The Prognostic Role of Diagnostic Criteria for COVID-19-Associated Pulmonary Aspergillosis: A Cross-Sectional Retrospective Study
Abstract
:1. Introduction
2. Results
2.1. Population
2.1.1. mAspICU and ECMM Criteria
2.1.2. EORTC/MSG Criteria
2.1.3. Common Factors and Treatment
2.2. Concordance of Diagnostic Criteria with the Decision to Treat
Factors Influencing the Decision to Treat
2.3. Correlation between Survival and Diagnostic Criteria
3. Discussion
4. Materials and Methods
4.1. Study Design and Setting
4.2. Demographic and Clinical Data
4.3. Laboratory and Radiological Investigations
4.4. Cases’ Definitions According to Criteria
- -
- EORTC/MSG host factors related to an immunosuppressive condition [8] were applied as standard, but we equated prolonged use of dexamethasone or methylprednisolone prescribed for SARS-CoV-2 pneumonia to prolonged, high-dose of prednisone (≥0.3 mg/kg for more than 3 weeks).
- -
- Among the AspICU criteria, we chose the modified AspICU (mAspICU) [11], applied as standard. However, the entry factor “ICU admission” was also considered present in patients receiving mechanical ventilation in ordinary wards since these patients would have been admitted to the ICU prior to the pandemic.
- -
- ECMM criteria were applied faithfully [13].
4.5. Statistical Analysis
4.6. Informed Consent and Ethical Concerns
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Rutsaert, L.; Steinfort, N.; Van Hunsel, T.; Bomans, P.; Naesens, R.; Mertes, H.; Dits, H.; Van Regenmortel, N. COVID-19-associated invasive pulmonary aspergillosis. Ann. Intensive Care 2020, 10, 71. [Google Scholar] [CrossRef]
- Bartoletti, M.; Pascale, R.; Cricca, M.; Rinaldi, M.; Maccaro, A.; Bussini, L.; Fornaro, G.; Tonetti, T.; Pizzilli, G.; Francalanci, E.; et al. Epidemiology of Invasive Pulmonary Aspergillosis among Intubated Patients with COVID-19: A Prospective Study. Clin. Infect. Dis. 2021, 73, e3606–e3614. [Google Scholar] [CrossRef]
- Dellière, S.; Dudoignon, E.; Fodil, S.; Voicu, S.; Collet, M.; Oillic, P.A.; Salmona, M.; Dépret, F.; Ghelfenstein-Ferreira, T.; Plaud, B.; et al. Risk factors associated with COVID-19-associated pulmonary aspergillosis in ICU patients: A French multicentric retrospective cohort. Clin. Microbiol. Infect. 2020, 27, 790.e1–790.e5. [Google Scholar] [CrossRef]
- Prattes, J.; Wauters, J.; Giacobbe, D.R.; Lagrou, K.; Hoenigl, M.; ECMM-CAPA Study Group. Diagnosis and treatment of COVID-19 associated pulmonary apergillosis in critically ill patients: Results from a European confederation of medical mycology registry. Intensive Care Med. 2021, 47, 1158–1160. [Google Scholar] [CrossRef] [PubMed]
- Prattes, J.; Wauters, J.; Giacobbe, D.R.; Salmanton-García, J.; Maertens, J.; Bourgeois, M.; Reynders, M.; Rutsaert, L.; Van Regenmortel, N.; Lormans, P.; et al. Risk factors and outcome of pulmonary aspergillosis in critically ill coronavirus disease 2019 patients—A multinational observational study by the European Confederation of Medical Mycology. Clin. Microbiol. Infect. 2022, 28, 580–587. [Google Scholar] [CrossRef] [PubMed]
- Ascioglu, S.; Rex, J.H.; de Pauw, B.; Bennett, J.E.; Bille, J.; Crokaert, F.; Denning, D.W.; Donnelly, J.P.; Edwards, J.E.; Erjavec, Z.; et al. Defining opportunistic invasive fungal infections in immunocompromised patients with cancer and hematopoietic stem cell transplants: An international consensus. Clin. Infect. Dis. 2002, 34, 7–14. [Google Scholar] [CrossRef]
