Meerpohl, J.J.; Vilz, T.O. Preoperative combined mechanical and oral antibiotic bowel preparation for preventing complications in elective colorectal surgery. Cochrane Database Syst. Rev. 2023, 2, CD014909. [Google Scholar] [PubMed]
- Poth, E.J.; Ross, C.A. The clinical use of phthalylsulfathiazole. J. Lab. Clin. Med. 1944, 29, 785–808. [Google Scholar]
- Lloyd-Davies, O.V.; Morgan, C.N.; Goligher, J.C. The treatment of carcinoma of the colon. In British Surgical Practice: Progress Volume; Carling, E.R., Ross, J.P., Eds.; Butterworth: London, UK, 1953; p. 71. [Google Scholar]
- Nichols, R.L.; Condon, R.E.; Gorbach, S.L.; Nyhus, L.M. Efficacy of preoperative antimicrobial preparation of the bowel. Ann. Surg. 1972, 176, 227–232. [Google Scholar] [CrossRef] [PubMed]
- Nichols, R.L.; Broido, P.; Condon, R.E.; Gorbach, S.L.; Nyhus, L.M. Effect of preoperative neomycin-erythromycin intestinal preparation on the incidence of infectious complications following colon surgery. Ann. Surg. 1973, 178, 453–462. [Google Scholar] [CrossRef] [PubMed]
- Nichols, R.L.; Smith, J.W.; Garcia, R.Y.; Waterman, R.S.; Holmes, J.W. Current practices of preoperative bowel preparation among North American colorectal surgeons. Clin. Infect. Dis. 1997, 24, 609–619. [Google Scholar] [CrossRef] [PubMed]
- Nelson, R.L.; Gladman, E.; Barbateskovic, M. Antimicrobial prophylaxis for colorectal surgery. Cochrane Database Syst. Rev. 2014, 2014, CD001181. [Google Scholar] [CrossRef]
- Global Guidelines for the Prevention of Surgical Site Infection, 2nd ed.; World Health Organization: Geneva, Switzerland, 2018.
- Guenaga, K.F.; Matos, D.; Castro, A.A.; Atallah, A.N.; Wille-Jørgensen, P. Mechanical bowel preparation for elective colorectal surgery. Cochrane Database Syst. Rev. 2005, 1, CD001544. [Google Scholar]
- Guenaga, K.F.; Matos, D.; Wille-Jorgensen, P. Mechanical bowel preparation for elective colorectal surgery. Cochrane Database Syst. Rev. 2011, 9, CD001544. [Google Scholar] [CrossRef]
- Gustafsson, U.O.; Scott, M.J.; Hubner, M.; Nygren, J.; Demartines, N.; Francis, N.; Rockall, T.A.; Young-Fadok, T.M.; Hill, A.G.; Soop, M.; et al. Guidelines for Perioperative Care in Elective Colorectal Surgery: Enhanced Recovery After Surgery (ERAS©) Society Recommendations: 2018. World J. Surg. 2019, 43, 659–695. [Google Scholar] [CrossRef]
- Ficari, F.; Borghi, F.; Catarci, M.; Scatizzi, M.; Alagna, V.; Bachini, I.; Baldazzi, G.; Bardi, U.; Benedetti, M.; Beretta, L.; et al. Enhanced recovery pathways in colorectal surgery: A consensus paper by the Associazione Chirurghi Ospedalieri Italiani (ACOI) and the PeriOperative Italian Society (POIS). G. Chir. 2019, 40 (Suppl. S4), 1–40. [Google Scholar]
- Markell, K.W.; Hunt, B.M.; Charron, P.D.; Kratz, R.J.; Nelson, J.; Isler, J.T.; Steele, S.R.; Billingham, R.P. Prophylaxis and management of wound infections after elective colorectal surgery: A survey of the American Society of Colon and Rectal Surgeons membership. J. Gastrointest. Surg. 2010, 14, 1090–1098. [Google Scholar] [CrossRef]
- Toneva, G.D.; Deierhoi, R.J.; Morris, M.; Richman, J.; Cannon, J.A.; Altom, L.K.; Hawn, M.T. Oral antibiotic bowel preparation reduces length of stay and readmissions after colorectal surgery. J. Am. Coll. Surg. 2013, 216, 756–763. [Google Scholar] [CrossRef]
- Kim, E.K.; Sheetz, K.H.; Bonn, J.; DeRoo, S.; Lee, C.; Stein, I.; Zarinsefat, A.; Cai, S.; Campbell, D.A., Jr.; Englesbe, M.J. A statewide colectomy experience: The role of full bowel preparation in preventing surgical site infection. Ann. Surg. 2014, 259, 310–314. [Google Scholar] [CrossRef]
- Morris, M.S.; Graham, L.A.; Chu, D.I.; Cannon, J.A.; Hawn, M.T. Oral antibiotic bowel preparation significantly reduces surgical site infection rates and readmission rates in elective colorectal surgery. Ann. Surg. 2015, 261, 1034–1040. [Google Scholar] [CrossRef]
- Scarborough, J.E.; Mantyh, C.R.; Sun, Z.; Migaly, J. Combined mechanical and oral antibiotic bowel preparation reduces incisional surgical site infection and anastomotic leak rates after elective colorectal resection: An analysis of colectomy-targeted ACS NSQIP. Ann. Surg. 2015, 262, 331–337. [Google Scholar] [CrossRef] [PubMed]
- Garfinkle, R.; Abou-Khalil, J.; Morin, N.; Ghitulescu, G.; Vasilevsky, C.-A.; Gordon, P.; Demian, M.; Boutros, M. Is there a role for oral antibiotic preparation alone before colorectal surgery? ACS-NSQIP analysis by coarsened exact matching. Dis. Colon Rectum. 2017, 60, 729–737. [Google Scholar] [CrossRef] [PubMed]
- Koller, S.E.; Bauer, K.W.; Egleston, B.L.; Smith, R.; Philp, M.M.; Ross, H.M.; Esnaola, N.F. Comparative effectiveness and risks of bowel preparation before elective colorectal surgery. Ann. Surg. 2018, 267, 734–742. [Google Scholar] [CrossRef] [PubMed]
- Midura, E.F.; Jung, A.D.; Hanseman, D.J.; Dhar, V.; Shah, S.A.; Rafferty, J.F.; Davis, B.R.; Paquette, I.M. Combination oral and mechanical bowel preparations decreases complications in both right and left colectomy. Surgery 2018, 163, 528–534. [Google Scholar] [CrossRef] [PubMed]
