A New Approach to Evaluate the Bactericidal Activity of Different Antiseptic Ophthalmic Preparations Used as Surgical Prophylaxis
Abstract
:1. Introduction
2. Material and Methods
2.1. Pathogens
2.2. Ophthalmic Formulations
2.3. The Study Design
2.4. Minimum Inhibitory Concentrations and Minimum Bactericidal Concentrations (Long-Term Incubation)
2.5. Viability Assessments Based on Membrane Integrity by FCM (Long-Term Incubation)
2.6. The Conventional TKC (Short-Term Incubation)
2.7. Viability Assessments Based on Membrane Integrity by FMR and TFMC Assays (Short-Term Incubation)
2.8. Data Analysis: AFU and N0/N
3. Results
3.1. Inhibitory Effect and Antibacterial Efficacy of AOFs Against Cultured Bacteria
3.2. The FCM Was Useful to Measure the AOFs Activity
3.3. The TCK Classifies AOFs into Early and Late Efficacy Products
3.4. A High Throughput Time-Killing Method to Classify AOFs into Early and Late Effectiveness
3.5. Tears Effect on AOFs Effectiveness
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ciulla, T.A.; Starr, M.B.; Masket, S. Bacterial Endophthalmitis Prophylaxis for Cataract Surgery. Ophthalmology 2002, 109, 13–24. [Google Scholar] [CrossRef] [PubMed]
- Haripriya, A.; Baam, Z.R.; Chang, D.F. Endophthalmitis Prophylaxis for Cataract Surgery. Asia Pac. J. Ophthalmol. 2017, 6, 324–329. [Google Scholar] [CrossRef]
- Behndig, A.; Cochener-Lamard, B.; Güell, J.; Kodjikian, L.; Mencucci, R.; Nuijts, R.; Pleyer, U.; Rosen, P.; Szaflik, J.; Tassignon, M.-J. Surgical, Antiseptic, and Antibiotic Practice in Cataract Surgery: Results from the European Observatory in 2013. J. Cataract. Refract. Surg. 2015, 41, 2635–2643. [Google Scholar] [CrossRef]
- Behnding, A.; Ravindran, R.; Flynn, H.; Relhan, N.; Hernandez-Camarena, J.; Valdez-Garcia, J.; Jimenez-Corona, A.; Graue-Hernandez, E.; Pellegrino, F.; Daponte, P.; et al. Endophthalmitis Prophylaxis in Cataract Surgery: Overview of Current Practice Patterns Around the World. CPD 2017, 23, 565–573. [Google Scholar] [CrossRef] [PubMed]
- Zhang, W.-F.; Zhao, X.-Y.; Meng, L.-H.; Chen, H.; Chen, Y.-X. Endophthalmitis at a Tertiary Referral Center: Characteristics and Treatment Outcomes over Three Decades. Front. Cell Dev. Biol. 2022, 10, 952375. [Google Scholar] [CrossRef]
- Speaker, M.G.; Milch, F.A.; Shah, M.K.; Eisner, W.; Kreiswirth, B.N. Role of External Bacterial Flora in the Pathogenesis of Acute Postoperative Endophthalmitis. Ophthalmology 1991, 98, 639–650. [Google Scholar] [CrossRef] [PubMed]
- ESCRS Endophthalmitis Study Group. Prophylaxis of Postoperative Endophthalmitis Following Cataract Surgery: Results of the ESCRS Multicenter Study and Identification of Risk Factors. J. Cataract. Refract. Surg. 2007, 33, 978–988. [Google Scholar] [CrossRef]
- Kowalski, R.P.; Nayyar, S.V.; Romanowski, E.G.; Shanks, R.M.Q.; Mammen, A.; Dhaliwal, D.K.; Jhanji, V. The Prevalence of Bacteria, Fungi, Viruses, and Acanthamoeba From 3,004 Cases of Keratitis, Endophthalmitis, and Conjunctivitis. Eye Contact Lens Sci. Clin. Pract. 2020, 46, 265–268. [Google Scholar] [CrossRef]
- Groden, L.R.; Murphy, B.; Rodnite, J.; Genvert, G.I. Lid Flora in Blepharitis. Cornea 1991, 10, 50–53. [Google Scholar] [CrossRef]
- Lockington, D.; Flowers, H.; Young, D.; Yorston, D. Assessing the Accuracy of Intracameral Antibiotic Preparation for Use in Cataract Surgery. J. Cataract. Refract. Surg. 2010, 36, 286–289. [Google Scholar] [CrossRef]