- De Pauw, B.; Walsh, T.J.; Donnelly, J.P.; Stevens, D.A.; Edwards, J.E.; Calandra, T.; Pappas, P.G.; Maertens, J.; Lortholary, O.; Kauffman, C.A.; et al. Revised definitions of invasive fungal disease from the European Organization for Research and Treatment of Cancer/Invasive Fungal Infections Cooperative Group and the National Institute of Allergy and Infectious Diseases Mycoses Study Group (EORTC/MSG) Consensus Group. Clin. Infect. Dis. 2008, 46, 1813–1821. [Google Scholar] [CrossRef]
- Donnelly, J.P.; Chen, S.C.; Kauffman, C.A.; Steinbach, W.J.; Baddley, J.W.; Verweij, P.E.; Clancy, C.J.; Wingard, J.R.; Lockhart, S.R.; Groll, A.H.; et al. Revision and Update of the Consensus Definitions of Invasive Fungal Disease from the European Organization for Research and Treatment of Cancer and the Mycoses Study Group Education and Research Consortium. Clin. Infect. Dis. 2020, 71, 1367–1376. [Google Scholar] [CrossRef]
- Bassetti, M.; Azoulay, E.; Kullberg, B.J.; Ruhnke, M.; Shoham, S.; Vazquez, J.; Giacobbe, D.R.; Calandra, T. EORTC/MSGERC Definitions of Invasive Fungal Diseases: Summary of Activities of the Intensive Care Unit Working Group. Clin. Infect. Dis. 2021, 72 (Suppl. S2), S121–S127. [Google Scholar] [CrossRef] [PubMed]
- Blot, S.I.; Taccone, F.S.; Van den Abeele, A.M.; Bulpa, P.; Meersseman, W.; Brusselaers, N.; Dimopoulos, G.; Paiva, J.A.; Misset, B.; Rello, J.; et al. A clinical algorithm to diagnose invasive pulmonary aspergillosis in critically ill patients. Am. J. Respir. Crit. Care Med. 2012, 186, 56–64, Erratum in Am. J. Respir. Crit. Care Med. 2012, 186, 808. [Google Scholar] [CrossRef]
- Schauwvlieghe, A.F.A.D.; Rijnders, B.J.A.; Philips, N.; Verwijs, R.; Vanderbeke, L.; Van Tienen, C.; Lagrou, K.; Verweij, P.E.; Van de Veerdonk, F.L.; Gommers, D.; et al. Invasive aspergillosis in patients admitted to the intensive care unit with severe influenza: A retrospective cohort study. Lancet Respir. Med. 2018, 6, 782–792. [Google Scholar] [CrossRef] [PubMed]
- Wauters, J.; Baar, I.; Meersseman, P.; Meersseman, W.; Dams, K.; De Paep, R.; Lagrou, K.; Wilmer, A.; Jorens, P.; Hermans, G. Invasive pulmonary aspergillosis is a frequent complication of critically ill H1N1 patients: A retrospective study. Intensive Care Med. 2012, 38, 1761–1768. [Google Scholar] [CrossRef]
- Koehler, P.; Bassetti, M.; Chakrabarti, A.; Chen, S.C.A.; Colombo, A.L.; Hoenigl, M.; Klimko, N.; Lass-Flörl, C.; Oladele, R.O.; Vinh, D.C.; et al. Defining and managing COVID-19-associated pulmonary aspergillosis: The 2020 ECMM/ISHAM consensus criteria for research and clinical guidance. Lancet Infect. Dis. 2021, 21, e149–e162. [Google Scholar] [CrossRef]
- Hamam, J.; Navellou, J.C.; Bellanger, A.P.; Bretagne, S.; Winiszewski, H.; Scherer, E.; Piton, G.; Millon, L.; Collaborative RESSIF Group. New clinical algorithm including fungal biomarkers to better diagnose probable invasive pulmonary aspergillosis in ICU. Ann. Intensive Care 2021, 11, 41. [Google Scholar] [CrossRef]
- Egger, M.; Hoenigl, M.; Thompson, G.R., 3rd; Carvalho, A.; Jenks, J.D. Let’s talk about sex characteristics—As a risk factor for invasive fungal diseases. Mycoses 2022, 65, 599–612. [Google Scholar] [CrossRef] [PubMed]