- Klinger, A.L.; Green, H.; Monlezun, D.J.; Beck, D.; Kann, B.; Vargas, H.D.; Whitlow, C.; Margolin, D. The role of bowel preparation in colorectal surgery. Ann. Surg. 2019, 269, 671–677. [Google Scholar] [CrossRef]
- Holubar, S.D.; Hedrick, T.; Gupta, R.; Kellum, J.; Hamilton, M.; Gan, T.J.; Mythen, M.G.; Shaw, A.D.; Miller, T.E.; Perioperative Quality Initiative (POQI) I Workgroup. American Society for Enhanced Recovery (ASER) and Perioperative Quality Initiative (POQI) joint consensus statement on prevention of postoperative infection within an enhanced recovery pathway for elective colorectal surgery. Perioper. Med. 2017, 6, 4. [Google Scholar] [CrossRef]
- Carmichael, J.C.; Keller, D.S.; Baldini, G.; Bordeianou, L.; Weiss, E.; Lee, L.; Boutros, M.; McClane, J.; Feldman, L.S.; Steele, S.R. Clinical practice guidelines for enhanced recovery after colon and rectal surgery from the American Society of Colon and Rectal Surgeons and Society of American Gastrointestinal and Endoscopic Surgeons. Dis. Colon Rectum. 2017, 60, 761–784. [Google Scholar] [CrossRef]
- Migaly, J.; Bafford, A.C.; Francone, T.D.; Gaertner, W.B.; Eskicioglu, C.; Bordeianou, L.; Feingold, D.L.; Steele, S.R.; On behalf of the Clinical Practice Guidelines Committee of the American Society of Colon and Rectal Surgeons. The American Society of Colon and Rectal Surgeons clinical practice guidelines for the use of bowel preparation in elective colon and rectal surgery. Dis. Colon Rectum. 2019, 62, 3–8. [Google Scholar] [CrossRef]
- McChesney, S.L.; Zelhart, M.D.; Green, R.L.; Nichols, R.L. Current U.S. Pre-operative bowel preparation trends: A 2018 survey of the American Society of Colon and Rectal Surgeons Members. Surg. Infect. 2020, 21, 1–8. [Google Scholar] [CrossRef]
- Willis, M.A.; Keller, P.S.; Sommer, N.; Koch, F.; Ritz, J.-P.; Beyer, K.; Reißfelder, C.; Hardt, J.; Herold, A.; Buhr, H.J.; et al. Adherence to fast-track measures in colorectal surgery—A survey among German and Austrian surgeons. Int. J. Color. Dis. 2023, 38, 80. [Google Scholar] [CrossRef]
- Catarci, M.; Guadagni, S.; Masedu, F.; Ruffo, G.; Viola, M.G.; Borghi, F.; Baldazzi, G.; Pirozzi, F.; Delrio, P.; Garulli, G.; et al. Mechanical bowel preparation in elective colorectal surgery: A propensity score-matched analysis of the Italian colorectal anastomotic leakage (iCral) study group prospective cohorts. Updates Surg. 2024, 76, 107–117. [Google Scholar] [CrossRef]
- Antoniou, S.A.; Huo, B.; Tzanis, A.A.; Koutsiouroumpa, O.; Mavridis, D.; Balla, A.; Dore, S.; Kaiser, A.M.; Koraki, E.; Massey, L.; et al. EAES, SAGES, and ESCP rapid guideline: Bowel preparation for minimally invasive colorectal resection. Surg. Endosc. 2023, 37, 9001–9012. [Google Scholar] [CrossRef] [PubMed]
- Rollins, K.E.; Javanmard-Emamghissi, H.; Acheson, A.G.; Lobo, D.N. The Role of Oral Antibiotic Preparation in Elective Colorectal Surgery: A Meta-analysis. Ann. Surg. 2019, 270, 43–58. [Google Scholar] [CrossRef] [PubMed]
- Koskenvuo, L.; Lehtonen, T.; Koskensalo, S.; Rasilainen, S.; Klintrup, K.; Ehrlich, A.; Pinta, T.; Scheinin, T.; Sallinen, V. Mechanical and oral antibiotic bowel preparation versus no bowel preparation for elective colectomy (MOBILE): A multicentre, randomised, parallel, single-blinded trial. Lancet 2019, 394, 840–848. [Google Scholar] [CrossRef] [PubMed]
- Espin Basany, E.; Solís-Peña, A.; Pellino, G.; Kreisler, E.; Fraccalvieri, D.; Muinelo-Lorenzo, M.; Maseda-Díaz, O.; García-González, J.M.; Santamaría-Olabarrieta, M.; Codina-Cazador, A.; et al. Preoperative oral antibiotics and surgical-site infections in colon surgery (ORALEV): A multicentre, single-blind, pragmatic, randomised controlled trial. Lancet Gastroenterol. Hepatol. 2020, 5, 729–738. [Google Scholar] [CrossRef] [PubMed]
- Preoperative oral antibiotics in colon surgery (letters to the editor). Lancet Gastroenterol. Hepatol. 2020, 5, 800–803. [CrossRef]
- Pellino, G.; Solís-Peña, A.; KraP, M.; Huguet, B.M.; Espín-Basany, E. Preoperative oral antibiotics with versus without mechanical bowel preparation to reduce surgical site infections following colonic resection: Protocol for an international randomized controlled trial (ORALEV2). Color. Dis. 2021, 23, 2173–2181. [Google Scholar] [CrossRef]
- Futier, E.; Jaber, S.; Garot, M.; Vignaud, M.; Panis, Y.; Slim, K.; Lucet, J.-C.; Lebuffe, G.; Ouattara, A.; El Amine, Y.; et al. COMBINE study group. Effect of oral antimicrobial prophylaxis on surgical site infection after elective colorectal surgery: Multicentre, randomised, double blind, placebo controlled trial. BMJ 2022, 379, e071476. [Google Scholar] [CrossRef] [PubMed]
- Assistance Publique—Hôpitaux de Paris. Mechanical Bowel Preparation and Oral Antibiotics Before Rectal Cancer Surgery (PREPACOL2). NCT03491540. ClinicalTrials.gov—NIH—US National Library of Medicine. Available online: https://clinicaltrials.gov/ct2/show/NCT03491540 (accessed on 11 January 2024).