- Apt, L. Chemical Preparation of the Eye in Ophthalmic Surgery: III. Effect of Povidone-Iodine on the Conjunctiva. Arch. Ophthalmol. 1984, 102, 728. [Google Scholar] [CrossRef] [PubMed]
- Wu, P.-C.; Li, M.; Chang, S.-J.; Teng, M.-C.; Yow, S.-G.; Shin, S.-J.; Kuo, H.-K. Risk of Endophthalmitis After Cataract Surgery Using Different Protocols for Povidone– Iodine Preoperative Disinfection. J. Ocul. Pharmacol. Ther. 2006, 22, 54–61. [Google Scholar] [CrossRef] [PubMed]
- Barry, P.; Cordovés, L.; Gardner, S. ESCRS Guidelines for Prevention and Treatment of Endophthalmitis Following Cataract Surgery: Data, Dilemmas and Conclusions; European Society of Cataract and Refractive Surgeons: London, UK, 2013. [Google Scholar]
- Cabrera-Aguas, M.; Chidi-Egboka, N.; Kandel, H.; Watson, S.L. Antimicrobial Resistance in Ocular Infection: A Review. Clin. Exper Ophthalmol. 2024, 52, 258–275. [Google Scholar] [CrossRef] [PubMed]
- Borgia, A.; Mazzuca, D.; Della Corte, M.; Gratteri, N.; Fossati, G.; Raimondi, R.; Pagano, L.; Scorcia, V.; Giannaccare, G. Prophylaxis of Ocular Infection in the Setting of Intraocular Surgery: Implications for Clinical Practice and Risk Management. Ophthalmol. Ther. 2023, 12, 721–734. [Google Scholar] [CrossRef]
- Liu, J.-Y.; Chu, H.-S.; Wei, Y.-H.; Cheng, C.-Y.; Tsui, M.-C.; Wu, J.-H.; Huang, W.-L.; Liu, H.-Y.; Hou, Y.-C.; Wang, I.-J.; et al. Review, Analysis, and Education of Antiseptic Related Ocular Injury in the Surgical Settings. Ocul. Surf. 2021, 22, 60–71. [Google Scholar] [CrossRef]
- Jorgensen, J.H.; Ferraro, M.J. Antimicrobial Susceptibility Testing: A Review of General Principles and Contemporary Practices. Clin. Infect. Dis. 2009, 49, 1749–1755. [Google Scholar] [CrossRef]
- Afzal, M.; Vijay, A.K.; Stapleton, F.; Willcox, M.D.P. Susceptibility of Ocular Staphylococcus Aureus to Antibiotics and Multipurpose Disinfecting Solutions. Antibiotics 2021, 10, 1203. [Google Scholar] [CrossRef]
- Blondeau, J.; DeCory, H. In Vitro Time-Kill of Common Ocular Pathogens with Besifloxacin Alone and in Combination with Benzalkonium Chloride. Pharmaceuticals 2021, 14, 517. [Google Scholar] [CrossRef]
- Tognetto, D.; Pastore, M.R.; Guerin, G.M.; Decorti, G.; Franzin, M.; Lagatolla, C.; Cirigliano, G. Bactericidal Activity of Three Different Antiseptic Ophthalmic Preparations as Surgical Prophylaxis. Graefe’s Arch. Clin. Exp. Ophthalmol. 2022, 260, 289–293. [Google Scholar] [CrossRef]
- Fleischmann, S.; Robben, C.; Alter, T.; Rossmanith, P.; Mester, P. How to Evaluate Non-Growing Cells—Current Strategies for Determining Antimicrobial Resistance of VBNC Bacteria. Antibiotics 2021, 10, 115. [Google Scholar] [CrossRef]
- Ou, F.; McGoverin, C.; Swift, S.; Vanholsbeeck, F. Rapid and Cost-Effective Evaluation of Bacterial Viability Using Fluorescence Spectroscopy. Anal. Bioanal. Chem. 2019, 411, 3653–3663. [Google Scholar] [CrossRef] [PubMed]
- Guo, R.; McGoverin, C.; Swift, S.; Vanholsbeeck, F. A Rapid and Low-Cost Estimation of Bacteria Counts in Solution Using Fluorescence Spectroscopy. Anal. Bioanal. Chem. 2017, 409, 3959–3967. [Google Scholar] [CrossRef]