- Schroeder, M.; Giese, M.; Wijaya, C.; Winterland, S.; Nuechtern, A.; Grensemann, J.; Matthews, H.; Wichmann, D.; Stamm, J.; Rohde, H.; et al. Comparison of four diagnostic criteria for invasive pulmonary aspergillosis—A diagnostic accuracy study in critically ill patients. Mycoses 2022, 65, 824–833. [Google Scholar] [CrossRef] [PubMed]
- Alanio, A.; Dellière, S.; Fodil, S.; Bretagne, S.; Mégarbane, B. Prevalence of putative invasive pulmonary aspergillosis in critically ill patients with COVID-19. Lancet Respir. Med. 2020, 8, e48–e49. [Google Scholar] [CrossRef]
- Lamoth, F.; Glampedakis, E.; Boillat-Blanco, N.; Oddo, M.; Pagani, J.L. Incidence of invasive pulmonary aspergillosis among critically ill COVID-19 patients. Clin. Microbiol. Infect. 2020, 26, 1706–1708. [Google Scholar] [CrossRef]
- Egger, M.; Bussini, L.; Hoenigl, M.; Bartoletti, M. Prevalence of COVID-19-Associated Pulmonary Aspergillosis: Critical Review and Conclusions. J. Fungi. 2022, 8, 390. [Google Scholar] [CrossRef]
- Prattes, J.; Koehler, P.; Hoenigl, M.; ECMM-CAPA Study Group. COVID-19 associated pulmonary aspergillosis: Regional variation in incidence and diagnostic challenges. Intensive Care Med. 2021, 47, 1339–1340. [Google Scholar] [CrossRef]
- Feys, S.; Lagrou, K.; Lauwers, H.M.; Haenen, K.; Jacobs, C.; Brusselmans, M.; Debaveye, Y.; Hermans, G.; Hoenigl, M.; Maertens, J.; et al. High burden of COVID-19-associated pulmonary aspergillosis (CAPA) in severely immunocompromised patients requiring mechanical ventilation. Clin. Infect. Dis. 2023, ciad546. [Google Scholar] [CrossRef] [PubMed]
- Asperges, E.; Novati, S.; Muzzi, A.; Biscarini, S.; Sciarra, M.; Lupi, M.; Sambo, M.; Gallazzi, I.; Peverini, M.; Lago, P.; et al. Rapid response to COVID-19 outbreak in Northern Italy: How to convert a classic infectious disease ward into a COVID-19 response centre. J. Hosp. Infect. 2020, 105, 477–479. [Google Scholar] [CrossRef] [PubMed]
- Oz, Y.; Kiraz, N. Diagnostic methods for fungal infections in pediatric patients: Microbiological, serological and molecular methods. Expert Rev. Anti-Infect. Ther. 2011, 9, 289–298. [Google Scholar] [CrossRef] [PubMed]
Hospitalisation Registry (n = 196) | |
---|---|
Age [years] | 64 (53–71) |
Sex | |
Male | 139 (70.9) |
Female | 57 (29.1) |
Outcome | |
Deceased | 66 (33.7) |
Discharged | 130 (66.3) |
Length of stay [days] | 26.1 (14.3–49.0) |
ICU admission (NA: 80) | 52 (44.8) |
Mechanical ventilation (NA: 82) | |
CPAP | 18 (15.8) |
Invasive | 47 (41.2) |
Comorbidities | |
Diabetes (NA: 83) | 20 (17.7) |
Obesity (NA: 83) | 11 (9.7) |
Solid tumour (NA: 84) | 13 (11.6) |
Chronic Obstructive Pulmonary Disease (NA: 83) | 24 (21.2) |
mAspICU and ECMM factors | |
Compatible signs (NA: 84) | 83 (74.1) |
Neutropenia: <0.5 × 109 [neu/L] before or at ICU admission (NA: 81) | 7 (6.1) |
Cytotoxic agents (NA: 84) | 16 (14.3) |
Steroids: 20 mg/day (NA: 83) | 98 (87.5) |
Immunodeficiency (NA: 83) | 11 (9.7) |
EORTC/MSG host factors | |
Neutropenia: <0.5 × 109 [neu/L] for >10 days (NA: 80) | 7 (6.0) |
Haematological malignancy | 25 (21.7) |
Haematopoietic stem-cell transplantation (NA: 83) | 11 (9.7) |
Solid organ transplant | 9 (7.8) |