- Assistance Publique—Hôpitaux de Paris. Mechanical Bowel Preparation and Oral Antibiotics Before Colon Cancer Surgery (COLONPREP). NCT03475680. ClinicalTrials.gov—NIH—US National Library of Medicine. Available online: https://clinicaltrials.gov/ct2/show/NCT03475680 (accessed on 11 January 2024).
- Catarci, M.; Ruffo, G.; Viola, M.G.; Pirozzi, F.; Delrio, P.; Borghi, F.; Garulli, G.; Baldazzi, G.; Marini, P.; Sica, G.; et al. ERAS program adherence-institutionalization, major morbidity and anastomotic leakage after elective colorectal surgery: The iCral2 multicenter prospective study. Surg. Endosc. 2022, 36, 3965–3984. [Google Scholar] [CrossRef] [PubMed]
- Italian ColoRectal Anastomotic Leakage (iCral) Study Group. Patient-reported outcomes, return to intended oncological therapy and enhanced recovery pathways after colorectal surgery: A prospective multicenter observational investigation by the Italian ColoRectal Anastomotic Leakage (iCral 3) study group. Ann. Surg. Open 2023, 4, e267. [Google Scholar] [CrossRef]
- von Elm, E.; Altman, D.G.; Egger, M.; Pocock, S.J.; Gøtzsche, P.C.; Vandenbroucke, J.P.; STROBE Initiative. The Strengthening the Reporting of Observational Studies in Epidemiology (STROBE) Statement: Guidelines for reporting observational studies. Int. J. Surg. 2014, 12, 1495–1499. [Google Scholar] [CrossRef]
- Dindo, D.; Demartines, N.; Clavien, P.A. Classification of surgical complications. A new proposal with evaluation in a cohort of 6336 patients and results of a survey. Ann. Surg. 2004, 240, 205–213. [Google Scholar] [CrossRef]
- Katayama, H.; Kurokawa, Y.; Nakamura, K.; Ito, H.; Kanemitsu, Y.; Masuda, N.; Tsubosa, Y.; Satoh, T.; Yokomizo, A.; Fukuda, H.; et al. Extended Clavien-Dindo classification of surgical complications: Japan Clinical Oncology Group postoperative complications criteria. Surg. Today 2016, 46, 668–685. [Google Scholar] [CrossRef]
- Rahbari, N.N.; Weitz, J.; Hohenberger, W.; Heald, R.J.; Moran, B.; Ulrich, A.; Holm, T.; Wong, W.D.; Tiret, E.; Moriya, Y.; et al. Definition and grading of anastomotic leakage following anterior resection of the rectum: A proposal by the International Study Group of Rectal Cancer. Surgery 2010, 147, 339–351. [Google Scholar] [CrossRef] [PubMed]
- Horan, T.C.; Andrus, M.; Dudeck, M.A. CDC/NHSN surveillance definition of health care-associated infection and criteria for specific types of infections in the acute care setting. Am. J. Infect. Control 2008, 36, 309–332. [Google Scholar] [CrossRef]
- Peduzzi, P.; Concato, J.; Kemper, E.; Holford, T.R.; Feinstein, A.R. A simulation study of the number of events per variable in logistic regression analysis. J. Clin. Epidemiol. 1996, 49, 1373–1379. [Google Scholar] [CrossRef]
- Bujang, M.A.; Sa’at, N.; Sidik TMITAB; Joo, L.C. Sample Size Guidelines for Logistic Regression from Observational Studies with Large Population: Emphasis on the Accuracy Between Statistics and Parameters Based on Real Life Clinical Data. Malays. J. Med. Sci. 2018, 25, 122–130. [Google Scholar] [CrossRef]
- Austin, P.C. An Introduction to Propensity Score Methods for Reducing the Effects of Confounding in Observational Studies. Multivar. Behav. Res. 2011, 46, 399–424. [Google Scholar] [CrossRef] [PubMed]
- Rosenbaum, P.R.; Rubin, D.B. The Central Role of the Propensity Score in Observational Studies for Causal Effects. Biometrika 1983, 70, 41–55. [Google Scholar] [CrossRef]
- Brookhart, M.A.; Schneeweiss, S.; Rothman, K.J.; Glynn, R.J.; Avorn, J.; Stürmer, T. Variable selection for propensity score models. Am. J. Epidemiol. 2006, 163, 1149–1156. [Google Scholar] [CrossRef] [PubMed]
- Kaiser, M.J.; Bauer, J.M.; Ramsch, C.; Uter, W.; Guigoz, Y.; Cederholm, T.; Thomas, D.R.; Anthony, P.; Charlton, K.E.; Maggio, M.; et al. Validation of the Mini Nutritional Assessment short-form (MNA-SF): A practical tool for identification of nutritional status. J. Nutr. Health Aging 2009, 13, 782. [Google Scholar] [CrossRef] [PubMed]