- Mattio, L.M.; Dallavalle, S.; Musso, L.; Filardi, R.; Franzetti, L.; Pellegrino, L.; D’Incecco, P.; Mora, D.; Pinto, A.; Arioli, S. Antimicrobial Activity of Resveratrol-Derived Monomers and Dimers against Foodborne Pathogens. Sci. Rep. 2019, 9, 19525. [Google Scholar] [CrossRef] [PubMed]
- Nocker, A.; Cheswick, R.; Dutheil De La Rochere, P.-M.; Denis, M.; Léziart, T.; Jarvis, P. When Are Bacteria Dead? A Step towards Interpreting Flow Cytometry Profiles after Chlorine Disinfection and Membrane Integrity Staining. Environ. Technol. 2017, 38, 891–900. [Google Scholar] [CrossRef]
- Bajorath, J. Integration of Virtual and High-Throughput Screening. Nat. Rev. Drug Discov. 2002, 1, 882–894. [Google Scholar] [CrossRef] [PubMed]
- Vanhauteghem, D.; Audenaert, K.; Demeyere, K.; Hoogendoorn, F.; Janssens, G.P.J.; Meyer, E. Flow Cytometry, a Powerful Novel Tool to Rapidly Assess Bacterial Viability in Metal Working Fluids: Proof-of-Principle. PLoS ONE 2019, 14, e0211583. [Google Scholar] [CrossRef]
- Robertson, J.; McGoverin, C.; Vanholsbeeck, F.; Swift, S. Optimisation of the Protocol for the LIVE/DEAD® BacLightTM Bacterial Viability Kit for Rapid Determination of Bacterial Load. Front. Microbiol. 2019, 10, 801. [Google Scholar] [CrossRef] [PubMed]
- Trinh, K.T.L.; Lee, N.Y. Recent Methods for the Viability Assessment of Bacterial Pathogens: Advances, Challenges, and Future Perspectives. Pathogens 2022, 11, 1057. [Google Scholar] [CrossRef] [PubMed]
- Mishima, S.; Gasset, A.; Klyce, S.D. Determination of Tear Volume and Tear Flow. Investig. Ophthalmol. 1966, 5, 264–276. [Google Scholar]
- Scherz, W.; Doane, M.G.; Dohlman, C.H. Tear Volume in Normal Eyes and Keratoconjunctivitis Sicca. Albrecht von Graefes Arch. Klin. Ophthalmol. 1974, 192, 141–150. [Google Scholar] [CrossRef]
- Clinical and Laboratory Standards Institute (CLSI). Performance Standards for Antimicrobial Susceptibility Testing; CLSI: Wayne, PA, USA, 2022. [Google Scholar]
- Willcox, M.D.P. Characterization of the Normal Microbiota of the Ocular Surface. Exp. Eye Res. 2013, 117, 99–105. [Google Scholar] [CrossRef] [PubMed]
- Berney, M.; Hammes, F.; Bosshard, F.; Weilenmann, H.-U.; Egli, T. Assessment and Interpretation of Bacterial Viability by Using the LIVE/DEAD BacLight Kit in Combination with Flow Cytometry. Appl. Environ. Microbiol. 2007, 73, 3283–3290. [Google Scholar] [CrossRef]
- Karki, R.; Meena, M.; Prakash, T.; Rajeswari, T.; Goli, D.; Kumar, S. Reduction in Drop Size of Ophthalmic Topical Drop Preparations and the Impact of Treatment. J. Adv. Pharm. Technol. Res. 2011, 2, 192. [Google Scholar] [CrossRef] [PubMed]
- ThermoFisher Scientific. LIVE/DEAD® BacLightTM Bacterial Viability Kits; ThermoFisher Scientific: Waltham, MA, USA, 2004. [Google Scholar]
- Li, R.; Dhankhar, D.; Chen, J.; Cesario, T.C.; Rentzepis, P.M. Determination of Live:Dead Bacteria as a Function of Antibiotic Treatment. J. Microbiol. Methods 2018, 154, 73–78. [Google Scholar] [CrossRef]
- Fernandez, M.D.S.; Guedes, M.I.F.; Langa, G.P.J.; Rösing, C.K.; Cavagni, J.; Muniz, F.W.M.G. Virucidal Efficacy of Chlorhexidine: A Systematic Review. Odontology 2022, 110, 376–392. [Google Scholar] [CrossRef]
- Arbogast, J.W.; Bowersock, L.; Parker, A.J.; Macinga, D.R. Randomized Controlled Trial Evaluating the Antimicrobial Efficacy of Chlorhexidine Gluconate and Para-Chloro-Meta-Xylenol Handwash Formulations in Real-World Doses. Am. J. Infect. Control 2019, 47, 726–728. [Google Scholar] [CrossRef] [PubMed]