Steroids: 0.3 mg/kg/day for >3 weeks (NA: 83) | 37 (32.6) |
T-immunosuppressant (NA: 83) | 12 (10.6) |
Treatment with B-cell suppressors | 4 (3.5) |
Acute graft-versus-host disease | 1 (0.9) |
Inherited severe immunodeficiency (NA: 83) | 1 (0.9) |
Radiological pattern (NA: 91) | |
Atypical | 88 (83.8) |
Normal | 12 (11.4) |
Typical | 5 (4.8) |
Galactomannan antigen | |
Material (NA: 8) | |
BAL | 80 (42.6) |
Serum | 108 (57.4) |
Positivity (NA: 7) | 28 (14.8) |
Discrepancy BAL/serum positivity | 5 (2.6) |
Median value (NA: 7) | 0.2 (0.2–2) |
Cultures | |
Material (NA: 88) | |
Bronchonasopharyngeal aspirate | 6 (5.5) |
Sputum | 10 (9.3) |
Induced sputum | 1 (0.9) |
Blood | 1 (0.9) |
BAL | 90 (83.3) |
Species (NA: 85) | |
Aspergillus | 17 (15.2) |
Candida | 58 (51.8) |
Aspergillus + Candida | 17 (15.2) |
mAspICU classification (NA: 85) | |
Certain | 0 (0.0) |
Putative | 20 (18.0) |
Colonisation | 2 (1.8) |
ECMM classification (NA: 85) | |
Certain | 0 (0.0) |
Probable | 19 (17.1) |
Possible | 2 (1.8) |
EORTC/MSG classification (NA: 84) | |
Certain | 0 (0.0) |
Probable | 10 (8.9) |
Possible | 27 (24.1) |
Treatment | |
Decision to treat (NA: 86) | 33 (16.8) |
Drug | |
Echinocandin | 3 (6.5) |
Fluconazole | 2 (4.3) |
Voriconazole | 24 (12.2) |
Isavuconazole | 2 (4.3) |
Voriconazole + amphotericin B | 1 (2.2) |
mAspICU | |||
Colonisation/Not Applicable | Certain/Putative | ||
Treatment | No | 74 | 4 |
Yes | 16 | 13 | |
ECMM | |||
Not Applicable | Certain/Probable/Possible | ||
Treatment | No | 73 | 5 |
Yes | 16 | 13 | |
EORTC/MSG | |||
Not Applicable | Certain/Probable/Possible | ||
Treatment | No | 57 | 22 |
Yes | 16 | 13 |
Concordance (Expressed as Cohen’s κ Coefficient) | ||||
---|---|---|---|---|
DTT | mAspICU | ECMM | EORTC/MSG | |
DTT | 0.46 | 0.44 | 0.16 | |
mAspICU | 0.91 | 0.02 | ||
ECMM | 0.00 | |||
EORTC/MSG |
Factors | DTT Yes (n = 31) | DTT No (n = 81) | p Value |
---|---|---|---|
Neutropenia: <0.5 × 109 [neu/L] for >10 days | 3 (9.7) | 4 (4.9) | 0.39 |
Neutropenia: <0.5 × 109 [neu/L] before or at ICU admission | 2 (6.5) | 5 (6.2) | 1 |
Haematological malignancy | 8 (25.8) | 16 (19.8) | 0.66 |
Haematopoietic stem-cell transplantation (NA: 1) | 5 (16.1) | 6 (7.4) | 0.17 |
Solid organ transplant | 2 (6.5) | 7 (8.6) | 1 |
Steroids: 0.3 mg/kg/day for >3 weeks (NA: 1) | 11 (35.5) | 25 (32.1) | 0.82 |
Steroids: 20 mg/day (NA: 2) | 26 (90.3) | 69 (87.3) | 0.91 |
T-immunosuppressant (NA: 1) | 5 (16.1) | 7 (8.6) | 0.42 |
B-immunosuppressant | - | 4 (4.9) | 0.57 |
Acute graft-versus-host disease | - | 1 (1.2) | 1 |
Inherited severe immunodeficiency (NA: 1) | 1 (3.2) | - | 0.27 |
Compatible signs (NA: 2) | 28 (90.3) | 54 (67.5) | 0.03 |
Cytotoxic agents (NA: 1) | 3 (10.0) | 13 (16.2) | 0.55 |
Immunodeficiency (NA: 1) | 2 (6.5) | 9 (11.1) | 0.72 |
Atypical Radiologic pattern (NA: 9) | 5 (16.7) | 12 (16.7) | 1 |
Galactomannan positivity | 10 (32.2) | 7 (8.6) | <0.001 |
Positive culture of Aspergillus (NA: 40) | 17 (63.0) | 25 (56.8) | 0.79 |
Factors | Survivors (n = 86) | Deceased (n = 26) | p Value |
---|---|---|---|
Neutropenia: <0.5 × 109 [neu/L] for >10 days | 5 (5.8) | 2 (7.7) | 0.66 |
Neutropenia: <0.5 × 109 [neu/L] before or at ICU admission | 5 (5.8) | 2 (7.7) | 0.66 |
Haematological malignancy | 16 (18.6) | 8 (30.8) | 0.29 |