- Austin, P.C. Optimal caliper widths for propensity-score matching when estimating differences in means and differences in proportions in observational studies. Pharm. Stat. 2011, 10, 150–161. [Google Scholar] [CrossRef] [PubMed]
- Ho, D.E.; Imai, K.; King, G.; Stuart, E.A. Matching as nonparametric preprocessing for reducing model dependence in parametric causal inference. Polit. Anal. 2007, 15, 199–236. [Google Scholar] [CrossRef]
- Rosenbaum, P.R. The power of a sensitivity analysis and its limit. In Design of Observational Studies, 2nd ed.; Springer Series in Statistics; Springer Nature Switzerland, A.G.: Cham, Switzerland, 2020; pp. 317–336. [Google Scholar]
- Zmora, O.; Mahajna, A.; Bar-Zakai, B.; Rosin, D.; Hershko, D.; Shabtai, M.; Krausz, M.M.; Ayalon, A. Colon and rectal surgery without mechanical bowel preparation: A randomized prospective trial. Ann. Surg. 2003, 237, 363–367. [Google Scholar] [CrossRef]
- Suzuki, T.; Sadahiro, S.; Tanaka, A.; Okada, K.; Saito, G.; Miyakita, H.; Ogimi, T. Usefulness of preoperative mechanical bowel preparation in patients with colon cancer who undergo elective surgery: A prospective randomized trial using oral antibiotics. Dig. Surg. 2020, 37, 192–198. [Google Scholar] [CrossRef]
- Cannon, J.A.; Altom, L.K.; Deierhoi, R.J.; Moris, M.; Richman, J.S.; Vick, C.C.; Itani, K.M.F.; Hawn, M.T. Preoperative oral antibiotics reduce surgical site infection following elective colorectal resections. Dis. Colon Rectum. 2012, 55, 1160–1166. [Google Scholar] [CrossRef]
- Schardey, H.M.; Rogers, S.; Schopf, S.K.; Ahnen, T.; Wirth, U. Are gut bacteria associated with the development of anastomotic leaks ? A review of experimental and clinical studies. Coloproctology 2017, 39, 94–100. [Google Scholar] [CrossRef]
- Fry, D.E. Antimicrobial Bowel Preparation for Elective Colon Surgery. Surg. Infect. 2016, 17, 269–274. [Google Scholar] [CrossRef] [PubMed]
- Poth, E.J. Historical development of intestinal antisepsis. World J. Surg. 1982, 6, 153–159. [Google Scholar] [CrossRef] [PubMed]
- Cao, Y.; Shang, F.; Jin, M.; Deng, S.; Gu, J.; Mao, F.; Qin, L.; Wang, J.; Xue, Y.; Jiang, Z.; et al. Changes in Bacteroides and the microbiota in patients with obstructed colorectal cancer: Retrospective cohort study. BJS Open 2023, 7, zrad105. [Google Scholar] [CrossRef] [PubMed]
- Shogun, B.D.; Smith, D.P.; Christley, S.; Gilbert, J.A.; Zaborina, O.; Alverdy, J.C. Intestinal anastomotic injury alters spatially defined microbiome composition and function. Microbiome 2014, 2, 35. [Google Scholar] [CrossRef] [PubMed]
- Ljungqvist, O.; Lobo, D.N. Bowel Preparation for Colorectal Surgery: Have All Questions Been Answered? JAMA Surg. 2022, 157, 41–42. [Google Scholar] [CrossRef]
- Sell, N.M.; Francone, T.D. Anastomotic Troubleshooting. Clin. Colon Rectal Surg. 2021, 34, 385–390. [Google Scholar] [CrossRef] [PubMed]
- Guyton, K.; Alverdy, J.C. The gut microbiota and gastrointestinal surgery. Nat. Rev. Gastroenterol. Hepatol. 2017, 14, 43–54. [Google Scholar] [CrossRef]
- Kirby, A.; Santoni, N. Antibiotic resistance in Enterobacteriaceae: What impact on the efficacy of antibiotic prophylaxis in colorectal surgery? J. Hosp. Infect. 2015, 89, 259–263. [Google Scholar] [CrossRef]
- Haak, B.W.; Lankelma, J.M.; Hugenholtz, F.; Belzer, C.; de Vos, W.M.; Wiersinga, W.J. Long-term impact of oral vancomycin, ciprofloxacin and metronidazole on the gut microbiota in healthy humans. J. Antimicrob. Chemother. 2019, 74, 782–786. [Google Scholar] [CrossRef]
- Hajjar, R.; Santos, M.M.; Dagbert, F.; Richard, C.S. Current evidence on the relation between gut microbiota and intestinal anastomotic leak in colorectal surgery. Am. J. Surg. 2019, 218, 1000–1007. [Google Scholar] [CrossRef]
- Correia, S.; Poeta, P.; Hébraud, M.; Capelo, J.L.; Igrejas, G. Mechanisms of quinolone action and resistance: Where do we stand? J. Med. Microbiol. 2017, 66, 551–559. [Google Scholar] [CrossRef]
- Ben-Ami, R.; Schwaber, M.J.; Navon-Venezia, S.; Schwartz, D.; Giladi, M.; Chmelnitsky, I.; Leavitt, A.; Carmeli, Y. Influx of extended-spectrum beta-lactamase-producing enterobacteriaceae into the hospital. Clin. Infect. Dis. 2006, 42, 925–934. [Google Scholar] [CrossRef]