- Merani, R.; McPherson, Z.E.; Luckie, A.P.; Gilhotra, J.S.; Runciman, J.; Durkin, S.; Muecke, J.; Donaldson, M.; Aralar, A.; Rao, A.; et al. Aqueous Chlorhexidine for Intravitreal Injection Antisepsis. Ophthalmology 2016, 123, 2588–2594. [Google Scholar] [CrossRef]
- Matysiak, A.; Kabza, M.; Karolak, J.A.; Jaworska, M.M.; Rydzanicz, M.; Ploski, R.; Szaflik, J.P.; Gajecka, M. Characterization of Ocular Surface Microbial Profiles Revealed Discrepancies between Conjunctival and Corneal Microbiota. Pathogens 2021, 10, 405. [Google Scholar] [CrossRef]
Name | Composition |
---|---|
Iodim® | 0.6% PVP-I, medium-chain triglycerides (MCTs), sodium hyaluronate, and glycerol |
Ozodrop® | Lipozoneye (ozonated sunflower oil, soy phospholipids), hydroxypropylmethylcellulose, polyhexamethylene biguanide (PHMB), boric acid, sodium tetraborate, sodium edetate, disodium, and deionized water |
Keratosept® | Polyvinyl alcohol 1.25%, dexpanthenol, hexamidine disethionate 0.050%, polyhexanide hydrochloride 0.0001%, methylsulfonylmethane, disodium edetate, sodium phosphate dibasic, potassium phosphate mono-basic, and purified water. |
Dropsept® | D-alpha-tocopherol poly (ethylene glycol), 1000 succinate (Vitamin E TPGS) (0.2%), and CHX digluconate solution (0.02%) |
Corneial® MED | PolyhexaMethylenBiguanide: 0.0003%; cross-linked sodium hyaluronate 0.2%; hypromellose 0.2%; disodium EDTA, borate buffer, sodium chloride, excipients, and purified water. |
Visuprime® | PQ133 100 mg, poloxamer-407 4500 mg, EDTA disodium 100 mg, and isotonic solution |
Oftasecur® | Biosecur (2 g), hypromellose (0.15 g), phospholipids S80, boric acid, sodium tetraborate decahydrate, sodium chloride, and distilled water. |
Oftasteril® | Iodopovidone 5% (operating room disinfectant) |
Aqueous Chlorhexidine [18] | Chlorhexidine 0.05% in water |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Caldrer, S.; Deotto, N.; Prato, M.G.; Gianesini, N.; Bernardi, M.; Orza, P.; Gobbi, F.G.; Pertile, G.; Piubelli, C. A New Approach to Evaluate the Bactericidal Activity of Different Antiseptic Ophthalmic Preparations Used as Surgical Prophylaxis. Antibiotics 2024, 13, 1051. https://doi.org/10.3390/antibiotics13111051
Caldrer S, Deotto N, Prato MG, Gianesini N, Bernardi M, Orza P, Gobbi FG, Pertile G, Piubelli C. A New Approach to Evaluate the Bactericidal Activity of Different Antiseptic Ophthalmic Preparations Used as Surgical Prophylaxis. Antibiotics. 2024; 13(11):1051. https://doi.org/10.3390/antibiotics13111051
Chicago/Turabian StyleCaldrer, Sara, Niccolò Deotto, Marco G. Prato, Natasha Gianesini, Milena Bernardi, Pierantonio Orza, Federico G. Gobbi, Grazia Pertile, and Chiara Piubelli. 2024. "A New Approach to Evaluate the Bactericidal Activity of Different Antiseptic Ophthalmic Preparations Used as Surgical Prophylaxis" Antibiotics 13, no. 11: 1051. https://doi.org/10.3390/antibiotics13111051
APA StyleCaldrer, S., Deotto, N., Prato, M. G., Gianesini, N., Bernardi, M., Orza, P., Gobbi, F. G., Pertile, G., & Piubelli, C. (2024). A New Approach to Evaluate the Bactericidal Activity of Different Antiseptic Ophthalmic Preparations Used as Surgical Prophylaxis. Antibiotics, 13(11), 1051. https://doi.org/10.3390/antibiotics13111051