Haematopoietic stem-cell transplantation | 8 (9.3) | 3 (11.5) | 0.71 |
Solid organ transplant | 8 (9.3) | 1 (3.8) | 0.68 |
Steroids: 0.3 mg/kg/day for >3 weeks | 26 (30.2) | 11 (42.3) | 0.36 |
Steroids: 20 mg/day (NA: 2) | 75 (87.2) | 22 (91.7) | 0.81 |
T-immunosuppressant | 11 (12.8) | 1 (3.8) | 0.29 |
B-immunosuppressant | 1 (1.2) | 3 (11.5) | 0.04 |
Acute graft-versus-host disease | 1 (1.2) | - | 1 |
Inherited severe immunodeficiency | 1 (1.2) | - | 1 |
Compatible signs (NA: 1) | 63 (73.3) | 19 (76.0) | 0.99 |
Cytotoxic agents (NA: 1) | 7 (8.2) | 9 (34.6) | 0.002 |
Immunodeficiency | 7 (8.1) | 4 (15.4) | 0.28 |
Atypical Radiologic pattern (NA: 10) | 16 (20.0) | 1 (4.5) | 0.11 |
Galactomannan positivity | 12 (14.0) | 5 (19.2) | 0.73 |
Positive culture of Aspergillus (NA = 41) | 30 (55.6) | 12 (70.6) | 0.41 |
Treatment (NA: 2) | 26 (31.0) | 3 (12.5) | 0.12 |
mAspICU (NA: 1) | 14 (16.3) | 6 (24.0) | 0.56 |
ECMM (NA: 1) | 15 (17.4) | 6 (24.0) | 0.65 |
EORTC/MSG | 25 (29.1) | 12 (46.2) | 0.16 |
OR | 95% Confidence Interval | p Value | |
---|---|---|---|
All criteria | |||
Cytotoxic agents | 0.18 | 0.04–0.76 | 0.019 |
B-cell suppressants | 0.66 | 0.03–8.59 | 0.76 |
Treatment | 7.12 | 1.67–43.71 | 0.016 |
mAspICU | 0.42 | 0.01–7.04 | 0.564 |
ECMM | 0.45 | 0.03–13.95 | 0.583 |
EORTC/MSG | 0.53 | 0.18–1.59 | 0.243 |
mAspICU | |||
Cytotoxic agents | 0.17 | 0.04–0.62 | 0.008 |
B-cell suppressants | 0.58 | 0.02–7.03 | 0.687 |
Treatment | 6.17 | 1.49–36.81 | 0.023 |
mAspICU | 0.22 | 0.05–0.89 | 0.035 |
ECMM | |||
Cytotoxic agents | 0.14 | 0.03–0.57 | 0.006 |
B-cell suppressants | 0.64 | 0.03–7.80 | 0.738 |
Treatment | 5.36 | 1.40–28.33 | 0.025 |
ECMM | 0.23 | 0.06–0.92 | 0.036 |
EORTC/MSG | |||
Cytotoxic agents | 0.25 | 0.06–0.97 | 0.042 |
B-cell suppressants | 0.48 | 0.03–5.33 | 0.572 |
Treatment | 3.80 | 1.10–18.16 | 0.054 |
EORTC | 0.61 | 0.22–1.76 | 0.343 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Asperges, E.; Pesare, R.; Bassoli, C.; Calia, M.; Lerta, S.; Citiolo, F.; Albi, G.; Cavanna, C.; Sacchi, P.; Bruno, R. The Prognostic Role of Diagnostic Criteria for COVID-19-Associated Pulmonary Aspergillosis: A Cross-Sectional Retrospective Study. Antibiotics 2024, 13, 150. https://doi.org/10.3390/antibiotics13020150
Asperges E, Pesare R, Bassoli C, Calia M, Lerta S, Citiolo F, Albi G, Cavanna C, Sacchi P, Bruno R. The Prognostic Role of Diagnostic Criteria for COVID-19-Associated Pulmonary Aspergillosis: A Cross-Sectional Retrospective Study. Antibiotics. 2024; 13(2):150. https://doi.org/10.3390/antibiotics13020150
Chicago/Turabian StyleAsperges, Erika, Rebecca Pesare, Cecilia Bassoli, Matteo Calia, Sonia Lerta, Francesco Citiolo, Giuseppe Albi, Caterina Cavanna, Paolo Sacchi, and Raffaele Bruno. 2024. "The Prognostic Role of Diagnostic Criteria for COVID-19-Associated Pulmonary Aspergillosis: A Cross-Sectional Retrospective Study" Antibiotics 13, no. 2: 150. https://doi.org/10.3390/antibiotics13020150
APA StyleAsperges, E., Pesare, R., Bassoli, C., Calia, M., Lerta, S., Citiolo, F., Albi, G., Cavanna, C., Sacchi, P., & Bruno, R. (2024). The Prognostic Role of Diagnostic Criteria for COVID-19-Associated Pulmonary Aspergillosis: A Cross-Sectional Retrospective Study. Antibiotics, 13(2), 150. https://doi.org/10.3390/antibiotics13020150