- Sartelli, M.; Coccolini, F.; Labricciosa, F.M.; Al Omari, A.H.; Bains, L.; Baraket, O.; Catarci, M.; Cui, Y.; Ferreres, A.R.; Gkiokas, G.; et al. Surgical Antibiotic Prophylaxis: A Proposal for a Global Evidence-Based Bundle. Antibiotics 2024, 13, 100. [Google Scholar] [CrossRef]
- Turnbaugh, P.J.; Ley, R.E.; Hamady, M.; Fraser-Liggett, C.M.; Knight, R.; Gordon, J.I. The human microbiome project. Nature 2007, 449, 804–810. [Google Scholar] [CrossRef]
- Yao, X.I.; Wang, X.; Speicher, P.J.; Hwang, E.S.; Cheng, P.; Harpole, D.H.; Berry, M.F.; Schrag, D.; Pang, H.H. Reporting and Guidelines in Propensity Score Analysis: A Systematic Review of Cancer and Cancer Surgical Studies. J. Natl. Cancer Inst. 2017, 109, djw323. [Google Scholar] [CrossRef] [PubMed]
- Simoneau, G.; Pellegrini, F.; Debray, T.P.A.; Rouette, J.; Muñoz, J.; Platt, R.W.; Petkau, J.; Bohn, J.; Shen, C.; de Moor, C.; et al. Recommendations for the use of propensity score methods in multiple sclerosis research. Mult. Scler. J. 2022, 28, 1467–1480. [Google Scholar] [CrossRef] [PubMed]
- García-Granero, E.; Navarro, F.; Santacruz, C.C.; Frasson, M.; García-Granero, A.; Marinello, F.; Flor-Lorente, B.; Espí, A. Individual surgeon is an independent risk factor for leak after double-stapled colorectal anastomosis: An institutional analysis of 800 patients. Surgery 2017, 162, 1006–1016. [Google Scholar] [CrossRef] [PubMed]
Overall | MoABP | oA | |||||||
---|---|---|---|---|---|---|---|---|---|
No. 1013 | No. 607 | No. 406 | |||||||
Variables | Pattern | No. | % | No. | % | No. | % | * p | |
Age (years) | ≤69 | 513 | 50.6 | 324 | 53.4 | 189 | 46.5 | 0.033 | |
>69 | 500 | 49.4 | 283 | 46.6 | 217 | 53.5 | |||
Sex | Male | 532 | 52.5 | 323 | 53.2 | 209 | 51.5 | 0.588 | |
Female | 481 | 47.5 | 284 | 46.8 | 197 | 48.5 | |||
ASA class | I–II | 662 | 65.3 | 407 | 67.0 | 255 | 62.8 | 0.164 | |
III | 351 | 34.7 | 200 | 33.0 | 151 | 37.2 | |||
Body mass index (kg/m2) | ≤24.67 | 507 | 50.1 | 295 | 48.6 | 212 | 52.2 | 0.259 | |
>24.67 | 506 | 49.9 | 312 | 51.4 | 194 | 47.8 | |||
Diabetes | Yes | 123 | 12.1 | 81 | 13.3 | 42 | 10.3 | 0.152 | |
No | 890 | 87.9 | 526 | 86.7 | 364 | 89.7 | |||
Chronic renal failure | Yes | 45 | 4.4 | 27 | 4.5 | 18 | 4.4 | 0.991 | |
No | 968 | 95.6 | 580 | 95.5 | 388 | 95.6 | |||
MNA-SF | ≤13 | 693 | 68.4 | 433 | 71.3 | 260 | 64.0 | 0.014 | |
>13 | 320 | 31.6 | 174 | 28.7 | 146 | 36.0 | |||
Malignancy | Yes | 739 | 73.0 | 427 | 70.4 | 312 | 76.9 | 0.022 | |
No | 274 | 27.0 | 180 | 29.6 | 94 | 23.1 | |||
Diverticular disease | 167 | 60.9 | 107 | 59.4 | 60 | 63.8 | |||
Endometriosis | 2 | 0.8 | 0 | 0 | 2 | 2.2 | |||
Polyps | 35 | 12.8 | 17 | 9.5 | 18 | 19.1 | |||
IBD | 28 | 10.2 | 22 | 12.2 | 6 | 6.4 | |||
Other | 42 | 15.3 | 34 | 18.9 | 8 | 8.5 | |||
Mini-invasive surgery | No | 113 | 11.1 | 62 | 10.2 | 51 | 12.6 | 0.245 | |
Yes | 900 | 88.9 | 545 | 89.8 | 355 | 87.4 | |||
Laparoscopic | 826 | 81.5 | 509 | 93.4 | 317 | 89.3 | |||
Robotic | 32 | 3.2 | 17 | 3.1 | 15 | 4.2 | |||
Converted | 42 | 4.2 | 19 | 3.5 | 23 | 6.5 | |||
Standard procedure | Yes | 859 | 84.8 | 488 | 80.4 | 371 | 91.4 | 0.000 | |
Right colectomy | 407 | 47.4 | 199 | 40.8 | 208 | 56.1 | |||
Left colectomy | 356 | 41.4 | 223 | 45.7 | 133 | 35.9 | |||
Anterior resection | 96 | 11.2 | 66 | 13.5 | 30 | 8.1 | |||
No | 154 | 15.2 | 119 | 19.6 | 35 | 8.6 | |||
Transverse colectomy | 28 | 18.2 | 18 | 15.1 | 10 | 28.6 | |||
Splenic flexure colectomy | 26 | 16.9 | 14 | 11.8 | 12 | 34.3 | |||
Hartmann reversal | 16 | 10.4 | 12 | 10.1 | 4 | 11.4 | |||
(Sub)total colectomy | 23 | 14.9 | 19 | 16.0 | 4 | 11.4 | |||
Other | 61 | 39.6 | 56 | 47.0 | 5 | 14.3 | |||
Anastomosis 1 | Intracorporeal | 732 | 72.3 | 432 | 71.2 | 300 | 73.4 | 0.343 | |
Extracorporeal | 281 | 27.7 | 175 | 28.8 | 106 | 26.1 | |||
Anastomosis 2 | Stapled | 868 | 85.7 | 514 | 84.7 | 354 | 87.2 | 0.263 | |
Handsewn | 145 | 14.3 | 93 | 15.3 | 52 | 12.8 | |||
Anastomosis 3 | End to end | 457 | 45.1 | 293 | 48.3 | 164 | 40.4 | 0.014 | |
Other shape | 556 | 54.9 | 314 | 51.7 | 242 | 59.6 | |||
Operation length | ≤160′ | 521 | 51.4 | 316 | 52.1 | 205 | 50.5 | 0.625 | |
˃160′ | 492 | 48.6 | 291 | 47.9 | 201 | 49.5 | |||
Hospital type | Met./Ac. | 773 | 76.3 | 516 | 85.0 | 257 | 63.3 | 0.000 | |
Local/Regional | 240 | 23.7 | 91 | 15.0 | 149 | 36.7 | |||
Unit type | Colorectal/Oncologic | 166 | 16.4 | 144 | 23.7 | 22 | 5.4 | 0.000 | |
General | 847 | 83.6 | 463 | 76.3 | 384 | 94.6 | |||
Center volume | <4 cases/month | 257 | 35.2 | 221 | 36.4 | 136 | 33.5 | 0.342 | |
≥4 cases/month | 656 | 64.8 | 386 | 63.6 | 270 | 66.5 | |||
Preoperative BT(s) | Yes | 43 | 4.2 | 26 | 4.3 | 17 | 4.2 | 0.941 | |
No | 970 | 95.8 | 581 | 95.7 | 389 | 95.8 | |||
Intra/postoperative BT(s) | Yes | 58 | 5.7 | 43 | 7.1 | 15 | 3.7 | 0.023 | |
No | 955 | 94.3 | 564 | 92.9 | 391 | 96.3 | |||
ERAS adherence (%) | ≤78.95 | 616 | 60.8 | 450 | 74.1 | 166 | 40.9 | 0.000 | |
˃78.95 | 397 | 39.2 | 157 | 25.9 | 240 | 59.1 | |||
Nutritional screening | 711 | 70.2 | 410 | 67.6 | 301 | 74.1 | |||
Prehabilitation | 411 | 40.6 | 183 | 30.2 | 228 | 56.2 | |||
Counseling | 747 | 73.7 | 471 | 77.6 | 276 | 68.0 | |||
Immune enhancing nutrition | 330 | 32.6 | 113 | 18.6 | 217 | 53.5 | |||
Antithrombotic prophylaxis | 938 | 92.6 | 550 | 90.6 | 388 | 95.6 | |||
Preoperative carbohydrates load | 582 | 57.5 | 326 | 53.7 | 256 | 63.1 | |||
No preanesthesia | 741 | 73.2 | 448 | 73.8 | 293 | 72.2 | |||
Standard anesthesia protocol | 980 | 96.7 | 584 | 96.2 | 396 | 97.5 | |||
Normothermia | 974 | 96.2 | 576 | 94.9 | 398 | 98.0 | |||
Goal-directed or restrictive fluid therapy | 898 | 88.7 | 539 | 88.8 | 359 | 88.4 | |||
Postoperative nausea/vomit prophylaxis | 935 | 92.3 | 543 | 89.5 | 392 | 96.6 | |||
Multimodal analgesia | 975 | 96.3 | 573 | 94.4 | 402 | 99.0 | |||
No nasogastric tube | 882 | 87.1 | 491 | 80.9 | 391 | 96.3 | |||
Minimally invasive surgery | 900 | 88.9 | 545 | 89.8 | 355 | 87.4 | |||
No drains | 420 | 41.5 | 178 | 29.3 | 242 | 59.6 | |||
Urinary catheter <24–48 h | 864 | 85.3 | 484 | 79.7 | 380 | 93.6 | |||
Early mobilization | 842 | 83.1 | 469 | 77.3 | 373 | 91.9 | |||
Early oral feeding | 726 | 71.7 | 374 | 61.6 | 352 | 86.7 | |||
Pre-discharge check | 848 | 83.7 | 503 | 82.9 | 345 | 85.0 |
Oral Antibiotic(s) | Administration Schedule | oA (No. 406) | MoABP (No. 607) | * p | ||
---|---|---|---|---|---|---|
No. | % | No. | % | |||
Metronidazole (500 mg) Paromomycin (250 mg) | Started 2 days preop., TID Started 2 days preop., BID | 118 | 29.1 | 29 | 4.8 | 0.006 |
Metronidazole (500 mg) Cefazolin (2000 mg) | Started 1 day preop., TID Started 1 day preop., OD | 76 | 18.7 | 50 | 8.2 | 0.102 |
Metronidazole (500 mg) Trimethoprim (160 mg) + Sulfamethoxazole (800 mg) | Started 1 day preop., TID Started 1 day preop., TID | 68 | 16.7 | 61 | 10.0 | 0.267 |
Metronidazole (500 mg) Neomycin + Bacitracin (300 mg) | Started 1 day preop., TID Started 1 day preop., TID | 47 | 11.6 | 6 | 0.9 | 0.419 |
Metronidazole (500 mg) Amoxicillin (1000 mg) | Started 3 days preop., BID Started 3 days preop., BID | 25 | 6.2 | 5 | 0.8 | 0.623 |
Metronidazole (250 mg) Ciprofloxacin (500 mg) | Started 1 day preop., TID Started 1 day preop., BID | 20 | 4.9 | 21 | 3.5 | 0.823 |
Metronidazole (500 mg) Rifaximin (400 mg) | Started 7 days preop., TID Started 7 days preop., BID | 5 | 1.2 | 9 | 1.5 | 0.963 |
Metronidazole (250 mg) Amoxicillin (1000 mg) | Started 1 day preop., BID Started 1 day preop., BID | 0 | 0 | 50 | 8.2 | n.e. |
Paromomycin (250 mg) | Started 4 days preop., QID | 44 | 10.8 | 0 | 0 | n.e. |
Paromomycin (1000 mg) | Started 1 day preop., OD | 0 | 0 | 37 | 6.1 | n.e. |
Metronidazole (250 mg) Rifaximin (200 mg) | Started 1 day preop., TID Started 1 day preop., BID | 3 | 0.8 | 0 | 0 | n.e. |
Metronidazole (500 mg) Rifaximin (200 mg) | Started 1 day preop., BID Started 1 day preop., BID | 0 | 0 | 68 | 11.2 | n.e. |
Metronidazole (1000 mg) Rifaximin (400 mg) | Started 1 day preop., TID Started 1 day preop., TID | 0 | 0 | 11 | 1.8 | n.e. |
Metronidazole (500 mg) Paromomycin (500 mg) Rifaximin (400 mg) | Started 1 day preop., BID Started 1 day preop., BID Started 1 day preop., BID | 0 | 0 | 126 | 20.8 | n.e. |
Rifaximin (400 mg) | Started 1 day preop., TID | 0 | 0 | 102 | 16.8 | n.e. |
Amoxicillin (1000 mg) | Started 3 days preop., TID | 0 | 0 | 17 | 2.8 | n.e. |
Neomycin + Bacitracin (300 mg) | Started 1 day preop., TID | 0 | 0 | 15 | 2.5 | n.e. |
Overall (No. 1013) | MoABP (No. 607) | oA (No.406) | |||||
---|---|---|---|---|---|---|---|
No. | % | No. | % | No. | % | * OR (95%CI) | |
AL | 37 | 3.7 | 21 | 3.5 | 16 | 3.9 | 1.14 (0.59–2.22), p = 0.689 |
SSIs | 32 | 3.2 | 17 | 2.8 | 15 | 3.7 | 1.33 (0.66–2.70), p = 0.425 |
OM | 239 | 23.6 | 135 | 22.2 | 104 | 25.6 | 1.20 (0.90–1.62), p = 0.215 |
MM | 61 | 6.0 | 30 | 4.9 | 31 | 7.6 | 1.59 (0.95–2.67), p = 0.077 |
Reoperation | 49 | 4.8 | 27 | 4.5 | 22 | 5.4 | 1.23 (0.69–2.19), p = 0.480 |
Before PSM | After PSM | ||||||||
---|---|---|---|---|---|---|---|---|---|
MoABP No. 609 | oA No. 406 | MoABP No. 243 | oA No. 243 | ||||||
Covariates | Pattern | * p | ** SMD | * p | ** SMD | ||||
Age | ≤69 years | 324 | 283 | 0.039 | 0.14 | 128 | 118 | 0.414 | 0.08 |
>69 years | 189 | 217 | 0.039 | −0.14 | 115 | 125 | 0.414 | −0.08 | |
Sex | Male | 323 | 209 | 0.633 | 0.03 | 129 | 125 | 0.785 | 0.03 |
Female | 284 | 197 | 0.633 | −0.03 | 114 | 118 | 0.785 | −0.03 | |
ASA class | I–II | 407 | 255 | 0.186 | 0.09 | 165 | 156 | 0.444 | 0.08 |
III | 200 | 151 | 0.186 | −0.09 | 78 | 87 | 0.444 | −0.08 | |
Body mass index | ≤24.67 Kg/m2 | 295 | 212 | 0.287 | −0.07 | 124 | 121 | 0.856 | 0.02 |
>24.67 Kg/m2 | 312 | 194 | 0.287 | 0.07 | 119 | 122 | 0.856 | −0.02 | |
Diabetes | Yes | 81 | 42 | 0.182 | 0.09 | 21 | 30 | 0.236 | −0.12 |
No | 526 | 364 | 0.182 | −0.09 | 222 | 213 | 0.236 | 0.12 | |
Chronic renal failure | Yes | 27 | 18 | 1.00 | 0.00 | 10 | 12 | 0.827 | −0.04 |
No | 580 | 388 | 1.00 | −0.00 | 233 | 231 | 0.827 | 0.04 | |
MNA-SF | ≤13 | 433 | 260 | 0.017 | 0.16 | 165 | 162 | 0.847 | 0.03 |
>13 | 174 | 146 | 0.017 | −0.16 | 78 | 81 | 0.847 | −0.03 | |
Malignancy | Yes | 427 | 312 | 0.027 | −0.15 | 167 | 176 | 0.426 | −0.08 |
No | 180 | 94 | 0.027 | 0.15 | 76 | 67 | 0.426 | 0.08 | |
Mini-invasive surgery | Yes | 545 | 355 | 0.288 | 0.07 | 221 | 215 | 0.455 | 0.08 |
No | 62 | 51 | 0.288 | −0.07 | 22 | 28 | 0.455 | −0.08 | |
Standard procedures | Yes | 488 | 371 | 0.000 | −0.32 | 208 | 213 | 0.594 | −0.06 |
No | 119 | 35 | 0.000 | 0.32 | 35 | 30 | 0.594 | 0.06 | |
Anastomosis 1 | Intracorporeal | 432 | 300 | 0.381 | −0.06 | 177 | 172 | 0.687 | 0.05 |
Extracorporeal | 175 | 106 | 0.381 | 0.06 | 66 | 71 | 0.687 | −0.05 | |
Anastomosis 2 | Stapled | 514 | 354 | 0.304 | −0.07 | 212 | 205 | 0.436 | 0.08 |
Handsewn | 93 | 52 | 0.304 | 0.07 | 31 | 38 | 0.436 | −0.08 | |
Anastomosis 3 | End to end | 293 | 164 | 0.016 | 0.16 | 116 | 97 | 0.010 | 0.16 |
Other shape | 314 | 242 | 0.016 | −0.16 | 127 | 146 | 0.010 | −0.16 | |
Operation length | ≤160′ | 291 | 201 | 0.671 | −0.03 | 131 | 133 | 0.927 | −0.02 |
˃160′ | 316 | 205 | 0.671 | 0.03 | 112 | 110 | 0.927 | 0.02 | |
Hospital type | Met/Ac | 516 | 257 | 0.000 | 0.51 | 178 | 175 | 0.839 | 0.03 |
Local/Regional | 91 | 149 | 0.000 | −0.51 | 65 | 68 | 0.839 | −0.03 | |
Unit type | Col/Onc | 144 | 22 | 0.000 | 0.54 | 24 | 22 | 0.877 | 0.03 |
General | 463 | 384 | 0.000 | −0.54 | 219 | 221 | 0.877 | −0.03 | |
Center volume | Low | 221 | 136 | 0.377 | 0.06 | 65 | 63 | 0.918 | 0.02 |
High | 386 | 270 | 0.377 | −0.06 | 178 | 180 | 0.918 | −0.02 | |
Preoperative BT(s) | Yes | 26 | 17 | 1.00 | 0.00 | 8 | 13 | 0.372 | −0.10 |
No | 581 | 389 | 1.00 | −0.00 | 235 | 230 | 0.372 | 0.10 | |
Intra/Post-operative BT(s) | Yes | 43 | 15 | 0.033 | 0.15 | 15 | 14 | 1.00 | 0.02 |
No | 564 | 391 | 0.033 | −0.15 | 228 | 229 | 1.00 | −0.02 | |
ERAS adherence | ≤78.95% | 450 | 166 | 0.000 | 0.71 | 140 | 147 | 0.580 | −0.06 |
˃78.95% | 157 | 240 | 0.000 | −0.71 | 103 | 96 | 0.580 | 0.06 |
Propensity Score-Matched Analysis | ||||||||
---|---|---|---|---|---|---|---|---|
MoABP No. 243 | oA No. 243 | * Sensitivity | ||||||
Endpoint | No. | % | No. | % | OR (95%CI) | p | Γ | ** p |
Anastomotic leakage | 6 | 2.5 | 14 | 5.8 | 3.77 (1.22–11.67) | 0.021 | 1.0 | 0.057 |
SSIs | 7 | 2.9 | 9 | 3.7 | 1.02 (0.31–3.29) | 0.977 | ||
Overall morbidity | 49 | 20.2 | 64 | 26.3 | 1.52 (0.96–3.40) | 0.075 | ||
Major morbidity | 9 | 3.7 | 25 | 10.3 | 4.55 (1.82–11.38) | 0.001 | 1.4 | 0.038 |
Reoperation | 5 | 2.1 | 16 | 6.6 | 5.05 (1.55–16.49) | 0.007 | 1.3 | 0.037 |
MoABP No. 243 | oA No. 243 | |||||
---|---|---|---|---|---|---|
Adverse Events | OM (%) | MM (%) | OM (%) | MM (%) | * p (OM) | * p (MM) |
Anastomotic leakage | 6 (2.5) | 4 (1.6) | 14 (5.8) | 12 (4.9) | 0.068 | 0.042 |
sdiSSIs | 2 (0.8) | 0 (0) | 6 (2.5) | 4 (1.6) | 0.154 | 0.045 |
Deep wound dehiscence | 1 (0.4) | 1 (0.4) | 2 (0.8) | 2 (0.8) | 0.562 | 0.562 |
Abdominal collection/abscess | 4 (1.7) | 1 (0.4) | 3 (1.2) | 3 (1.2) | 0.703 | 0.315 |
Small bowel obstruction | 7 (2.9) | 5 (2.1) | 4 (1.6) | 3 (1.2) | 0.360 | 0.476 |
Anastomotic bleeding | 2 (0.8) | 1 (0.4) | 8 (3.3) | 1 (0.4) | 0.055 | 1.00 |
Abdominal bleeding | 2 (0.8) | 1 (0.4) | 1 (0.4) | 1 (0.4) | 0.562 | 1.00 |
Small bowel perforation | 0 (0) | 0 (0) | 0 (0) | 0 (0) | n.e. | n.e. |
Trocar/wound site bleeding | 1 (0.4) | 0 (0) | 1 (0.4) | 0 (0) | 1.00 | n.e. |
Anemia | 6 (2.5) | 0 (0) | 9 (3.7) | 1 (0.4) | 0.431 | 0.317 |
Paralytic ileus | 9 (3.7) | 0 (0) | 8 (3.3) | 0 (0) | 0.805 | n.e. |
Fever | 6 (2.5) | 0 (0) | 8 (3.3) | 0 (0) | 0.588 | n.e. |
DVT/PE | 0 (0) | 0 (0) | 1 (0.4) | 0 (0) | 0.317 | n.e. |
Neurologic | 1 (0.4) | 1 (0.4) | 1 (0.4) | 0 (0) | 1.00 | 0.317 |
Pneumonia and pulmonary failure | 5 (2.1) | 0 (0) | 7 (2.9) | 2 (0.8) | 0.559 | 0.156 |
Urinary retention | 1 (0.4) | 0 (0) | 2 (0.8) | 0 (0) | 0.562 | n.e. |
Urinary tract infection | 0 (0) | 0 (0) | 1 (0.4) | 0 (0) | 0.317 | n.e. |
Acute renal failure | 0 (0) | 0 (0) | 4 (1.6) | 0 (0) | 0.062 | n.e. |
Acute mesenteric ischemia | 0 (0) | 0 (0) | 0 (0) | 0 (0) | n.e. | n.e. |
Acute peptic ulcer/erosive gastritis | 0 (0) | 0 (0) | 0 (0) | 0 (0) | n.e. | n.e. |
Cardiac dysfunction and failure | 2 (0.8) | 1 (0.4) | 2 (0.8) | 2 (0.8) | 1.00 | 0.562 |
Other | 14 (5.8) | 1 (0.4) | 7 (2.9) | 2 (0.8) | 0.118 | 0.562 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Catarci, M.; Guadagni, S.; Masedu, F.; Sartelli, M.; Montemurro, L.A.; Baiocchi, G.L.; Tebala, G.D.; Borghi, F.; Marini, P.; Scatizzi, M.; et al. Oral Antibiotics Alone versus Oral Antibiotics Combined with Mechanical Bowel Preparation for Elective Colorectal Surgery: A Propensity Score-Matching Re-Analysis of the iCral 2 and 3 Prospective Cohorts. Antibiotics 2024, 13, 235. https://doi.org/10.3390/antibiotics13030235
Catarci M, Guadagni S, Masedu F, Sartelli M, Montemurro LA, Baiocchi GL, Tebala GD, Borghi F, Marini P, Scatizzi M, et al. Oral Antibiotics Alone versus Oral Antibiotics Combined with Mechanical Bowel Preparation for Elective Colorectal Surgery: A Propensity Score-Matching Re-Analysis of the iCral 2 and 3 Prospective Cohorts. Antibiotics. 2024; 13(3):235. https://doi.org/10.3390/antibiotics13030235
Chicago/Turabian StyleCatarci, Marco, Stefano Guadagni, Francesco Masedu, Massimo Sartelli, Leonardo Antonio Montemurro, Gian Luca Baiocchi, Giovanni Domenico Tebala, Felice Borghi, Pierluigi Marini, Marco Scatizzi, and et al. 2024. "Oral Antibiotics Alone versus Oral Antibiotics Combined with Mechanical Bowel Preparation for Elective Colorectal Surgery: A Propensity Score-Matching Re-Analysis of the iCral 2 and 3 Prospective Cohorts" Antibiotics 13, no. 3: 235. https://doi.org/10.3390/antibiotics13030235
APA StyleCatarci, M., Guadagni, S., Masedu, F., Sartelli, M., Montemurro, L. A., Baiocchi, G. L., Tebala, G. D., Borghi, F., Marini, P., Scatizzi, M., & the Italian ColoRectal Anastomotic Leakage (iCral) Study Group. (2024). Oral Antibiotics Alone versus Oral Antibiotics Combined with Mechanical Bowel Preparation for Elective Colorectal Surgery: A Propensity Score-Matching Re-Analysis of the iCral 2 and 3 Prospective Cohorts. Antibiotics, 13(3), 235. https://doi.org/10.3390/antibiotics13030235